FPGA-Based Modelling Unit for High Speed
Lossless Arithmetic Coding

Riad Stefo!, José Luis Nuiiez?, Claudia Feregrino?, Sudipta Mahapatra?, and
Simon Jones?

! Electronic and Electrical Engineering Department, Institut fiir Grundlagen der
Elektrotechnik und Elektronik (IEE) TU Dresden, 01062 Dresden, Germany
stefoQiee.et.tu-dresden.de
2 Electronic Systems Design Group, Loughborough University
Loughborough, Leics., LE11 3TU, U.K.

{J.L.Nunez-Yanez, C.Feregrino-Uribe, S.R.Jones}@lboro.ac.uk
3 Dept. of Computer Science Engineering & Applications, Regional Engineering
College, Rourkela - 769 008, Orissa, India
Sudipta@rec.ori.nic.in

Abstract. This paper presents a hardware implementation of an adap-
tive modelling unit for parallel binary arithmetic coding. The presented
model combines the advantages of binary arithmetic coding where the
coding process is simplified, with the benefits of multi-alphabet arith-
metic coding where any type of data can be compressed. The modelling
unit adopts a simple method to store and modify the information, mak-
ing it able to process 8 bits per clock cycle and to increase substantially
the arithmetic coding speed. This model has been implemented in an
A500K130 ProASIC FPGA and offers a throughput of 256 Mbits/s.

1 Introduction

Data compression allows representing data in a format that requires less space
than is usually needed. It is particularly useful in communications because it

enables devices to transmit the same amount of data in fewer bits. Data com-
n pression can be lossy or lossless [1]. Unlike lossy compression where the decom-
pressed data may be different from the original, lossless compression requires

% decompressed data to be an exact copy of the original.
Arithmetic coding is one of the best algorithms that can be used in lossless
d data compression. It replaces a stream of symbols with a coding range of real
s numbers between 0 and 1. The low end of this coding range is then used as
output code for this stream of symbols. At the beginning of the compression
it process, the coding range has 0 and 1 as its low and high ends, and a cumulative
, probability interval (Qz , Qz+1) is allocated to every possible input symbol.
i‘ So, the symbol x has the probability P, = Qz+1 - Q,. Every time a symbol

is encoded, the coding range is narrowed to a portion allocated to the symbol
according to its cumulative probability interval. The task of arithmetic coder is

G. Brebner and R. Woods (Eds.): FPL 2001, LNCS 2147, pp. 643-647, 2001.
© Springer-Verlag Berlin Heidelberg 2001

644 Riad Stefo et al.

to calculate the new low and high ends of the coding range using the equations
(1) and (2), where old_range = old_high — old_low.

new_high = old_low + old_range x Q. (1)
new_low = oldlow + old_range x @, (2)

Instead of the new high end of the coding range the new coding range can be
obtained using equation (3) to execute the arithmetic coding task.

new_range = old_range x P, (3)

Arithmetic coding can be implemented for either multialphabet or binary
alphabet. Because of the complexity of multialphabet arithmetic coding few
implementations have been presented. One of them [2] presents a software im-
plementation of arithmetic coding at byte level based on the equations (1) and
(2). The complexity of computations in this implementation makes it imprac-
tical for real time applications. Other software implementation [3] presents a
multialphabet arithmetic coding using a simpler algorithmic structure than the
presented in [2], and offers similar compression ratio.

Due to the simplicity of binary arithmetic coding several binary arithmetic
coding implementations have been presented. One of the best known, Marks
[4], presents the Qx-coder which uses a 7** order binary model and processes a
single bit per clock cycle. Kuang et al. [5] presents another implementation of
arithmetic coder that uses a 10" order binary model and needs 8.5 clock cycles
to process a bit.

In Section 2 we review a parallel implementation of arithmetic coding. Section
3 discusses the hardware architecture of the modelling unit. Section 4 reports
the design’s implementation and Section 5 concludes this paper.

2 Review of Parallel Arithmetic Coding

In [6] we proposed a parallel implementation of arithmetic coder that follows the
scheme showed in [7]. The model is 0°* order and processes symbols of 8 bits
using a binary tree of n = loga N levels to store the frequency information of the
symbols, where N is the size of the alphabet. Part of such tree is shown in Fig.
1. The complete tree has 8 levels for an alphabet of 256 symbols.

Encoded Bits
Q| Q2| Q3 Q4| Pl Qs Q Q7 E
1 KA 11757 iy w 157 Wl w u f w 1

8

Level Node N(0,0) T(0,0)
0

1

Symbol
D(2,3) 8§ 8 Model

Fig. 1. Part of the binary tree Fig. 2. Structure of the compressor

J
.

R ——

1

o

For

FPGA-Based Modelling Unit for High Speed Lossless Arithmetic Coding 645

Each node N(i,j)stores frequency information of the symbol in a single vari-

able D(i,j). The value of this variable splits the codespace of each node in two
different halves. This codespace has zero as its left limit and the data received
from the parent node T(i,j) as its right limit which is the total count of the sym-
bols. The root node stores the size of the alphabet as the data from its parent
node, which is increased after each symbol is encoded. It is assumed during the
initialization operation that each symbol of the alphabet has occurred once.

Next we show the modelling algorithm, where b; refers to the i*h bit of the

symbol to be encoded (b is the MSB).

Initialize the nodes of the tree with the symbols frequency
information D(i,j) and set T'(0,0) to 256
D(i,j)=2"""1, 0<i<n-1, 0<j<2 -1, n=8
T(0,0) =27
Send T'(0,0) to the root of the tree
Send the next symbol to be encoded to the first level and set
j=0
FOR i = 0 to n-1, execute the following operations:
a) Receive the value T'(i,j) from the parent node
b) IFi<n-—1
IF ;=0
set T(i+1,2j) = D(i,j) and send it to the left child
N(i+1,2j5)
LSE

set T(i+1,2j+1) =[T(i,j) — D(i,7)] and send it to the
right child N(:+ 1,25+ 1)
c) Send the values D(i,j) and T(i,j) as the modelling

information to the corresponding coder
d) Update D(i,5) = D(i,j) + (1 — b;)

IF b; =0

set j=2j
ELSE

set j=2j+1

Update T'(0,0) = 7°(0,0) +1
IF there are more symbols to encode go to step 2
ELSE

EXIT

Fig. 2 shows the compressor model. The coders work in parallel such that
each coder encodes one bit of the symbol. Each coder Q encodes either the left
half or the right half of the code space according to the bit received from the
symbol using the equations (2) and (3). The code bits generated by each coder
Q are sent to the decompressor, which uses them to retrieve the original data.

details about the structure of the decompressor the reader is refered to [6].

A software implementation for the compressor and the decompressor has been
done using C++. The average compression ratio for Canterbury Corpus files

- ﬁ

646 Riad Stefo et al. |

(8] is 0.64, which is still a good compression ratio for a universal lossless data
COMPTessor.

3 Model Architecture

The fact that only one node in each level of the tree sends the modelling in-
formation to the corresponding coder makes the realisation of each tree level
with one node possible. In this case each tree level contains one node and the
corresponding memory to store the frequency information of the symbols for all
the nodes in this level. The designed model works basically in two phases. The
first phase is for initialization where the memory locations in the tree levels are
initialized with the frequency information of the symbols. The second phase is
for encoding where the model analyses the symbols in the input data and sends
the modelling information to the coders. The model works in blockwise fashion,
this means that the initialization phase is executed for each new block of data.
Fig. 3 shows the architecture of the model. The total counter generates the data
for the next phrase. The initialize counter generates the addresses to the memory
locations during the initialization phase. Each tree level receives data from the
previous level and the corresponding bit of the symbol from the symbol register.
It analyses these data according to the modelling algorithm and sends data to
the next level and modelling information to the corresponding coder. The signals
mid point1...8 , range topl...8 in Fig. 3 form the modelling information that each
tree level sends to its corresponding binary coder. Fig. 4 shows the architecture
of a tree level. The intermediate logic updates the frequency information of the
symbol and sends it to the RAM. It also calculates the data to be send to the
next tree level. The index logic define which child node in the next level will
receive the data sent from the current level. The comparator is used to avoid
collisions between the read and write addresses of the RAM.

Index In Initialize Address

s

Mid Point 1 Data from the Top

P

Initialize
Counter

| Smbol I
Register Range Top 1 Rgges’t(er

i g 1 Output | Range Top
Symbol Bit Register
Ry“‘ism Mid Point 2 Register€fComparato
eg Range Top 2
'Y 7
. . Inde:
Intermediate RAD WAD > Logi)f(:
s 1313 8 Logic 256 x 13
o¢ J t d? ¢ '——>‘ ! __:D—) D?RAM
i’;"’i::’e'r Tree Level > Mid Point 8 Decision Bit 2 T
g Range Top 8 Decision Bit | DO .
13 ["Output] Mid Point
Register Data Down Initialize Value Index Out

Fig. 3. Model architecture Fig. 4. Tree level architecture

FPGA-Based Modelling Unit for High Speed Lossless Arithmetic Coding 647

Table 1. Comparing our implementation with other available implementations

Implementation Speed Throughput Symbol processed Technology

Marks[4] 75 MHz 64 Mbits/s 0.8 bit/clock cycle CMOS 5S 0.35 sm
IBM

Kuang [5] 25 MHz 3 Mbits/s (.12 bit/clock cycle 0.8 u#m single poly
double metal SPDM

Presented 32 MHz 256 Mbits/s 8.0 bits/clock cycle ProASIC

implementation A500K FPGA

4 Implementation

The model has been implemented in a non-volatile reprogrammable ProASIC
A500K130 FPGA. The design only uses 32.6% of the device logic and 80% of the
embedded RAM available. The device can be clocked at 32 MHz and processes a

5 Conclusions

A hardware implementation of a 0th order adaptive statistical modelling unit
that is able to support parallel binary arithmetic coding is presented in this pa-
per. The described model combines the advantages of binary arithmetic coding,
with the benefits of multi-alphabet arithmetic coding. Parallel binary arithmetic
coding increases the arithmetic coding speed substantially offering a throughput
of 256 Mbits/s.

References

- M. Nelson: The Data Compression Book, Prentice Hall (1991)

- LH.Witten et al: Arithmetic Coding for Data Compression , Communications of the
ACM, Vol. 30, No.6, (1987), pp. 520-540

. J. Jiang.: Novel Design of Arithmetic Coding for Data Compression, IEE Proceed-
ings Computers and Digital Techniques, Vol. 142, No. 6, (1995),pp. 419-424

4. K. M. Marks: A JBIG-ABIC Compression Engine for Digital Document Processing,

[\

w

tion of a Multialphabet Arithmetic Coding Algorithm, IEE Colloquium on Data
Compression: Methods and Implementations, IEE Savoy Place, London, (1999)

7. A. Moffat: Linear Time Adaptive Arithmetic Coding, IEEE Transaction on Infor-
mation Theory, Vol. 36, No. 2, (1990), pp. 401-406

8. R. Arnold, T. Bell: A Corpus for the Evaluation of Lossless Compression Algorithms,
Data Compression Conference,(1997), pp. 201-210

