
 Three Video Applications using an FPGA based pyramid implementation:
Tracking, Mosaics and Stabilization

Marco Aurelio Nuño-Maganda, Miguel O. Arias-Estrada, Claudia Feregrino-Uribe

Instituto Nacional de Astrofísica, Óptica y Electrónica
Luis Enrique Erro No 1. Sta María Tonanzintla, Puebla, México.

nmaganda@cseg.inaoep.mx, ariasm@inaoep.mx, cferegrino@inaoep.mx

Abstract

In this paper we present a set of hardware modules
which form the basis for three vision applications: Target
Tracking, Image Stabilization and Image Mosaicking. The
two main modules are: the pyramidal module and the
multiresolution correlation module. They were
implemented using the Handel-C language, and tested in
the Celoxica RC1000 development platform, which has an
Virtex-E FPGA. We show the performance statistics for
tracking more than one target using the basic modules,
and present results of the applications implemented based
on these basic modules.

1. Introduction

Computer Vision is one of the main branches of
Artificial Intelligence [1]. The Computer Vision
applications obtain a set of images from certain source,
they process them and generate as result images or data
that later are analyzed depending on the application.
Throughout history many alternatives for digital image
processing have been used. One of this alternatives is the
use of supercomputers or dedicated workstations. A
different alternative is the use of FPGAs (Field Gate
Programmable Array), which are programmable digital
devices, that unlike the microprocessors, what is
programmed is not an instruction set, but the description
of an architecture based on basic components[4].
Currently, FPGA devices with capacity equivalent to
millions of digital gates are available.

One of the image representation used for video
processing is the pyramid, because it separates the total
resolution of the original image in a set of images that
represent it as a set of different spatial resolutions.

2. Background

The strength of the pyramid comes from the increase in
processing speed on the image operations [3]. This
simplification permits to work at coarser resolutions
where there are less pixels to be processed. Each level of
the pyramid is ¼ smaller that the preceding level, allowing

this a reduction in the number of pixels to be processed by
a factor of 4, 16, 64, 256 and so on.

Many algorithms that work at pyramidal level are
called coarse-to-fine algorithms. They process the image
in a very coarse resolution and obtain a first result of the
processing, which is vague, because it works with low
resolution images. In order to obtain better results, they
are refined repeating the processing to high resolutions
but, using as a reference the results obtained from lower
resolutions.

2.1. Gaussian Pyramids

In order to generate a gaussian pyramid, we suppose that
the image is represented by an array g0 of C columns by R
rows [4]. Each value represents the intensity of the
corresponding point in the image. This image is the level
0 of the gaussian pyramid. The Level 1 of the pyramid
consist of an image g1 which is a reduced version of the
image g0 to which a low-pass filter was applied. Each
value within level 1 is calculated like a weighed average
of the values in level 0 within a 5x5 window. Each value
of level 2, represented by g2, is obtained from the values
of level 1 applying the same target. The fig 1 shows the
pyramid of an image following this scheme.
The filter process of level at level is implemented by the
function Reduce:

gk = Reduce (gk-1)
Which means that for levels 0 < l < N and nodes i, j, 0 < i
< Cl, 0 < j < Rl

∑∑
−= −=

− ++=
2

2

2

2
1).2,2(),(),(

m n
ll njmignmwjig

where N is the number of levels of the pyramid whereas Cl
and Rl are the dimensions of the l-th level, and m and n are
the subindex of the convolution mask. The density of the
nodes is reduced by half in a dimension or four in two
dimensions from level to level. The pattern of weights w
must fulfill the following properties:

a) Generally, its size is 5 x 5 pixels

b) Must be separable

mailto:nmaganda@cseg.inaoep.mx
mailto:ariasm@inaoep.mx
mailto:cferegrino@inaoep.mx

)(ˆ)(ˆ),(nwmwnmw =

c) The components of the pattern must be

standardized

∑ −=
=2

2
1)(ˆ

m
mw

d) In addition, these components must be

symmetrical
2,1,0)1(ˆ)(ˆ =−= iforwiw

For example, in a 512 x 512 image, level 1 will be 256 x
256 pixels , level 2 128 x 128 pixels, and level 3 64 x 64
pixels.

Fig 1. Gaussian Pyramid of the Image ‘INAOE’

2.2 Correlation Measures

There are several correlation measures in the literature.
The three more used are:

a) Sum of Squared Differences [5]:
() ()()∑ +++−++=

ij
jydixIjyixISSD 2

21 ,,

b) Sum of Absolutes Differences [5]:
() ()∑ +++−++=

ji
jydixIjyixISAD

, 21 ,,

c) Normalized Cross Correlation [6]:
() ()

() ()∑∑
−

=

−

=

=
1

0

1

0
22 ,,

,,m

i

n

j jifpjifr

jifpjifrNCC

3. Basic Modules

In this section we present the two basic architectures
developed, that are integrated to obtain a multiresolution
correlation architecture, which is fundamental for the
implemented applications. Instead of showing the

architectures in terms of functional blocks, we show them
in terms of processes. This is an advantage that allows us
to the use a hardware description language based on the
standard ANSI-C. These processes are mapped into
hardware blocks by the place and route tools of the FPGA
vendor, thus the user must not worry any longer about the
connection between the different control lines.

3.1. Pyramidal Architecture

In fig 2 are shown the modules that compose the
pyramidal architecture. These modules are:

a) Data Memory. This memory keeps the image to
be processed.

b) Convolution Modules. These modules multiply
the image values with the convolution mask
coefficients.

c) Control Generators. These modules access to the
Coefficients Memory and supply them to the
Convolution Modules.

d) Coefficients Memory. This is a read-only
memory that stores the convolution mask
coefficients.

e) Address Generator. This is a small control unit
that supplies the control signals and the
synchronization of the different modules to the
architecture.

f) Multiplexor. This element isolates the
architecture bus of the memory data line, with the
purpose of controlling the access to the bus.

The interaction of the parts previously mentioned is

carried out like:

1. The original image is read from data memory and

stored in the image registers.
2. The Control Generator access the Coefficients

Memory and pass them to the Convolution Modules
depending on the mask and the image row being
processed.

3. The Convolution Module reads the data contained in
the Image Registers and carry out the multiplications
of the image values by the coefficients of the
convolution mask.

4. Whenever the Convolution Module generates a result,
it is stored in the Registers Bank.

5. Once the Registers Bank has been filled, an
interruption to the architecture is generated to keep its
content in the Data Memory.

6. Steps 1-4 are repeated until finishing with the original
image

The association of two convolution modules with two
control generators is denominated processor of pyramidal

convolution. The more basic implementation of the
pyramidal architecture contains one processor of
pyramidal convolution. If additional parallelism is
required, more processors of pyramidal convolution can
be implemented.

Fig 2. Main Modules of the Pyramidal Architecture

3.2. Correlation Architecture

In Fig 3 the modules that compose the correlation
architecture are shown. These modules are:

a) Image Memory. This memory stores the image.
b) Target Memory. This memory stores the target to

be tracked.
c) Image Registers. These registers stores some

values of the image to be processed.
d) Target Registers. These registers store some

values of the target to be processed.
e) Correlation Functions. These blocks implements

the correlation function to be used in the
architecture. There are four blocks, because it is
possible to process four correlation functions in
parallel with this scheme. The possible functions
to be implemented in this block are the
mentioned in section 2.2.

f) Correlation Registers. These registers store the
accumulated values of the correlation functions
being processed.

g) Local Comparator. This block evaluates which of
the four correlation registers generate the best
result.

h) Best Global Register. The best result from the
Local Comparator is compared with this value to
find the best global value according with the
correlation function.

i) Global Comparator. This block compares the
Best Global Register with the Best Local
obtained from the Local Comparator.

j) Current Row and Current Column Registers.
These registers store the current Row and
Column values.

k) Best Row and Best Column. When the global
comparator find a better value than the stored,
these values are updated depending on the values
of the Current Row and Current Column
Registers.

Fig 3. Main Modules of the Correlation Architecture.

The interaction of the mentioned parts previously is:
1. The image registers and the target register are

initialized with some values of the image and the
target respectively.

2. The correlation functions calculate the correlation
index between the image values and the target points
and store and accumulate them in the Correlation
Registers.

3. In parallel with the step 2, the Local Comparator
obtains the best value stored in any of the Correlation
Registers.

4. In parallel with steps 2 and 3, the Global Comparator
compares its value with the one obtained from the
Local Comparator. When the value obtained from
Local Comparator is the best, this value is stored in
the Best Global Register, and the registers of Best
Row and Best Column registers are updated
depending on the values stored in the Current Column
and Current Row registers.

5. This process is repeated until all the possible parts of
the image with the same size that the target are
processed.

3.3. Multiresolution Correlation

Once the correlation and pyramid modules have been
implemented, it is necessary to explain how these
architectures are combined to carry out the multiresolution
correlation.

Several ways of finding an object within an image
have been developed. One of these consists of carrying
out the correlation of all the possible regions within the
image of the same size of the object and finding the
maximum or the minimum value of correlation that
indicates the object position in the image.

In order to carry out the correlation process, the
pyramid is obtained from the image in where the object of
interest will be searched. Also, the pyramid must be
obtained from the target to be searched. The number of
levels of both pyramids must be the same.

Fig 4. Multiresolution Correlation Process

The correlation process starts in the lowest level of
both pyramids. In this level, the search window consist of
the whole image in the last level of the pyramid. Because
there are a few pixels to process, this stage is fast. The
process obtains a tentative position, that is a vague result,
but it serves as basis for future refinement.

Once the first result has been obtained, the process
goes to the next upper level in both pyramids. The
correlation process starts but the correlation window is
limited depending on the results obtained from the lowest
level. With this limitation, we reduce the number of pixels
to be processed, but the result is refined. This process is
repeated until the level 0 of both pyramids, and then the
process gives the position as result (row and column)
where the target is located (tentatively). This process is
shown in fig 4.

3.4. Multiresolution Multiple Target Tracking

The process mentioned in the previous section can be
applied to follow more than one target. Due to the
complexity of the architecture, we preferred to explain it
in terms of processes and not in terms of functional
blocks.

In the first frame, the architecture must take its
parameters from certainly memory region. Later, it must

calculate a memory addresses, according to the number of
targets and their sizes.

Fig 5. Multiple Multiresolution Target Tracking Process

In all the frames, the pyramid module must process
the image and obtain the pyramid from the original image.
With respect to the correlation process, in the first frame
this process remains inactive, only the updating targets
process is carried out, depending on the coordinate of
each one of the targets. After the first frame, the
correlation process is performed depending of the target
processed. This process starts in the low level of the
pyramids of target and image, and finish when the process
has obtained the tentative coordinate of the target in the
image. Later, this coordinate is updated depending of the
application using the architecture. This process is repeated
for each target to be tracked. Finally, the target updating
process is activated. This process is shown in fig 5.

4. Real-Time Applications

4.1. Tracking

The tracking benefits from the multiresolution
pyramid because in each level of the pyramid the amount
of data to be processed is reduced. The change made with
respect to the multiresolution correlation implementation
consists on storing the target and later updating it with the
target located in each frame. This causes that the tracking
obtains certain robustness, because it will not be affected
by rotation or changes of the object form. This process is
shown in fig 6.

Fig 6. Iterative Target Tracking Process

4.2. Mosaics

In this application, there are several targets that are
randomly located within the image. A set of targets from
the central column of the image is taken as a reference; its
movement and the direction of the movement with respect
to the next image will help to determine the parts of these
images that will be considered for the mosaic
construction. This process is shown in fig 7.

Fig 7. Mosaics Generation Process

4.3. Image Stabilization

In this application, there are several targets located in
the central part of the image. A set of targets from this
part of the image is taken as a reference; its movement and
the direction of the movement with respect to the next
image will help to determine the parts of these images that
will be considered for the image stabilization. This
process is shown in fig 8.

Fig 8. Stabilization Process

4.4. Voting system for resolving movement vector

When we combine the movement of one or more
targets, we can assume that always ideal conditions will
occur. But ideal conditions rarely occur. As an extra
work, we developed a small voting system for solving
inconsistencies when the targets do not follow the next
conditions:

• The target must be differentiable of others objects in

the scene.
• The patter must not be part of the background.
• The target never must exit of the vision field of the

camera.

The voting system groups the targets according to the

movements of the majority of the targets. With this voting
system, if one of the tracked target produces an incorrect
result, this does not affect the global movement vector.

5. Implementation and Results

The implementation of the proposed architectures was
made on the Celoxica RC1000 development platform. We
show results of the pyramidal architecture, tracking
performance and also show results of the applications
implemented.

5.1. Performace Results

In this section the operation statistics of the pyramidal
architecture are shown. The architecture was
implemented using different number of processors of
pyramidal convolution. We tested for 1, 2 and 3
processors of pyramidal convolution. The resources used
by each one of these applications are shown in table 1.

In order to obtain the performance statistics, the clock
cycles that the architecture needs for producing the result
were counted. Once the number of cycles were obtained,
they were multiplied by the inverse of the frequency (in
this case, 25 MHz), in this way we obtain the image
processing time and the number of images processed per
second. These results are shown in table 2.

Processors Slices Flip-

Flops
4 input
LUTS

Block
RAMs

Equivalent
Gates

1 2,197
of

19,200
(11%)

251 of
38,400
(1%)

3,787
of

38,400
(9%)

22 of
160

(13%)

397,138

2 3,640
of

19,200
(18%)

289 of
38,400
(1%)

6,333
of

38,400
(16%)

42 of
160

(35%)

748,209

3 5,139
of

19,200
(26%)

329 of
38,400
(1%)

8,975
of

38,400
(23%)

62 of
160

(38%)

1,100,581

Table 1. Resources of the FPGA used by the Pyramidal
Architecture.

Pyramidal
Convolution
Processors

Number
of Cycles

Processing
Time (ms)

Images
Processed
by Second

1 696,613 27.86 35.88
2 464,444 18.57 53.82
3 386,923 15.47 64.61
4 348,568 13.94 71.72

Table 2. Pyramidal Architecture Performance

5.2. Pyramid Results

The results shown for the pyramidal architecture were
obtained directly from the implemented architecture. We
developed an interface in Visual C++ for reading the
images from files, passing them to RC1000 memory and
later obtaining the processing result. The results are
compared with the ones obtained from the Matlab
simulation. We also show the difference between software
simulation and hardware implementation pyramids, and
then we evaluate the quality of FPGA processing. These
results are shown in fig 9.

Fig 9. Comparison between Software Simulation and

Hardware Implementation of Pyramids

5.3. Tracking Performance Results

The architecture is flexible with respect to the target
size. We carried out tests with different target sizes. These
results are shown in tables 3, 4 and 5.

Target size = 40 x 40
Targets Latency

Cycles
Throughput

Cycles
Processing

Time
Images

processed
per

Second
1 383,548 414,928 16.59 ms 60.25
2 386,041 448,895 17.95 ms 55.69
3 388,534 482,862 19.31 ms 51.77
4 391,024 516,829 20.67 ms 48.37
5 393,520 550,796 22.03 ms 45.38

Table 3. Tracking Performance for a 40 x 40 pixels
Target

Target size = 60 x 120

Targets Latency
Cycles

Throughput
Cycles

Processing
Time

Images
processed

per
Second

1 391,090 477,498 19.09 ms 52.35
2 401,135 574,035 22.96 ms 43.55
3 411,180 670,574 26.82 ms 37.28
4 421,230 411,180 30.68 ms 32.58
5 431,280 767,109 34.54 ms 29.94

Table 4. Tracking Performance for a 60 x 120 pixels
Target

Target size = 80 x 80
Targets Latency

Cycles
Throughput

Cycles
Processing

Time
Images

processed
per

Second
1 390,228 491,608 19.66 ms 50.85
2 399,401 602,255 24.09 ms 41.51
3 408,574 712,902 28.51 ms 35.06
4 417,747 823,549 32.94 ms 30.35
5 426,920 934,196 37.36 ms 26.76

Table 5. Tracking Performance for a 80 x 80 pixels
Target

5.4. Applications Results

In this section we show the results of the different

interfaces for the applications implemented.

5.4.1. Tracking

The results shown are divided in two parts: the first one

compares the results between the hardware architecture
and the tracking simulation in Matlab. The second one
consist on showing the tracking of an object along an
image sequence.

In the first part we show two graphs, where the row and

the column obtained by the tracking process are
compared. We can remark that the difference between the
positions is minimal and the object of interest is always
tracked. In fig 10 we show the result of tracking a
sequence. In graph 1 and 2, we show the comparison
between the FPGA tracking and the Matlab tracking
applied to the same sequences.

Rows obtained in tracking
Sequence "Carrito3"

130

150

170

190

1 29 57 85 11
3

14
1

16
9

19
7

22
5

Frame Number

R
ow

 O
bt

ai
ne

d

Matlab
FPGA

Graph 1. Comparison between Matlab Tracking and

Tracking Architecture

Columns obtained in tracking
Sequence "Carrito3"

0
200

400
600

1 36 71 10
6

14
1

17
6

21
1

Frame Number

C
ol

um
n

ob
ta

in
ed Matlab

FPGA

Graph 2. Comparison between Matlab Column Tracking
and Tracking Architecture

Fig 10. Tracking of an object along of a sequence

5.4.2. Mosaics

With respect to the mosaics generation, we carried out

tests according to the methodology proposed in this work.
In fig 11 we show both mosaics generated and the original
images. The images were digitalized directly with an
application made in Visual C++, each image was passed
to the FPGA for its processing. The Visual C++ Interface
has the main task of generating the mosaic depending of
the overlaping degree between the images.

Fig 11. Mosaic Generated

5.4.3. Stabilization.

In fig 12 we show the results of the stabilization
process. We show the images taken without processing,
which were digitalized with an interface implemented in
Visual C++. Each image was passed to the FPGA for its
processing, and this interface showed us the resulting
subimage depending of the movement vector obtained
from the target predefined. The images are trimmed 1/10
of the original image, and this is the reason of this lower
resolution.

Fig 12. Stabilization of an image sequence

6. Conclusions

In this work a hardware architecture for tracking
objects was presented. The basic characteristics are the
flexibility with respect to the parallelism degree that is
desired to implement. The degree of parallelism depends
on the available resources in the FPGA used for its
implementation, on the desired speed and on the tracking
application.

Also it is possible to confirm that Handel-C is a language
that shortens the design and implementation times of
complex hardware architectures. It also allows to make a
greater number of tests and verifications before
implementing a final design, which can be used in
applications with lower space requirements or power
consumption. In addition, high performance applications
can be designed with the purpose of reaching real time
performance.

7. Future Work

In this work a multiresolution correlation hardware
architecture was implemented with the applications
mentioned in this work. As future work we propose a
hardware implementation of some technique of machine
learning to improve the quality of the tracking, like Radial
Basis Neural Network or Holographic Neural Networks.
Also we propose the use of other techniques of pyramidal
decomposition, like the Wavelet transform. Within the
proposed code, it is necessary to make some
improvements to implement the architecture in smaller
capacity FPGAs, with the aim of making some prototype
of mobile application, that requires circuits of low power
consumption and less area.

8. References

[1]. G. Pajares and J. De la Cruz, “Computer Vision”. Ed.
Ra-ma, México, 1995
[2]. P.J. Burt and E.H Adelson, “The Laplacian pyramid
as a compact image code”. IEEE Trans. Commun. COM-
31, pp 532-540, 1983.
[3]. M. W. Hansen, M. R. Piacentino, and G. S. van der
Wal. “The Arcadia Vision Procesor”. IEEE International
Workshop on Computer Architectures for Machine
Perception, pp 31-41, 2002.
[4]. S. Brown, and Jonathan. Rose, “Architecture of
FPGAs and CPLDs: A Tutorial”, IEEE Design and Test
of Computer, Vol. 13, No. 2, pp. 42-57, 1996.
[5]. Juan Manuel. Xicoténcatl, “Hardware Architecture
for Stereo Vision in Real-Time”. MSc. Thesis, INAOE,
México, 2000
[6]. Cesar Darío, Peregrina, “Object Tracking using
Active Vision”. MSc. Thesis, INAOE, México, 2002.

	2.2 Correlation Measures
	3.1. Pyramidal Architecture
	4.1. Tracking
	4.2. Mosaics
	4.3. Image Stabilization
	4.4. Voting system for resolving movement vector

