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Abstract

The development of new and more powerful
applications in data communications and computer
systems has required an ever-increasing capacity to
handle large amounts of data. Lossless data compression
techniques have been developed to exploit further
available bandwidth of such systems by reducing the
amount of data to transmit or store. They have been
implemented in both software and hardware. The former
approach provides good compression ratios but presents
speed limitations. The latter approach offers the
possibility of high-speed compression to suit the most
demanding applications. Current available hardware
implementations are based mainly on LZ (Lempel-Ziv)
class of compression schemes. Experience suggests [I]
that classical statistical methods, particularly PPM
(Prediction by Partial Matching) class of algorithms [2],
are impractical for being too slow and resource hungry
Jfor hardware realisation. However, there seems to have
been relatively little work looking at the potential for re-
organising and restructuring the algorithm for hardware
implementation. This paper presents a version of the
PPMC [3] class of algorithms structured for efficient
hardware support and analyses the issues of its hardware
implementation.

1. PPMC review

PPM is a state-of-the-art statistical data compression
approach [4]. It was originally developed in 1984 and
some extensions [5-7] have been proposed since then,
including some software implementations [3]. The
scheme is based on a system that maintains a dictionary
containing a statistical model of the data, assigning
probabilities to the symbols and sending these
probabilities to arithmetic coder. The probabilities are
assigned according to the most recent symbols.

The statistical model in its simplest form counts the
number of times each symbol has occurred in the past and
assigns a probability to the symbol based on that number.
The next higher order model is context based, where not
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Jjust the frequency of the symbol is used to predict but also
the frequency a symbol occurred when a particular
sequence of symbols immediately preceded that symbol.
The preceding symbols are called context and the number
of them is the order of the context.

A PPMC model of order O reads a symbol s and
considers the previous O symbols as the current context.
Then, it searches for the context followed by the symbol s.
If the symbol is not found, the model ‘escapes to the next
lower order O-1 by transmitting a ‘escape code. This
process continues until the symbol is found or the model
reaches the order 0. If the symbol is not found in order 0,
then a final escape is transmitted and the symbol s is
predicted by order ‘—1 , where all symbols have the same
probability. The dictionary is then updated adding s to the
corresponding contexts.

The following formulas are used to compute symbol
and escape probabilities:

f
s|context)y=——  and
p(s| )=

p(escicontext)=—k— €))
t+k

where p(s|context) is the probability that symbol s will

occur given that context has occurred, f is the frequency

count of symbol s, k is the number of different symbols

seen in the current context and ¢ is the sum of the

frequency counts of all symbols in the current context.

In PPMC model there is a trade-off between
compression and speed. Both issues may be exploited
individually. If the model exploits compression then it
uses a technique called exclusion or if it exploits speed it
uses lazy exclusions [1]. Here we describe the speed
model and thus the lazy exclusion technique predicts a
symbol only taking into account frequency counts in
context levels at or above the context in which it was
predicted. Then, when updating the model just these
frequency counts are updated.



2. Proposed modifications

This work is mainly focused on simplifying the
operations required by the compression model to increase
the performance of the whole system. Re-organisation of
the algorithm that would benefit greatly the hardware
implementation may include:

1) The use of efficient hardware structures to store the
dictionary

In compression hardware implementations, efficient
structures have been used to store data [9-11]. Among
these structures are CAM (Content-Addressable Memory)
arrays that allow searching through all the entries in a
dictionary simultaneously. The advantage of using this
type of structure is that the compression process may be
speeded considerably.

2)  The limitation of the dictionary size

Practical implementations of any structure must have a
limitation in size, particularly taking into account that
storage can be expensive in digital technology.
Furthermore, space restrictions may warrant that the
system fits in a digital device such as FPGA or ASIC.
Naturally, severe restrictions in space lead to compression
degradation and care must be taken to identify a good
trade-off between space and compression.

3)  Multi-dictionary model

A CAM array is used to store the dictionary of the
model. Recalling that the dictionary contains contexts of
different orders, contexts may be stored in a single
dictionary or in several ones grouping contexts by order.
To implement the former approach, an efficient discard
policy has to be implemented to reclaim space once the
dictionary is full and before continuing the model
adaptation.

The latter approach needs one dictionary per each
order of the model. Although it may require more space, it
must simplify the discard policy. In this way, a 2™ order
model will have 4 dictionaries for —1%, 0 1% and 2™
order contexts respectively. Thus, when one of the
dictionaries (1% or 2™ order) has no more free space, it
can be adjusted, independently of the others.

4) New approaches to update the model
The model updating process requires more than a

single modification. Next, we list some proposed
modifications we have found to be useful.
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a. Constant total frequency counts

As mentioned above, the arithmetic coder uses the
formulas in (1) to compute symbol and escape
probabilities. In these formulas, if the denominator is kept
constant and to a power of two, ‘divide operations may
be replaced by simple ‘shifts . Calling this constant
denominator ‘fixed number of tokens (FNT), the formulas
would be as follows:

L
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p(s|context) = and

In (2), by replacing divide operations by shifts, and
considering the number of positions to shift the
frequencies to the right as o, the integer component of
log,FNT, we get:

p(s|contexty= f>>a and  plesc|contexty=k>>a (3)
where symbol “>> represents the ‘shift to the right
operation.

Additionally, the model may store escape as any other
symbol, i.e. with its own frequency counts, to avoid
computing its frequency k every time it is needed. In this
case, arithmetic coder would require just the first formula
in (3) to compute both symbol and escape probabilities.

This proposal should speed up the compression process
in the hardware implementation of the model and a
different mechanism for assigning frequency counts must
be adopted if the compression ratio is to be maintained.

b. Parallel frequency updating

Keeping constant the total frequency counts in
arithmetic coder is a consequence of the model
organisation. In the model, frequency counts should be
adjusted in proportion to the constant total and the
occurrence of the symbols in the input stream.

We suggest escape to be stored as the first symbol
occurring in any context and to assign FNT to that
symbol. Later on, we redistribute the tokens among the
symbols as they come in. All the symbols should adjust
their frequency counts, the quantity of tokens donated by
existing symbols to the incoming one should be
proportional to the current number of tokens held by each
of the existing symbols. The sum of all the donations goes
to the incoming symbol.

The operation that allows all symbols to adjust
frequency counts according to their occurrence in the
input stream is a division by M. Keeping M to a power of



2, a shift operation substitutes the division, then, the
number of positions to shift to the right the frequency

counts is m=log, M . So, symbol ;j adjusts its

frequency by shifting it to the right m positions, f; >> m.
fi=f=(f, >>m) @

The result of this operation is a number of tokens that

are donated to the incoming symbol. The sum of all these
donations is:

TIS = ﬁ:(f/ >>m) 5)

where k is the number of different symbols in the current
context.

Looking further into the model implementation, the
tokens redistribution operation may be performed in serial
or parallel form. The former requires only one shift
operator that performs the operations of all k¥ symbols, one
at a time, and is time consuming. The second form
although requires more operators, it may perform in
parallel the shift operations in all frequencies f. The
modification of the design is focused on increasing
compression speed, thus the second form for
redistributing tokens is suggested.

¢.  Proper identification of updating parameters

For models with orders higher than O there is one
component more to consider, the time in which the model
stabilises. It is the time when the model has learnt the
statistics of the data. Taking as an example a 2™ order
model that has contexts of orders —1, 0, 1 and 2, the
number of possible contexts in the highest order is too big
and just few symbols occur in each context, while in the
0" order context almost all symbols occur. That makes 0™
order contexts to have well distributed tokens in their
frequencies while in 2™ order contexts escape will have
most of the FNT tokens. So, since FNT and m parameters
measure the adjustments in symbol probabilities, they
must differ for each order in the model such that closest
compression to PPMC is obtained.

d. Approximation for updating symbol frequencies

As mentioned in proposal 4b and showed in (5), the
model requires adding together the results of the shift
operations to collect the tokens for the incoming symbol,
TIS. Here we propose a new way of computing 7IS to
avoid the time consuming addition.
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Since the integer result of the shift operation in (4) is
added as in (5), there is no loss of tokens and at any
moment of the compression process:

FNT =Y/, ©

A very simple alternative to compute 7IS is to

consider:
TIS = FNT >> m %)

However, using formula (7) to compute the tokens to
add to the incoming symbol, 7IS, showed in some
experiments that it generates overflow in arithmetic coder.
The reason is that according to formula (7), 7IS is
constant and in order to compute it according to
adjustments in PPMC model, the number of different
symbols seen, &, must be taken into account.

Thus, to avoid adding together the tokens donated for
all the symbols as in formula (4), it is suggested the use of
the approximation to the number 77S showed in (8).

TIS=((FNT >>m)~1)— k (8)

The amount (FNT>>m)-1 is computed only once at the
beginning of the compression process and kept constant
during the process, we refer to it as C, then:

TIS=C -k &)

Formula (9) requires only subtracting & to C per each

incoming symbol when obtaining 7JS. Again, the benefit

of this approximation is in compression speed and also in
simplifying space requirements.

In summary, to reduce computational complexity and
space demands and speed up the PPMC compression
process we suggest some modifications to the
implementation of the model. They include the
replacement of an ever-increasing denominator by a
constant one to shift frequencies rather than divide them.
And to maintain the accuracy of the model, adjusting
frequency counts according to the changes made to the
denominator and to the occurrence of the symbols in the
input stream.

3. Experimentation results
This section presents the experiments undertaken to

study the feasibility of the proposed modifications as well
as compression results after applying them to the



algorithm. Previous to the results, some assumptions and
methodology are mentioned.

3.1 Assumptions

To simplify the study, the model and coder were
separated. The model reads serially the data to be
compressed and produces cumulative frequency counts of
the symbols that are then transmitted as input to the coder.
The arithmetic coder was taken from [12] and adapted to
the proposed model. The model is 2™ order, and has 4
dictionaries of 256, 256, 2K and 4K positions for —1%, 0",
1t and 2™ order contexts respectively. The input stream is
compressed in blocks of 4 KB due to this size represents a
typical packet size found in many computers and
telecommunication systems. Compression is measured as
the ratio of output bits and input bits. The model stores
escape as any other symbol, i.e., escape has its own
frequency counts.

3.2 Methodology

The set of experiments undertaken proves the model
operation for a variety of data types over a range of
parameter (FNT and m) values. A C program is used to
implement the system and verify its functionality. It used
arithmetic coder files from [12]. Additionally, hardware
suitability is proved by a 1* order hardware-modelling
unit developed under the SystemC [14] modelling
platform from the Open SystemC Initiative coupled with
arithmetic coder module. We have compiled the system
with the VC ++ compiler, version 6.0, in the NT platform.

The data types include the popular Canterbury [13] and
Calgary [1] corpus, ‘Memory’ and ‘Thesis’ data. Memory
data is a selected set of data of about 9 MB contained in
memory and includes code and data from the SunOS
operating system and 8 real applications and utility
programs. A detailed description of the files is given in
[9]. Thesis data set is a collection of audio, images, object
and text files.

3.3 Experiments

This section contains three main experiments that
support our proposals and gives results of them. They are
simulations of:

1) A simple 0" order model using a CAM array to store
data. It helps to identify the parameters FNT and m
with which the model produces the best compression
ratios. It supports proposals 4a and 4b where constant
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Figure 1. 0" order model compression results as m and FNT
varies

frequency counts and parallel frequency updating is
suggested.
2) Higher order models, 1% and 2", verifying results
obtained from experiment 1 and identifying new
parameters for these models. The proposals 4¢ and 4d
are included in this simulation.
3) All the proposed modifications of the algorithm to
improve its hardware implementation.

All experiments include proposals 1, 2 and 3 where the
use of efficient hardware structures, limitation of
dictionary size and multi-dictionary model were
suggested. Specific results of experiments for these
proposals are not included in this document due to
shortage of space.

Parameter identification, experiment |

The first experiment consisted on implementing a
simple 0™ order model using a CAM array. It helps to
identify the parameters FNT, fixed number of tokens or
denominator in formula (1), and m, the number of
positions to shift frequency counts. It seems helpful to
think of FNT as a number large enough to be divided
among several symbols and of m a s a number ‘small’
enough to help to redistribute the tokens. The task is to
find the best numbers for them. We fixed FNT and varied
m and vice versa to find the ones with which the model
produced the best compression ratios.

At the beginning of the compression process, FNT is
assigned to the escape symbol, and later the tokens are
redistributed among other symbols as they come in. All



symbols donate tokens to the incoming symbol. Donated
tokens are obtained as in formula (4).

Figure 1 shows the trade-off between FNT and m in a
0™ order model. When utilising large FNT numbers, there
are very good compression ratios (shifting up to 7
positions), close to PPMC. Small FNT numbers do not
give enough flexibility for the model to update frequency
counts thus, poor compression ratios are obtained.

When m is small, the model does not reflect symbol
probabilities according to their occurrences in the input
stream and this fact leads to poor compression.

Higher order models, experiment 2

This experiment consists on implementing models of
0" 1% and 2" orders with a wide number of FNT and m
sizes, storing the dictionary in a CAM array and limiting
its size as well as approximating the updating symbol
frequencies according to formula (8).

Table 1 shows the FNT and m parameters that exhibit
the best compression ratios for the model and they are
shown for models of orders 0™ to 2™,

Note that these parameters are selected specially for
the higher order models, 1% and 2™. Each pair (FNT,m) in
each context order gives the necessary adjustment to
proportionate statistics of the data close to PPMC. So, the
amount of tokens varies according to the PPMC
algorithm, thus providing similar symbol probabilities and
compression ratios.

As expected in proposal 4c this table demonstrates how
different FNT and m parameters for distinct contexts
orders in a model give better compression ratios than the
same parameters for all the context orders. The table
shows that a 2™ order model performs well when the
fixed number of tokens is 64K for the —1* order, 32K for
0" order, 8K for 1% order and 4K for 2™ order contexts
with a number of positions to shift to the right of 7, 6, 4
and 3 respectively.

Using each order different parameters, the arithmetic
coder must input the order of the context as well as
symbol frequency counts. This is to ensure the proper
calculation of symbol probabilities and the correct
functionality of the arithmetic coder.

Including all proposals, experiment 3
Next, including all the proposals in last section, the

model was simulated in software. Again, 0", 1% and 2™
order models were tested and several data types were
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Model Context Order
Order -1® ot & ond
~ 0"Order 64K 64K
E 1% Order 64K 64K 16K
2" Order 64K 32K 8K 4K
0" Order 7 7
& 1% Order 7 7 5
2" Order 7 6 4 3

Table 1. Fixed number of tokens, FNT, and number of

positions to shift to the right,m

DataSet ~ Model o, "rg“ -
Canterbury PPMC 0.56 045 040
Corpus Shift ~ 0.57 047 043
PPMC 0.61 0.46 045
Memory Data .
Shit  0.61 049 047
) PPMC 0.75 0.67 0.66
Thesis Data .
Shit  0.75 0.68 0.66

Table 2. Compression ratio results obtained with PPMC model
and the hardware optimised version

used. Table 2 gives the performance of these models. For
each set of data, the first row shows results from PPMC
and the second one from our model.

Our model performs well compared to PPMC,
particularly 0™ order model over all data sets and on
Thesis data set with all the model orders. A small
degradation in compression is observed for Canterbury
Corpus and Memory data with 1% and 2™ order models.
This is because of the approximation of proposal 4d for
updating frequency counts.

4. Analysis

The results from compression ratios show that our
model performs very close to PPMC and it is suitable for
hardware implementation. Most of the proposed
modifications simplify the hardware, which improves
compression speed.

The use of tokens for the frequency counts allows
parallel updating in the frequencies although it adds some
complexity in the hardware design. The redistribution of
tokens warrants a proportional adjustment of symbol
probabilities according to its occurrence in the input
stream.



Approximating the number of tokens to assign to the
incoming symbol (71S) yields, in most of the cases, a
small degradation in compression ratio. However, it
represents great savings in hardware complexity, it
changes either an adder tree or a single adder with O(n)
delay by a simple subtract operation, as comparing
formulas (4) and (8).

5. Hardware modelling

In this section, the architecture of the model is shown.
As mentioned above, it was implemented in SystemC [14]
platform.

Figure 2 illustrates the architecture of the compressor
model, the decompressor has a similar architecture.
Arithmetic coder was implemented as a distinct module
using the code from [13], which was modified to interact
with the model and to accept output signals that the model
produces.

Both, compressor and decompressor were designed and
the compression results were verified against the C model.
As shown in Figure 2, there is one dictionary for each
order in the model. The dictionaries have a memory block
containing a CAM array and some register arrays for the
frequency counts. Its architecture is shown in Figure 3.

A 1* order model has been implemented along with its
test bench in SystemC modelling platform from the Open
SystemC Initiative (OSCI). This platform allows creating
system-level designs in a C++ environment. The addition
of one higher order is straightforward.

An estimated of size of the compressor architecture is
about 3 million gates. A detailed description is shown in
Table 3, where it can be observed that most of the space is
assigned to storage and updating of data.

The estimated gate counts in Table 3 are for a 1% order
model, which has a dictionary of 4K entries. If one higher
order is added to the model, dictionary sizes required
would be 2K and 4K for 1% and 2™ order respectively
according to some experimental results. This is because
most of the matches are generated in the highest context,
then less space is required for one lower order. These
sizes in the dictionary may be even smaller depending on
the data types, however, due to not data is known in
advance, we consider the dictionary sizes to be
appropriate for any type of data. Thus, the gate account
for increasing a second order in the dictionary is increased
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Figure 3. Dictionary architecture

about 1.5 million gates. The decompressor requires the
same number of gates as the compressor.

6. Summary and conclusions

A hardware implementation of the statistical PPMC
compression model is impractical for the nature of the
algorithm. This paper presents a statistical model suitable
for hardware implementation as a result of the
reorganisation and optimisation of PPMC compression
scheme. Some modifications have been proposed as the
use of tokens, parallel model updating and substitution of
division by shift operations. All the modifications aim to
speed up the compression process.

The strategies used and the proposed modifications are
by no means exhaustive and other strategies may be used.
However, it has been possible to model in hardware the
PPMC algorithm and it may be implemented in available
digital devices. Using the concept of tokens we have been
able to update frequency counts in paralle]l although not
cumulative frequencies. We think that is also possible to
update them in parallel and we are currently exploring it.



Component

Implementation Estimated

gate count

Dictionary . .
Order 1 CAM array 256 x 9 bits registers 18,430
CAM array 257 x 9 bits registers 34,695
Dicti Frequency table 257 x 16 bits registers 32,895
S:rézr:z:)ry Cumulative frequency table 257 x 16 bits registers 32,895
Shift logic, Adder/subtractor 257 x 16 bits 53,455
CAM array 4096 x 18 bits registers 1,105,920
o Frequency table 4096 x 16 bits 524,290
Dictionary Cumulative frequency table 4096 x 16 bits 524,290
Order 1 Shift logic, Adder/subtractor 4096 x 16 bits 851,970
Mux 4096 x 9 bits 110,590
Shift register | x 18 bits 140
Additional Control Unit 1 x 4 bits register 30
Logic Output Logic 1 x 9 bits register 70
Subtractor 2 x 16 bits 320

Table 3. Estimated size of the compressor architecture

Although the results of proposal 3 are not showed, it is
worth to mention that storing contexts in separated
dictionaries has the advantage of reducing complexity
mainly when dealing with discard policies if other that
delete the complete dictionary were used. However, the
dictionary storage requirements increase about 20% in the
case of a 2™ order model.

Further work involves the synthesis of the SystemC
model to directly produce a netlist without translating the
model into a HDL language. This saves time by
eliminating errors that may be introduced during
translation and later may take significant time to track
down.
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