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Abstract

This paper reports a run-time reconfigurable co-
processor for scalar multiplication in elliptic curve cryp-
tography. By reconfiguration, the co-processor can sup-
port various finite field orders and hence, different security
levels. This is a contribution to solve the current interop-
erability problems in elliptic curve cryptography. We re-
port the co-processor hardware organization and the cost
in terms of area and speed of the reconfigurable solu-
tion compared to a static implementation.

1. Introduction

Elliptic Curve Cryptography (ECC) [8], [11] is a kind
of public key cryptography that guarantees the security ser-
vices of confidentiality, authentication, integrity and no-
repudiation, which are necessary to protect information
stored or transmitted.

ECC has the advantage of using shorter keys while pro-
vides the same security level than other widely used cryp-
tosystems, for example RSA [15]. The use of shorter length
keys implies less space for key storage, time saving when
keys are transmitted and less costly arithmetic computa-
tions. These characteristics make ECC the best and default
choice to provide data security [9]. Security services are
provided for ECC cryptographic schemes like key agree-
ment, digital signatures and bulk encryption [2].

An ECC cryptosystem is defined as the tuple T =
(GF (q), a, b,G, n, h), where GF (q) is a finite field, a
and b define an elliptic curve on GF (q), G is a genera-
tor point of the elliptic curve, n is the order of G, that is, the
smaller integer such that nG = O (identity point in the ad-
ditive group). h is called the co-factor and it is equal to the
total number of points in the curve divided by n. An ellip-
tic curve on the characteristic two field GF (q) is defined
by equation 1.

y2 + xy = x3 + ax2 + b (1)

To make security applications based on ECC interopera-
ble, they must agree the same tuple T and the same cryp-
tographic schemes. However, several tuples T have been
recommended by international standards like ANSI, ISO,
IEEE, what has led to interoperability problems.

One of the most important values in tuple T is the finite
field and its size. The size determines the security level of
the cryptographic schemes. The greater this size the higher
the security level and also the computational time of the
cryptographic schemes. It is agreed that a field size equal or
greater than 2163 provides enough security until 2010 [2].

The most time consuming operation in ECC crypto-
graphic schemes is the scalar multiplication, an operation
intrinsically related to the tuple T that involves elliptic
curve and finite field arithmetic.

In this paper we propose a reconfigurable hardware ac-
celerator attached to a microprocessor to perform the scalar
multiplication. The co-processor has the ability to be recon-
figured to support different tuples T and hence to provide
interoperability while performing the operation faster com-
pared with a software implementation. We present the gen-
eral architecture of the reconfigurable co-processor, based
on our work reported in [?]1. We evaluate the co-processor
architecture on the prototyping board ML403 [20], which
includes hardware reconfigurable. We use the tuples SEC-
113, SEC-131 and SEC-163 recommended by SECG [2].
The co-processor is parameterizable in the field order and
could be implemented for other security levels. We give per-
formance and area costs of the reconfigurable solution com-
pared to its static implementation.

Next section introduces the concept of reconfigurable
computing. Section 3 presents the basis of scalar multipli-
cation operation and the algorithms involved in its compu-
tation. Section 4 shows the co-processor architecture. De-
tails about the practical implementation are given in section
5 and the results are shown in section 6. Finally, conclud-
ing remarks and further directions are presented in section
7.
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2. Reconfigurable computing

Traditionally there are two options to implement an al-
gorithm. One of them is based on software, a set of instruc-
tions executed by a microprocessor. The other choice is the
direct implementation of the algorithm in hardware. High
parallelizing parts of an algorithm are suited to be imple-
mented in hardware while the rest remains implemented in
software, leading to have a functional Hardware/Software
co-design, see figure 1 a). Co-processors have been imple-
mented to speed up many intensive tasks found in image
processing, high precision arithmetic and encryption opera-
tions. The drawbacks of hardware implementations are the
lack of flexibility to switch to other implementation param-
eters. For example, if a hardware module performs an im-
age convolution with a window size of three, and now it
is required a convolution with a window size of nine, it
would be necessary to design another hardware module that
meets this new requirement. An approach studied in recent
years combines the advantages of software (flexibility) and
hardware (performance) in a new paradigm of computation
named reconfigurable computing RC [17]. Reconfigurable
computing involves computer science and electronic engi-
neering areas. RC uses reconfigurable hardware for com-
putation purposes. Run-time reconfiguration allows recon-
figurable hardware to implement multiple functions which
are separated temporally on the same silicon area and the
configuration can be changed while the application is run-
ning. Also, hardware reconfiguration makes possible to im-
plement different hardware modules in the same area of re-
configurable hardware that otherwise do not fit, see figure
1 b). The concept of reconfiguration can be used to imple-
ment several applications but a general design methodology
is not applied for all cases. Reconfigurability makes pos-
sible hardware flexibility, that is, to have specialized sili-
con to perform some computational task faster compared
with software but keeping flexibility. Reconfiguration have
found applications in different fields, for further reading re-
fer to [5].

3. Scalar multiplication

The most time consuming operation in elliptic curve
cryptographic schemes is the scalar multiplication, which is
intrinsically related to the tuple T . This costly elliptic curve
operation is performed according the operations described
in three layers:

At the top layer there are different methods for comput-
ing the scalar multiplication, which is defined as the re-
sult of adding the point P to itself n− 1 times. That is,

kP = P + P + P + · · ·+ P︸ ︷︷ ︸
k times

Module A

Module B

Module C

Module A

Module B

Reconfigurable
Hardware

Module C

Application
program

Specialized
Hardware Reconfigurable

Hardware

                             a)                                                          b)

Figure 1. Hardware/Software co-design. a)
Computational intensive tasks are imple-
mented in hardware. b) Reconfigurable hard-
ware allows flexibility to switch different
modules in the same area.

This operation is performed using two kinds of sums:
ECC-ADD to sum two different points (P + Q) and
ECC-Double to sum the same point (P + P ).

The middle layer refers to the coordinate system being
used. Depending on this representation the ECC-ADD and
ECC-Double are defined in a different way. The simplest
is the affine representation (x, y) but most of the reported
ECC implementations use projective coordinates because of
point addition is free of finite field inversions, being this op-
eration the most time consuming.

At the lower layer is the finite field arithmetic. The per-
formance of the arithmetic units impacts the overall per-
formance of the scalar multiplication and hence the perfor-
mance of the ECC cryptographic schemes. Finite field op-
erations are multiplication, inversion, squaring and adding.
The rules to perform these operation depend on the finite
field used.

While the number of ECC-ADD and ECC-Double oper-
ations depends on the method chosen in the top layer, the
kind and number of operations in the finite field depends on
the coordinates used in the middle layer.

Efficient hardware/software implementations of the
scalar multiplication kP have been the main research
topic on ECC in recent years. The main focus in the re-
lated works has been the fast computation of the kP scalar
multiplication. Our approach is different. We aim to per-
form this operation as fast as possible while keeping a
flexible architecture that can adapt to several security lev-
els, defined by the size of the finite field GF (q).

This implies a careful algorithms selection and imple-
mentation, that leads to a dedicated unit for scalar multipli-
cation that performs well for several elliptic curves and fi-
nite fields.

Some works [1], [4], [7], [3], [14], [10], [6] have re-
ported parameterizable arithmetic units for scalar multipli-



cation but those architectures need to be reconfigured out
of line. It would be desired a real time adaptation of the
co-processor to different security levels. We aim to provide
such architecture by using run-time hardware reconfigura-
tion.

4. The co-processor architecture

Due to its mathematical properties, the binary finite field
GF (2m) has been widely used in elliptic curve cryptogra-
phy as the finite field GF (q). In this field the operations like
multiplication, inversion and sum depend on a basis. Poly-
nomial basis have been preferred due its advantages when
implemented in hardware.
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Figure 2. Scalar multiplication co-processor
architecture

In polynomial basis, the elements of GF(2m) are viewed
as m − 1 grade polynomials A(x) with coefficients in
GF(2) = {0, 1}. A basis of GF(2m) is one of the form
{1, t, t1, t2, tm−1}, where t is a square of an irreducible m
grade polynomial P (x) (cannot be factored as two poly-
nomials). Arithmetic in GF(2m) with polynomial basis is
arithmetic of polynomials modulo P (x).

The proposed co-processor architecture to com-
pute scalar multiplications is depicted in figure 2. It is

based on scalable finite field arithmetic modules devel-
oped previously [?]2 and finite state machines for control.
The main blocks are a serial multiplier, a combinato-
rial squarer and a divider module, all them performing
finite field arithmetic in polynomial basis and param-
eterizable for any m value. The control unit is a finite
state machine that implements the binary method to com-
pute the scalar multiplication kP (see algorithm 1).
ECC-ADD or ECC-Double operations are performed ac-
cordingly the parsing of scalar k by sending control sig-
nal to the arithmetic modules and multiplexers. Both the
scalar k and point P are entered to the architecture in
groups of 32-bit words. Additionally to scalar multiplica-
tion, the architecture can perform an ECC-ADD operation,
which is required in elliptic curve digital signature verifica-
tion schemes.

Algorithm 1: Binary method for scalar multiplication kP
Input: P = (x, y) x, y ∈ GF (2m), k = (km−1, km−2, ..., k0)
Output: R = kP
R ← (0, 0)
S ← P
for i from 0 to m− 1

if ki = 1
R ← ECC-ADD(R, S)

end if
S ← ECC-Double(S)

end for

ECC-ADD algorithm
Input: P = (x1, y1), Q = (x2, y2)
Output: R = P + Q = (x3, y3)
x3 ← λ2 + λ + x1 + x2 + a
y3 ← λ(x1 + x3) + x3 + y1

λ ← (y2 + y1)/(x2 + x1)

ECC-Double algorithm
Input: P = (x1, y1)
Output: R = 2P = (x3, y3)
x3 ← λ2 + λ + a
y3 ← x2

1 + λx3 + x3

λ ← x1 + y1/x1

The binary method checks each bit value ki of scalar
k from the least to the most significant bit. It performs an
ECC-Double operation in each iteration and an ECC-ADD
operation only if ki = 1.

Although the binary method can perform both the ECC-
ADD and ECC-Double in parallel, the control unit of the
ECC-coprocesor performs those operations serially. The
same arithmetic modules are used to perform both opera-
tion, different to the architecture presented in [?] where
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there are specialized units for each elliptic point addition.
Due an scalar k in the field GF (2m) has m/2 bits equal
to ’1’, the binary method performs m ECC-Double opera-
tions and m/2 ECC-ADD operation in the average for each
kP scalar multiplication.

5. Practical implementation

We implemented the co-processor on a field pro-
grammable gate array (FPGA) Virtex-4 included in the
prototyping board ML403. The co-processor was de-
scribed in Very High Hardware Description Language
(VHDL) and its functionality simulated in Active-HDL.

5.1. Static version

We first implemented the static version of the co-
processor using ISE 8.2 tools. Then, we use EDK 8.2
to define the complete system (see figure 3), which in-
cludes the PowerPC microprocessor, local buses PLB
and OPB, an universal asynchronous receiver/transmitter
UART module, memory blocks for data and program and
our co-processor. The original co-processor shown in fig-
ure 2 was wrapped with the IPIF EDK core and busmacros
to interconnect it to the OPB bus.
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Figure 3. Reconfigurable co-processor at-
tached to a microprocessor

A program was written in C language that runs on the
PowerPC microprocessor which is included as a hard pro-
cessor in the Virtex-4 FPGA. The application enables the
co-processor and sends the point P and scalar k through the
PLB bus as a group of 32-bit words. After reading the input
parameters the co-processor starts the computation while
the processor waits for the results. By asserting a signal, the
co-processor notifies the end of the computation and then

the application reads back the results and show them via the
UART module in a terminal window.

5.2. Run time reconfiguration version

Then, we designed the run time reconfiguration version
based on the design flows [19] and [18] to generate the
static and reconfigurable modules. As described in those
documents some changes were applied to the static design.
We have to define the fixed part (that part of the system im-
plemented in the FPGA that will not change) and the recon-
figurable part (that part in the FPGA that will change at run
time). In our design the fixed part is composed of all the
modules in figure 3 except the ECC co-processor wrapped
by the IPIF module, which is the reconfigurable part. All
signals that connects the fixed and reconfigurable part must
cross through busmacros. Also, global FPGA resources like
the buffered clock must be locked and specified. All these
changes are specified in a constraint file. We use PlanAhead
8.2. to generate this file. The distribution of the components
in the FPGA are shown in figure 4.
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Figure 4. Virtex-4 overview and area assign-
ment

We use the IMPACT Xilinx utility to download the full
and partial FPGA configuration files (bitstreams). Using the
software application we test the co-processor for the secu-



rity level SEC113, SEC131 and SEC163, recommended in
[2].

6. Results

Area results of the co-processor are shown in table 1.
These results are fewer compared to [?] but at the expense
of more clock cycles to perform the scalar multiplication.

The area results for the static system and the reconfig-
urable one are shown in tables 2 and 3. More area is re-
quired for the reconfigurable co-processor when it is inte-
grated to the complete system, due to the additional mod-
ules IPIF and busmacros.

The time to perform the scalar multiplication is given
in table 4. These results do not include the data transfer
between the microprocessor and the co-processor. The co-
processor uses the same clock frequency of the bus system,
which is the same that the microprocessor clock, 100 MHz.
Based on the timing shown in table, our co-processor re-
quires 0.0067 ms per 1-bit security level.

Compared to an optimized software implementation for
270 bits security level which requires 196.71 ms on a dual-
Xeon computer at 2.6 GHz [17]; our co-processor would
perform that same 270 bit operation in approximately 1.8
ms. That is, it would perform 100 times faster while its
clock speed is almost 25 times slower (100 MHz) than the
Xeon processors.

Sec. level Cycles/kP Time
113 51,730 0.57 ms
131 68,887 0.69 ms
163 107,043 1.07 ms

Table 4. Time results for the reconfigurable
kP co-processor

All results we obtained were validated by comparing
them against a software implementation that is a slight mod-
ification of the code available in [16].

7. Concluding remarks and directions

We presented a co-processor to compute the most time
consuming operation in elliptic curve cryptography, the
scalar multiplication. To support different security levels
and allows interoperability, the co-processor can be updated
to support different security levels and reconfigured at run-
time. Further improvements should be done to optimize area
and allows to implement greater security levels. Addition-

ally, self-reconfiguration of the architecture using the Pow-
erPC processor and the ICAP interface could be pursued.
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