
On the Hardware Design of an Elliptic Curve Cryptosystem

Miguel Morales-Sandoval and Claudia Feregrino-Uribe
National Institute for Astrophisics, Optics and Electronics

Computer Science Department
Luis Enrique Erro No. 1, Sta. Ma. Tonantzintla, Pue, 72840 Puebla, México

{mmorales, cferegrino}@inaoep.mx

Abstract

We present a hardware architecture for an Ellip-
tic Curve Cryptography System performing the three
basic cryptographic schemes: DH key generation, encryp-
tion and digital signature. The architecture is described by
using hardware description languages, specifically Han-
del C and VHDL. Because of the sequential nature of the
cryptographic algorithms, they are written in Handel C lan-
guage. The critical part of the cryptosystem is a module
performing the scalar multiplication operation. This mod-
ule has been written in VHDL to let further improvements.
The points of the elliptic curve are represented in projec-
tive coordinates working over the two-characteristic finite
field and using polynomial basis. A prototype of this hard-
ware architecture is implemented on a Xilinx Virtex II
FPGA device.

1. Introduction

Because of the information processing and telecommu-
nications revolutions, there is an increasing demand for
techniques to keep information secret, to determine that in-
formation has not been forged and to determine who au-
thored pieces of information.

Cryptographic techniques are currently being utilized for
these purposes. Elliptic Curve Cryptography (ECC) [12]
has been receiving a lot of attention in the last years be-
cause of the benefits it offers. ECC employs smaller length
keys than other cryptosystems like RSA, what implies less
space for key storage and less costly modular operations.
Furthermore, it has been shown in the literature [12] that
ECC’s security is higher than that provided by RSA, which
is the most widely used public key cryptosystem. Although
ECC offers the same security level than RSA using smaller
length key, among scientists and mathematicians still exists
skepticism for using ECC in practical applications. ECC’s

security has not been proved; its strength is based on the in-
ability to find attacks.

International organizations such as ISO, ANSI, IEEE
and NIST have been working to standardize the use of ECC.
Also, several enterprises like Certicom, Sun Microsystems,
Motorola and others have been investing in research; these
enterprises consider ECC as the cryptosystem of the future.
The main area where ECC is applied is to implement cryp-
tographic functions in constrained environments. Main ap-
plications of ECC are in the wireless market where security
is required but devices have limited resources (memory and
computational power) to implement any other public key
cryptosystem. Since performance of all elliptic curve cryp-
tosystems depends on the efficiency to perform field arith-
metic operations, most of the reported papers are related to
the improvement of such arithmetic units.

In this work, we present a hardware implementation of
an elliptic curve cryptosystem. We have implemented the
three basic cryptographic schemes: ECDH for key genera-
tion [4], ECIES scheme [19] to encrypt data and ECDSA
[1] to generate a digital signature. Also, the SHA-1 al-
gorithm [20] was implemented for authentication; in the
ECDSA scheme it is necesary to get the hash value of the
message to be signed and in the ECIES scheme it is required
to generate a bit string which is used to encrypt the mes-
sage. A hardware implementation is well suited since el-
liptic curve cryptography implies complex field and elliptic
curve operations. To the best of our knowledge, a hardware
architecture that implements the three cryptographic algo-
rithms mentioned above has not been reported.

The most time consuming operation in an elliptic curve
cryptosystem is the so-called scalar multiplication opera-
tion. In the DH key generation scheme it is necessary to
perform one scalar multiplication operation; in the ECIES
scheme, scalar multiplication is required twice in the en-
cryption process and once in the decryption process; in the
ECDSA scheme, this operation is required once in signature
generation and twice in signature verification. We have im-
plemented a coprocessor in VHDL for performing the scalar

Proceedings of the Fifth Mexican International Conference in Computer Science (ENC’04)

0-7695-2160-6/04 $20.00 © 2004 IEEE

multiplication operation in the binary finite field F2191 , us-
ing polynomial basis and projective coordinates to repre-
sent points in the elliptic curve. Elliptic curve cryptographic
schemes mentioned above have been written in Handel C
language including the SHA-1 [20] algorithm for authen-
tication because of their more algorithmic approach. We
have simulated the full system co-simulating the VHDL and
Handel C code. Also, we have tested the blocks indepen-
dently in a Xilinx Virtex II FPGA device.

The remainder of this paper is organized as follows: Sec-
tion 2 shows the related work, Section 3 explains the funda-
mentals of ECC and Section 4 describes the algorithms im-
plemented. In Section 5 the design of the cryptosystem is
presented; the results obtained are summarized in Section
6. Finally Section 7 concludes this work.

2. Related Work

Since ECC was proposed in 1985 [11], [14], many
results have been reported on secure and efficient imple-
mentations. The performance of the entire system depends
mainly on the efficiency of the arithmetic units, which per-
form demanding finite field computations, and on fast algo-
rithms for scalar multiplications. In addition, performance
of ECC can be speeded up by selecting specific underly-
ing finite fields and elliptic curves [2]. Both software and
hardware ECC implementations have been reported, some
of them are mentioned in the following subsections.

2.1. Software implementation

Some software implementations of ECC have been re-
ported in [8], [21] and [13]. In [8] Hankerson et al. present
a C implementation on a Pentium II workstation for per-
forming the scalar multiplication. NIST random and Koblitz
elliptic curves over the binary field were used. The best tim-
ing result for performing scalar multiplication was 1.68 ms
for the binary field F2163 and 39.6 ms for F2233 . In [21], an
ECC implementation on a Palm OS Device is presented. A
NIST (random and Koblitz) curve over the finite field F2163

was used and projective coordinates were selected. Code
was written in C and executed on a Handspring Visor with
2 MB of memory. For the random curve, the scalar multipli-
cation takes 3.5 sec using the Montgomery algorithm. For
the Koblitz curve, the scalar multiplication takes 2.4 sec.
0.9 sec. In [13] an ANSI C software library for ECC is pre-
sented. The GNU Multiple Precision arithmetic library is
used to perform the arithmetic operations over the a prime
finite field. The library was tested on a Pentium III worksta-
tion using prime finite fields Fp175 , Fp192 and Fp224 ; for each
of these finite fields, timing results for performing scalar
multiplication were 13.6 ms, 15.7 ms and 19.5 ms respec-
tively. In this last work, ECDH, ECES and ECDSA proto-

cols were implemented to test the proposed library. For the
finite field Fp192 , timing results are as follows: for ECES en-
cryption it takes 36.5 ms for processing, for ECDSA digi-
tal signature generation it takes 22.7 ms long and 28.3 ms
for verification.

Because of elliptic curve cryptographic algorithms per-
form a high amount of mathematical operations with large
numbers in a finite field; implementing ECC with the avail-
able instruction set of a general purpose processor is inef-
ficient, as mentioned in the software implementations. For
this reason, a hardware solution could be better suited, es-
pecially for real time data processing.

2.2. Hardware implementations

Hardware architectures for ECC can be divided into pro-
cessor or coprocessor approaches. In the former, there ex-
ist a number of specialized instructions the processor can
support, some of them are for finite operations or elliptic
curve points. In the latter, there are no such instructions be-
cause the algorithms are implemented directly on special-
ized hardware.

Some processors reported for ECC are found in [17],
[18], [5] and [10]. In [17], Orlando and Paar have re-
ported the fastest FPGA based processor while in [18]
Satoh and Takano have reported the fastest ASIC based pro-
cessor. The work performed by Orlando and Paar is consid-
ered as a benchmark, where the scalar multiplication can be
performed in 0.21 ms, working over the binary field F 2167

with polynomial basis representation and projective coor-
dinates. The architecture exploits the benefits of reconfig-
urable computing and incorporates pipelining and concur-
rence techniques in order to have an optimized hardware
that can support several elliptic curves and finite field or-
ders. A prototype of this processor was implemented in a
XCV400E-8 BG432 Xilinx FPGA. The processor reported
by Satoh and Takano in [18] can support both prime and bi-
nary finite field for arbitrary prime numbers and irreducible
polynomials. This characteristic is achieved by introduc-
ing a dual field multiplier. Scalar multiplication can be per-
formed in 0.19 ms in the binary field F2160 .

Some coprocessors reported for ECC are found in [16],
[6] and [7]. In [16] Okada et al. reported a coprocessor for
ECC both in a FPGA device and in an ASIC platform. In
the case of the FPGA implementation, scalar multiplication
takes 80 ms for random curve over the finite field F2163 . The
critical part of the coprocessor is a bit-parallel multiplier
that can operate with different irreducible polynomials. In
[6] Ernest et al. reported a reconfigurable implementation
of a coprocessor for ECC. The coprocessor is based on two
scalable architectures for finite field computations. One of
them is a combinatorial Karatsuba multiplier, the other is
a finite field coprocessor that implements field multiplica-

Proceedings of the Fifth Mexican International Conference in Computer Science (ENC’04)

0-7695-2160-6/04 $20.00 © 2004 IEEE

tion, addition and squaring in hardware. ECC software im-
plementation performance can be improved by using these
two finite field coprocessors. If only the first architecture
is used, scalar multiplication can be performed in 184 ms.
If both architectures are used, the required time reduces to
10.9 ms. In [7], Ernest et al. reported a hardware architec-
ture to perform scalar multiplication over the binary field
F2270 using projective coordinates. Field elements are rep-
resented in normal basis, for that reason a Massey-Omura
multiplier is used. Coprocessor architecture consist of three
basic blocks: a register file with sixteen 270-bit registers,
a finite sate machine implementing the doubling and add
method to perform scalar multiplication and an arithmetic
unit performing field computations. The design was synthe-
sized for a FPGA device equivalent to 180,000 gates. The
coprocessor occupies 82% of the available CLBs while per-
forming scalar multiplication in 6.8 ms.

All the reported hardware architectures are related with
the arithmetic required for elliptic curve operations. None
of them implements an ECC algorithm such as digital sig-
nature. Although software implementations have been re-
ported, they are slower than hardware solutions and are
unattractive if cryptosystem needs to perform a lot of cryp-
tographic operations, for example, in a secure web server.

3. The elliptic curve cryptosystem

Cryptography can be divided into two groups: symmet-
ric (SKC) and asymmetric key (PKC) cryptography [20]. In
the former, the same key is used for encrypting and for de-
crypting. Symmetric key cryptosystems have been used to
provide confidentiality for years. A major disadvantage in
symmetric cryptography is the key distribution; the prob-
lem complicates when the cryptosystem has to support sev-
eral users on a dynamic manner. To solve this weakness,
PKC was introduced and, together with it, the concept of
digital signature. In PKC, two keys are used; a public key is
employed to encrypt data while a different, but mathemati-
cally related private key is employed to decrypt it. ECC be-
longs to the algorithms based on PKC, similar to other pub-
lic key cryptosystems; its security is based on a hard mathe-
matical problem: the elliptic curve logarithm discrete prob-
lem ECLDP [1].

An elliptic curve cryptosystem consists of a 7-tuple T =
(q, FR, a, b, G, n, h) where q represents the finite field, FR
indicates the representation basis of the finite field, a and
b are elements of the finite field Fq and define the ellip-
tic curve equation, G is a point of the elliptic curve and has
the property of generating all other points defined by the
same elliptic curve, n is the order of the point G and h is
the divider of the number of elements of the elliptic curve
by n. For details of ECC and its implementations see [1]
and [2]. Before implementing an ECC system, these pa-

rameters need to be selected. The selections are influenced
by security considerations, application platform and, possi-
ble design constrains. First we have to decide which field we
want to work on. For practical applications, only two finite
fields can be used: prime finite field or two-characteristic fi-
nite field [2]. The finite field selected does not affect the se-
curity of the cryptosystem just the performance of the arith-
metic units. It has been shown that binary finite fields lead to
better efficient implementation than prime finite fields [2].
For a binary field, an elliptic curve is defined as a set of
points satisfying equation (1).

y2 + xy = x3 + ax2 + b (1)

For specific elliptic curves defined over a finite field the
ECPLD is intractable [1]. NIST [15] has recommended
some curves that have been proved to be secure to use in
practical applications.

After selecting the finite field, the basis representation of
the field elements needs to be selected. Basis representation
often determines the type of field multiplier to be used. For
the binary finite field, polynomial or normal basis can be se-
lected. If polynomial basis is selected, a serial multiplier is
used, on the other hand, if normal basis is selected, parallel
multiplier (Masey-Omura) is used. Serial multipliers con-
sume fewer resources than parallel multipliers, but require
more time to perform a field multiplication. Another impor-
tant aspect to consider is related to the coordinates for repre-
senting points of the elliptic curve. It has been shown in the
literature that projective coordinates instead of affine coor-
dinates avoid field inversion which improves considerably
the performance of the cryptosystem [2].

Cryptographic schemes based on elliptic curves have
been proposed [9]. The three schemes implemented in this
paper are explained in detail in the next section.

4. Elliptic Curve Cryptographic schemes

We have selected the following cryptographic al-
gorithms: the Elliptic Curve Diffie-Hellman (ECDH)
scheme, the Elliptic Curve Digital Signature Algo-
rithm (ECDSA) and the Elliptic Curve Integrated Encryp-
tion Scheme (ECIES). The ECDH is the elliptic curve ver-
sion of the Diffie Hellman key generation method; the
ECDSA is the elliptic curve analogue of DSA; and the
ECIES scheme for encryption/decryption has been pro-
posed by the Standards for Efficient Cryptography Group
(SECG).

For the following algorithms, the 7-tuple T is shared by
entities A and B, dA and dB are private keys of entities A
and B respectively and QA and QB are the public keys of
A and B respectively.

Proceedings of the Fifth Mexican International Conference in Computer Science (ENC’04)

0-7695-2160-6/04 $20.00 © 2004 IEEE

4.1. DH key generation

A uses the following procedure to calculate a secret
shared value with B:

1. Compute P = dAQB = (x, y)

2. z = x

3. The secret value is z

z is the shared key between the two entities, A and B.

4.2. ECIES scheme

The ECIES scheme employs two algorithms: a symmet-
ric cipher E and a MAC (Message Authentication Code)
algorithm. Assume S is the key’s length for the cipher al-
gorithm and M is for the MAC algorithm. A sends an en-
crypted message m to B executing the following steps:

1. Select a random number k from [1, n − 1]

2. Compute (x, y) = kQB and R = kG

3. Derive a (S + M)-bit key kKDF from x according to
[19].

4. Derive a S-bit key kS from KKDF and encrypt the
message. C = E(m, kS)

5. Derive a M -bit key kM from KKDF and compute the
m’s MAC value. V = MAC(m, kM)

6. Send (R, C, V) to B

To recover the original message, B does the following:

1. If R is not a valid elliptic curve point, fail and return.

2. Compute (x′, y′) = dBR

3. Derive a (S + M)-bit key kKDF from x′ according to
[19].

4. Derive a S-bit key kS from KKDF and decrypt the
message C. m1 = E(C, ks)

5. Derive a M -bit key kM from KKDF and compute the
m1’s MAC value. V1 = MAC(m1, kM)

6. Accept message m1 as valid if and only if V = V1

Some comments about the required operations for this
scheme is given at the end of the next subsection.

4.3. ECDSA scheme

To sign a message, entity A does the following:

1. Select a random number k from [1, n − 1]

2. Compute R = kG = (x, y) and r = x mod n. If r = 0
go to step 1.

3. Compute s = k−1(H(m)+dAr) mod n, H is the hash
value of the message.

Figure 1. Scalar Multiplication Hierarchy

4. The digital signature on message m is the pair (r, s)

Entity B can verify the digital signature (r, s) on m per-
forming the following steps:

1. Verify r and s are integers in [1, n− 1], if not, the dig-
ital signature is wrong. Finish and reject the message.

2. Compute w = s−1 mod n and H(m), H is the hash
value of the message.

3. Compute u1 = H(m)w mod n and u2 = rw mod n

4. Calculate R′ = u1G + u2QA = (x′, y′)

5. Compute v′ = x′ mod n, accept the digital signature if
and only if v′ = r

Each one of the cryptographic algorithms listed above re-
quire at least one scalar multiplication, such operation con-
sists of multiplying an integer number k by an elliptic curve
point P . This operation can be performed by applying one
of the methods reported in [2], [8].

Invariably, scalar multiplication requires several elliptic
curve points Adds (when two points are equal the add op-
eration is called Doubling); at the same time, an Add op-
eration requires several field operations. The number and
type of these field operations depend on the type of coor-
dinates being used. In the binary method, scalar multipli-
cation is achieved by performing M Doubling and N Add
operations. Here, M is the size of the finite field and N is
the number of ’1s’ in the binary representation of k. It has
been shown that the use of projective coordinates eliminates
the need of performing inversion in each elliptic curve op-
eration and it is a very good alternative to reduce the ex-
ecution time required for the scalar multiplication. In the
cryptosystem we propose, the scalar multiplication is per-
formed according to the hierarchy of operations shown in
figure 1. The number and type of field operations required
in each elliptic curve add in both affine and projective coor-
dinates are listed in table 1. In table 1, add refers to a sum
operations of field elements while Add refers to a sum op-
eration of elliptic curve points. Scalar multiplication can be
improved even more if NAF representation [8] of the inte-
ger operand k is used.

Proceedings of the Fifth Mexican International Conference in Computer Science (ENC’04)

0-7695-2160-6/04 $20.00 © 2004 IEEE

Operation Affine Projective
Add Double Add Double

add 6 8 4 6
Mul 3 3 10 20
Inv 1 1 0 0

Table 1. Field operations when affine and pro-
jective coordinates are used

Figure 2. Elliptic Curve Cryptosystem

5. Design and implementation of the elliptic
curve cryptosystem

A block diagram of the cryptosystem developed is shown
in figure 2. The cryptosystem consists of several sub mod-
ules that perform each one of the cryptographic algorithms
listed above. The main blocks of the cryptosystem are: a co-
processor that performs the scalar multiplication, an m-bit
random number generator module RNG, three modules ex-
ecuting the cryptographic algorithms ECDSA, ECIES and
ECDH, and a main controller orchestrating the data flow.

In the cryptosystem, the data flow is as follows: the main
controller stores the incoming data going to be encrypted
into a 1KB memory, then, according to the required oper-
ation, it enables any of the cryptographic modules. Both
ECDSA and ECIES modules request a random number to
the RNG module, enable SHA-1 module to get the hash
value of the incoming data and request to the coprocessor
the necesary scalar multiplications. The modular arithmetic
operations needed in ECDSA are performed internally by
an specialized big-integer ALU. Finally, the encrypted data
are stored in a 1KB output memory. If only a secret value for
key exchange is required, input ECDH’s parameters are en-
tered instead of data and the secret shared value is placed in
the output memory.

The ECIES module employs the SHA-1 algorithm to de-
rive the required key in the encryption and decryption pro-

Figure 3. F2m Inverter

cedures described in section 4. In this case, the SHA-1 mod-
ule generates the key by iterating several times. The en-
cryption algorithm consist of an XOR operation between
the original data and the key generated.

When a digital signature generation or verification is
been performing, the SHA-1 module is required only once
to generate a 160-bit hash value. The integer multiplica-
tion is performed serial executing modular reduction inter-
leaved. The integer inversion, which is more expensive than
multiplication, is performed as described in [3].

The random number generator is implemented as a lin-
ear feedback shift register (LFSR) [20].

The cryptosystem can operate with elliptic curves over
any binary polynomial finite field F2m . The arithmetic co-
processor is implemented according to the hierarchy of op-
erations shown in figure 1. At the top level of the figure,
scalar multiplication is performed according to the binary
method, implemented as a finite state machine; Add and
Doubling operations are implemented as finite state ma-
chines too. This selection was because this algorithm is too
simple to implement and it allows to perform an Add and
Doubling operation in parallel.

The field arithmetic unit consists of a field serial multi-
plier and an inverter. The inverter is based on the Modified
Almost Inverse Algorithm [8], this module dominates the
time execution in both Add and Doubling operations. A dia-
gram of such inverter is shown in figure 3. For the field mul-
tiplication, we have implemented a serial shift and add mul-
tiplier with interleaved polynomial reduction. The main ad-
vantage of using a serial multiplier is that it consumes fewer
resources compared with other approaches. A diagram of
the architecture of this multiplier is shown in figure 4. A
field multiplication can be achieved in m clock cycles by
performing field add and shift operations.

Proceedings of the Fifth Mexican International Conference in Computer Science (ENC’04)

0-7695-2160-6/04 $20.00 © 2004 IEEE

Figure 4. F2m Multiplier

Module Slices Frequency (MHz)
Multiplier %8 166
Inverter % 35 115

Table 2. Synthesis results

6. Results

We prototyped the cryptosystem in a Xilinx VirtexII
XC2V1000-4FG456 FPGA. Elliptic curve was defined over
the finite field F2191 and irreducible polynomial F (x) =
x191+x9+1. The arithmetic coprocessor was described us-
ing VHDL. This module was simulated using Active-HDL
and synthesized using the Xilinx ISE software. Synthesis
results are shown in table 2. The full system was verified
co-simulating the Handel C and VHDL code.

In table 3 we show the timing results obtained for elliptic
curve and field arithmetic. The scalar multiplication is per-
formed in 32 ms if affine coordinates are used applying the
binary method. If projective coordinates and a NAF repre-
sentation of the integer operand are used, scalar multiplica-
tion can be performed in 4.7 ms.

A performance comparison of hardware implementa-
tions against each other is not straight forward. It is because
of different key size and FPGA technology used for their
implementation. In table 4, the scalar multiplication timing
result we have obtained is compared with some hardware

Operation Time (ms)
Affine Projective

Scalar mul 32 4.7
Mul 0.00148
Inv 0.135

Table 3. Timing results

Reference Fq Platform Time (ms)
This work F2191 Xilinx XC2V1000 4.7

[16] F2163 Altera EPIF10K250 80
[6] F2113 Amtel AT94K40 10.9
[7] F2270 Xilinx XC4085XLA 6.8

Table 4. Timing comparison for scalar multi-
plication

implementations mentioned earlier in this paper.

7. Conclusions

We described the design of an elliptic curve cryptosys-
tem over F2m . This cryptosystem is able to execute any
of three cryptographic schemes (key exchange, encryp-
tion/decryption and digital signature). The cryptosystem
has been implemented using hardware description lan-
guages and tested on a Virtex II FPGA device. This
cryptosystem performs a fast elliptic scalar multiplica-
tion, which is the most time consuming part in each of the
cryptographic algorithms . For a 191-bit scalar multiplica-
tion, operating to 113 MHz, it takes 4.7 ms if projective
coordinates are used. The designed arithmetic coproces-
sor supports different binary polynomial fields and can
be further improved to perform faster scalar multiplica-
tion.

8. Future Work

We are working currently on reducing the time needed to
perform scalar multiplication, mainly by using a field digit
serial multiplier and applying the Mongomery method [8].
Theoretically, if a 16-digit serial multiplier is used; scalar
multiplication can be performed in 0.2 ms.

Also, we have identified that the cryptosystem through-
put can be improve if data is compressed before. So We are
developing a lossless data compressor module that can op-
erate jointly with the developed cryptosystem.

References

[1] American Bankers Association. ANSI X9.62-1998: Public
Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA).

[2] R. Dahab and J. López. An Overview of El-
liptic Curve Criptography. Technical Report, IC-00-10,
http://citeseer.nj.nec.com/333066.html.

[3] A. Daly et al. Fast Modular Division for Application in
ECC on Reconfigurable Logic. In Proc. of 13th Interna-
tional Conference on Field Programmable Logic and Appli-
cation, FPL’2003, volume 2778 of Lecture Notes in Com-

Proceedings of the Fifth Mexican International Conference in Computer Science (ENC’04)

0-7695-2160-6/04 $20.00 © 2004 IEEE

puter Science, pages 786–795, Lisbon, Portugal, September
2003. Springer.

[4] W. Diffie and M. Hellman. New Directions in Cryptography.
IEEE Transactions on Information Theory, IT-22(2/3):644–
654, November 1976.

[5] H. Eberle, N. Gura, and S. Chang. A Cryptographic Pro-
cessor for Arbitrary Elliptic Curves over GF(2m). In
Proc. of IEEE 14th International Conference on Application-
specific Systems, Architectures and Processors,ASAP’2003,
The Hague, The Netherlands, pages 444–454, June 2003.

[6] M. Ernest et al. A Reconfigurable System on Chip Imple-
mentation for Elliptic Curve Cryptography over GF(2n). In
Proc. of the 4th International Workshop on Cryptographic
Hardware and Embedded Systems - CHES’2002, volume
2523 of Lecture Notes in Computer Science, pages 381–399,
Redwood Shores, CA, August 2002. Springer.

[7] M. Ernest et al. Rapid Prototyping for Hardware Accelerated
Elliptic Curve Public Key Cryptosystems. In Proc. of 12th
IEEE Workshop on Rapid System Prototyping, RSP’2001,
pages 24–31, Monterey, CA, June 2001.

[8] D. Hankerson, L. López, and A. Menezes. Software
Implementation of Elliptic Curve Cryptography over Bi-
nary Fields. In Proc. of the Second International Work-
shop on Cryptographic Hardware and Embedded Systems,
CHES’2000, volume 1965 of Lecture Notes in Computer Sci-
ence, pages 1–24, Worcester, MA, August 2000. Springer.

[9] IEEE P1363 Committee. Standards Specification for Public
key Cryptography, http://grouper.ieee.org/groups/1363/.

[10] T. Kerins et al. Fully Parameterizable Elliptic Curve Cryp-
tography Processor over GF(2m). In Proc. of 12th Interna-
tional Conference on Field Programmable Logic and Appli-
cation, FPL’2002, volume 2438 of Lecture Notes in Com-
puter Science, pages 750–759, Montpellier, France, Septem-
ber 2002. Springer.

[11] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of
Computation, 48(177):203–209, November 1987.

[12] N. Koblitz, S. Vastone, and A. Menezes. The State of Ellip-
tic Curve Cryptography. Designs, Codes and Cryptography,
19(2/3):173–193, March 2000.

[13] E. Konstantinou, Y. Stamatiou, and C. Zaroliagis. Software
Library for Elliptic Curve Cryptography. In Proc. of 10th
Annual European Symposium on Algorithms, ESA’2002, vol-
ume 2461 of Lecture Notes in Computer Science, pages 625–
637, Rome, Italy, September 2002. Springer.

[14] V. Miller. Use of Elliptic Curves in Cryptography. In Proc. of
Advances in Cryptology, CRYPTO’85, pages 417–426, Santa
Barbara, CA, August 1985.

[15] NIST. Recommended Elliptic Curves for Federal Govern-
ment Use, http://csrc.nist.gov/csrc/fedstandards.html.

[16] S. Okada et al. Implementation of Elliptic Curve Crypto-
graphic Coprocessor over GF(2m) on a FPGA. In Proc. of
the Second International Workshop on Cryptographic Hard-
ware and Embedded Systems, CHES’2000, volume 1965 of
Lecture Notes in Computer Science, pages 25–40, Worces-
ter, MA, August 2000. Springer.

[17] G. Orlando and C. Paar. A High-Performance Reconfig-
urable Elliptic Curve Processor for GF(2m). In Proc. of

the Second International Workshop on Cryptographic Hard-
ware and Embedded Systems, CHES’2000, volume 1965 of
Lecture Notes in Computer Science, pages 41–56, Worces-
ter, MA, August 2000. Springer.

[18] A. Satoh and K. Takano. A Scalable Dual-Field Elliptic
Curve Cryptographic Processor. Transactions on Comput-
ers, 52(4):449–460, April 2003.

[19] SEC1. Elliptic Curve Cryptography: Standards for Efficient
Cryptography Group, http://www.secg.org.

[20] W. Stallings. Cryptography and Network Security. Prentice
Hall, NJ, 2003.

[21] A. Weimerskirch, C. Paar, and S. Chang. Elliptic Curve
Cryptography on a Palm OS Device. In Proc. of the 6th Aus-
tralasian Conference, ACISP’2001, volume 2119 of Lecture
Notes in Computer Science, pages 502–513, Sydney, Aus-
tralia, July 2001. Springer.

Proceedings of the Fifth Mexican International Conference in Computer Science (ENC’04)

0-7695-2160-6/04 $20.00 © 2004 IEEE

