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Abstract 
 

In this paper we present a set of hardware modules 
which form the basis for three vision applications: Target 
Tracking, Image Stabilization and Image Mosaicking. The 
two main modules are: the pyramidal module and the 
multiresolution correlation module. They were 
implemented using the Handel-C language, and tested in 
the Celoxica RC1000 development platform, which has an 
Virtex-E FPGA. We show the performance statistics for 
tracking more than one target using the basic modules, 
and present results of the applications implemented based 
on these basic modules. 
 
1. Introduction 
 

Computer Vision is one of the main branches of 
Artificial Intelligence [1].  The Computer Vision 
applications obtain a set of images from certain source, 
they process them and generate as result images or data 
that later are analyzed depending on the application.  
Throughout history many alternatives for digital image 
processing have been used. One of this alternatives is the 
use of supercomputers or dedicated workstations.  A 
different alternative is the use of FPGAs (Field Gate 
Programmable Array), which are programmable digital 
devices, that unlike the microprocessors, what is 
programmed is not an instruction set, but the description 
of an architecture based on basic components[4].  
Currently, FPGA devices with capacity equivalent to 
millions of  digital gates are available.   

One of the image representation used for video 
processing is the pyramid, because it separates the total 
resolution of the original image in a set of images that 
represent it as a set of different spatial resolutions. 
 
2. Background 
  

The strength of the pyramid comes from the increase in 
processing speed on the image operations [3].  This 
simplification permits to work at coarser resolutions 
where there are less pixels to be processed.  Each level of 
the pyramid is ¼ smaller that the preceding level, allowing 

this a reduction in the number of pixels to be processed by 
a factor of 4, 16, 64, 256 and so on. 

Many algorithms that work at pyramidal level are 
called coarse-to-fine algorithms. They process the image 
in a very coarse resolution and obtain a first result of the 
processing, which is vague, because it works with low 
resolution images.  In order to obtain better results, they 
are refined repeating the processing to high resolutions 
but, using as a reference the results obtained from lower 
resolutions. 
 
2.1. Gaussian Pyramids 
 
In order to generate a gaussian pyramid, we suppose that 
the image is represented by an array g0 of C columns by R 
rows [4].  Each value represents the intensity of the 
corresponding point in the image. This image is the level 
0 of the gaussian pyramid.  The Level 1 of the pyramid 
consist of an image g1 which is a reduced version of the 
image g0 to which a low-pass filter was applied. Each 
value within level 1 is calculated like a weighed average 
of the values in level 0 within a 5x5 window. Each value 
of level 2, represented by g2, is obtained from the values 
of level 1 applying the same target.  The fig 1 shows the 
pyramid of an image following this scheme. 
The filter process of level at level is implemented by the 
function Reduce: 

gk = Reduce (gk-1) 
Which means that for levels 0 < l < N and nodes i, j, 0 < i 
< Cl, 0 < j < Rl 
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where N is the number of levels of the pyramid whereas Cl 
and Rl are the dimensions of the l-th level, and m and n are 
the subindex of the convolution mask.  The density of the 
nodes is reduced by half in a dimension or four in two 
dimensions from level to level.  The pattern of weights w 
must fulfill the following properties: 
 

a) Generally, its size is 5 x 5 pixels 
 
b) Must be separable 
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c) The components of the pattern must be 

standardized 
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d) In addition, these components must be 

symmetrical 
2,1,0)1(ˆ)(ˆ =−= iforwiw  

 
For example, in a 512 x 512 image, level 1 will be 256 x 
256 pixels , level 2 128 x 128 pixels, and level 3 64 x 64 
pixels. 

 
Fig 1. Gaussian Pyramid of the Image ‘INAOE’ 

2.2 Correlation Measures 
 
There are several correlation measures in the literature. 
The three more used are: 
 

a) Sum of Squared Differences [5]: 
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b) Sum of Absolutes Differences [5]: 
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c) Normalized Cross Correlation [6]:  
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3. Basic Modules 
 

In this section we present the two basic architectures 
developed, that are integrated to obtain a multiresolution 
correlation architecture, which is fundamental for the 
implemented applications.  Instead of showing the 

architectures in terms of functional blocks, we show them 
in terms of processes.  This is an advantage that allows us 
to the use a hardware description language based on the 
standard ANSI-C.  These processes are mapped into 
hardware blocks by the place and route tools of the FPGA 
vendor, thus the user must not worry any longer about the 
connection between the different control lines. 

 
3.1. Pyramidal Architecture 
 

In fig 2 are shown the modules that compose the 
pyramidal architecture. These modules are: 

a) Data Memory. This memory keeps the image to 
be processed. 

b) Convolution Modules. These modules multiply 
the image values with the convolution mask 
coefficients. 

c) Control Generators. These modules access to the 
Coefficients Memory and supply them to the 
Convolution Modules. 

d) Coefficients Memory. This is a read-only 
memory that stores the convolution mask 
coefficients. 

e) Address Generator. This is a small control unit 
that supplies the control signals and the 
synchronization of the different modules to the 
architecture. 

f) Multiplexor. This element isolates the 
architecture bus of the memory data line, with the 
purpose of controlling the access to the bus. 

 
The interaction of the parts previously mentioned is 

carried out like: 
 
1. The original image is read from data memory and 

stored in the image registers. 
2. The Control Generator access the Coefficients 

Memory and pass them to the Convolution Modules 
depending on the mask and the image row being 
processed. 

3. The Convolution Module reads the data contained in 
the Image Registers and carry out the multiplications 
of the image values by the coefficients of the 
convolution mask. 

4. Whenever the Convolution Module generates a result, 
it is stored in the Registers Bank. 

5. Once the Registers Bank has been filled, an 
interruption to the architecture is generated to keep its 
content in the Data Memory. 

6. Steps 1-4 are repeated until finishing with the original 
image 

 
The association of two convolution modules with two 
control generators is denominated processor of pyramidal 



convolution.  The more basic implementation of the 
pyramidal architecture contains one processor of 
pyramidal convolution. If additional parallelism is 
required, more processors of pyramidal convolution can 
be implemented.  
 

 
Fig 2. Main Modules of the Pyramidal Architecture 

 
3.2. Correlation Architecture 
 

In Fig 3 the modules that compose the correlation 
architecture are shown. These modules are:  

a) Image Memory. This memory stores the image. 
b) Target Memory. This memory stores the target to 

be tracked. 
c) Image Registers. These registers stores some 

values of the image to be processed. 
d) Target Registers. These registers store some 

values of the target to be processed. 
e) Correlation Functions. These blocks implements 

the correlation function to be used in the 
architecture. There are four blocks, because it is 
possible to process four correlation functions in 
parallel with this scheme. The possible functions 
to be implemented in this block are the 
mentioned in section 2.2.  

f) Correlation Registers. These registers store the 
accumulated values of the correlation functions 
being processed. 

g) Local Comparator. This block evaluates which of 
the four correlation registers generate the best 
result. 

h) Best Global Register. The best result from the 
Local Comparator is compared with this value to 
find the best global value according with the 
correlation function. 

i) Global Comparator. This block compares the 
Best Global Register with the Best  Local 
obtained from the Local Comparator. 

j) Current Row and Current Column Registers. 
These registers store the current Row and 
Column values. 

k) Best Row and Best Column. When the global 
comparator find a better value than the stored, 
these values are updated depending on the values 
of the Current Row and Current Column 
Registers. 

 
Fig 3. Main Modules of the Correlation Architecture. 

The interaction of the mentioned parts previously is: 
1. The image registers and the target register are 

initialized with some values of the image and the 
target respectively. 

2. The correlation functions calculate the correlation 
index between the image values and the target points 
and store and accumulate them in the Correlation 
Registers. 

3. In parallel with the step 2, the Local Comparator 
obtains the best value stored in any of the Correlation 
Registers. 

4. In parallel with steps 2 and 3, the Global Comparator 
compares its value with the one obtained from the 
Local Comparator. When the value obtained from 
Local Comparator is the best, this value is stored in 
the Best Global Register, and the registers of Best 
Row and Best Column registers are updated 
depending on the values stored in the Current Column 
and Current Row registers.     

5. This process is repeated until all the possible parts of 
the image with the same size that the target are 
processed. 

 
3.3. Multiresolution Correlation 
 

Once the correlation and pyramid modules have been 
implemented, it is necessary to explain how these 
architectures are combined to carry out the multiresolution 
correlation. 



Several ways of finding an object within an image 
have been developed. One of these consists of carrying 
out the correlation of all the possible regions within the 
image of the same size of the object and finding the 
maximum or the minimum value of correlation that 
indicates the object position in the image. 

In order to carry out the correlation process, the 
pyramid is obtained from the image in where the object of 
interest will be searched. Also, the pyramid must be 
obtained from the target to be searched.  The number of 
levels of both pyramids must be the same.  

 
Fig 4. Multiresolution Correlation Process 

The correlation process starts in the lowest level of 
both pyramids. In this level, the search window consist of 
the whole image in the last level of the pyramid. Because 
there are a few pixels to process, this stage is fast. The 
process obtains a tentative position, that is a vague result, 
but it serves as basis for future refinement. 

Once the first result has been obtained, the process 
goes to the next upper level in both pyramids. The 
correlation process starts but the correlation window is 
limited depending on the results obtained from the lowest 
level. With this limitation, we reduce the number of pixels 
to be processed, but the result is refined. This process is 
repeated until the level 0 of both pyramids, and then the 
process gives the position as result (row and column) 
where the target is located (tentatively). This process is 
shown in fig 4. 

 
 
3.4. Multiresolution Multiple Target Tracking 
 

The process mentioned in the previous section can be 
applied to follow more than one target.  Due to the 
complexity of the architecture, we preferred to explain it 
in terms of processes and not in terms of functional 
blocks. 

In the first frame, the architecture must take its 
parameters from certainly memory region. Later, it must 

calculate a memory addresses, according to the number of 
targets and their sizes. 

 
Fig 5. Multiple Multiresolution Target Tracking Process 

In all the frames, the pyramid module must process 
the image and obtain the pyramid from the original image. 
With respect to the correlation process, in the first frame 
this process remains inactive, only the updating targets 
process is carried out, depending on the coordinate of 
each one of the targets. After the first frame, the 
correlation process is performed depending of the target 
processed. This process starts in the low level of the 
pyramids of target and image, and finish when the process 
has obtained the tentative coordinate of the target in the 
image. Later, this coordinate is updated depending of the 
application using the architecture. This process is repeated 
for each target to be tracked. Finally, the target updating 
process is activated. This process is shown in fig 5. 
 
4. Real-Time Applications 
 
4.1. Tracking 
 

The tracking benefits from the multiresolution 
pyramid because in each level of the pyramid the amount 
of data to be processed is reduced.  The change made with 
respect to the multiresolution correlation implementation 
consists on storing the target and later updating it with the 
target located in each frame. This causes that the tracking 
obtains certain robustness, because it will not be affected 
by rotation or changes of the object form. This process is 
shown in fig 6. 



 
Fig 6. Iterative Target Tracking Process 

4.2. Mosaics 
 

In this application, there are several targets that are 
randomly located within the image.  A set of targets from 
the central column of the image is taken as a reference; its 
movement and the direction of the movement with respect 
to the next image will help to determine the parts of these 
images that will be considered for the mosaic 
construction. This process is shown in fig 7. 

 
Fig 7. Mosaics Generation Process 

4.3. Image Stabilization 
 

In this application, there are several targets located in 
the central part of the image. A set of targets from this 
part of the image is taken as a reference; its movement and 
the direction of the movement with respect to the next 
image will help to determine the parts of these images that 
will be considered for the image stabilization. This 
process is shown in fig 8. 
 

 
Fig 8. Stabilization Process 

4.4. Voting system for resolving movement vector 
 

When we combine the movement of one or more 
targets, we can assume that always ideal conditions will 
occur.  But ideal conditions rarely occur.  As an extra 
work, we developed a small voting system for solving 
inconsistencies when the targets do not follow the next 
conditions: 
 
• The target must be differentiable of others objects in 

the scene. 
• The patter must not be part of the background. 
• The target never must exit of the vision field of the 

camera. 
 
The voting system groups the targets according to the 

movements of the majority of the targets. With this voting 
system, if one of the tracked target produces an incorrect 
result, this does not affect the global movement vector. 
 
5. Implementation and Results 
 

The implementation of the proposed architectures was 
made on the Celoxica RC1000 development platform. We 
show results of the pyramidal architecture, tracking 
performance and also show results of the applications 
implemented. 

 
5.1. Performace Results 
 

In this section the operation statistics of the pyramidal 
architecture are shown.  The architecture was 
implemented using different number of processors of 
pyramidal convolution.  We tested for 1, 2 and 3 
processors of pyramidal convolution.  The resources used 
by each one of these applications are shown in table 1. 



In order to obtain the performance statistics, the clock 
cycles that the architecture needs for producing the result 
were counted.  Once the number of cycles were obtained, 
they were multiplied by the inverse of the frequency (in 
this case, 25 MHz), in this way we obtain the image 
processing time and the number of images processed per 
second.  These results are shown in table 2. 
 
Processors Slices Flip-

Flops 
4 input 
LUTS 

Block 
RAMs 

Equivalent 
Gates 

1 2,197 
of 

19,200 
(11%) 

251 of 
38,400  
(1%) 

3,787 
of 

38,400  
(9%) 

22 of 
160 

(13%) 

397,138 

2 3,640 
of 

19,200 
(18%) 

289 of 
38,400  
(1%) 

6,333 
of 

38,400 
(16%) 

42 of 
160 

(35%) 

748,209 

3 5,139 
of 

19,200 
(26%) 

329 of 
38,400  
(1%) 

8,975 
of 

38,400 
(23%) 

62 of 
160 

(38%) 

1,100,581 

Table 1. Resources of the FPGA used by the Pyramidal 
Architecture. 

Pyramidal 
Convolution 
Processors 

Number 
of Cycles 

Processing 
Time (ms) 

Images 
Processed 
by Second 

1 696,613 27.86 35.88 
2 464,444 18.57 53.82 
3 386,923 15.47 64.61 
4 348,568 13.94 71.72 

Table 2. Pyramidal Architecture Performance 

 
5.2. Pyramid Results 
 

The results shown for the pyramidal architecture were 
obtained directly from the implemented architecture.  We 
developed an interface in Visual C++ for reading the 
images from files, passing them to RC1000 memory and 
later obtaining the processing result.  The results are 
compared with the ones obtained from the Matlab 
simulation. We also show the difference between software 
simulation and hardware implementation pyramids, and 
then we evaluate the quality of FPGA processing. These 
results are shown in fig 9. 
 

 
Fig 9. Comparison between Software Simulation and 

Hardware Implementation of Pyramids 

 
5.3. Tracking Performance Results 
 

The architecture is flexible with respect to the target 
size. We carried out tests with different target sizes. These 
results are shown in tables 3, 4 and 5. 
 

Target size = 40 x 40 
Targets Latency 

Cycles 
Throughput 

Cycles 
Processing 

Time 
Images 

processed 
per 

Second 
1 383,548 414,928 16.59 ms 60.25 
2 386,041 448,895 17.95 ms 55.69 
3 388,534 482,862 19.31 ms 51.77 
4 391,024 516,829 20.67 ms 48.37 
5 393,520 550,796 22.03 ms 45.38 

Table 3. Tracking Performance for a 40 x 40 pixels 
Target 

 
Target size = 60 x 120 

Targets Latency 
Cycles 

Throughput 
Cycles 

Processing 
Time 

Images 
processed 

per 
Second 

1 391,090 477,498 19.09 ms 52.35 
2 401,135 574,035 22.96 ms 43.55 
3 411,180 670,574 26.82 ms 37.28 
4 421,230 411,180 30.68 ms 32.58 
5 431,280 767,109 34.54 ms 29.94 

Table 4. Tracking Performance for a 60 x 120 pixels 
Target 

 
 
 
 
 



Target size = 80 x 80 
Targets Latency  

Cycles 
Throughput 

Cycles 
Processing 

Time 
Images 

processed 
per 

Second 
1 390,228 491,608 19.66 ms 50.85 
2 399,401 602,255 24.09 ms 41.51 
3 408,574 712,902 28.51 ms 35.06 
4 417,747 823,549 32.94 ms 30.35 
5 426,920 934,196 37.36 ms 26.76 

Table 5. Tracking Performance for a 80 x 80 pixels 
Target 

 
5.4. Applications Results 

 
In this section we show the results of the different 

interfaces for the applications implemented.  
 

5.4.1. Tracking 
 
The results shown are divided in two parts: the first one 

compares the results between the hardware architecture 
and the tracking simulation in Matlab. The second one 
consist on showing the tracking of an object along an 
image sequence. 

 
In the first part we show two graphs, where the row and 

the column obtained by the tracking process are 
compared. We can remark that the difference between the 
positions is minimal and the object of interest is always 
tracked. In fig 10 we show the result of tracking a 
sequence. In graph 1 and 2, we show the comparison 
between the FPGA tracking and the Matlab tracking 
applied to the same sequences. 
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Graph 1. Comparison between Matlab Tracking and 

Tracking Architecture 

Columns obtained in tracking
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Graph 2. Comparison between Matlab Column Tracking 
and Tracking Architecture 

 
Fig 10. Tracking of an object along of a sequence 

 
5.4.2. Mosaics 

 
With respect to the mosaics generation, we carried out 

tests according to the methodology proposed in this work. 
In fig 11 we show both mosaics generated and the original 
images. The images were digitalized directly with an 
application made in Visual C++, each image was passed 
to the FPGA for its processing.  The Visual C++ Interface 
has the main task of generating the mosaic depending of 
the overlaping degree between the images. 

 



 
Fig 11. Mosaic Generated 

 
5.4.3. Stabilization. 
 

In fig 12 we show the results of the stabilization 
process. We show the images taken without processing, 
which were digitalized with an interface implemented in 
Visual C++. Each image was passed to the FPGA for its 
processing, and this interface showed us the resulting 
subimage depending of the movement vector obtained 
from the target predefined. The images are trimmed 1/10 
of the original image, and this is the reason of this lower 
resolution. 

 
Fig 12. Stabilization of an image sequence 

 
6. Conclusions 
 

In this work a hardware architecture for tracking 
objects was presented. The basic characteristics are the 
flexibility with respect to the parallelism degree that is 
desired to implement.  The degree of parallelism depends 
on the available resources in the FPGA used for its 
implementation, on the desired speed and on the tracking 
application.   

Also it is possible to confirm that Handel-C is a language 
that shortens the design and implementation times of 
complex hardware architectures.  It also allows to make a  
greater number of tests and verifications before 
implementing a final design, which can be used in 
applications with lower space requirements or power 
consumption. In addition, high performance applications 
can be designed with the purpose of reaching real time 
performance. 
 
7. Future Work 
 

In this work a multiresolution correlation hardware 
architecture was implemented with the applications 
mentioned in this work. As future work we propose a 
hardware implementation of some technique of machine 
learning to improve the quality of the tracking, like Radial 
Basis Neural Network or Holographic Neural Networks.  
Also we propose the use of other techniques of pyramidal 
decomposition, like the Wavelet transform.  Within the 
proposed code, it is necessary to make some 
improvements to implement the architecture in smaller 
capacity FPGAs, with the aim of making some prototype 
of mobile application, that requires circuits of low power 
consumption and less area. 
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