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Abstract. This paper presents a hardware design and implementation for 
Lempel-Ziv data compression. The implementation is based on the systolic 
array approach employing two simples processing elements (PE's). 
Previously to implement the design, we select the buffer size based on 
software simulations. By selecting a specific size of the buffer, we can 
estimate how much area will be required, what compression ratio the 
compressor will achieve and also, what throughput the compressor can 
reach. Based on such simulations, a prototype of the compressor was 
implemented in a Xilinx XC2V1000 FPGA device employing a 512-byte 
searching buffer and a 15-byte coding buffer. The architecture can achieve a 
throughput of 11 Mbps while occupying 90% of the FPGA resources. An 
immediate application of this compressor is to work jointly with a public key 
cryptographic module. 

Resumen. Se presenta la implementación en FPGA de algoritmo LZ77 para 
compresión de datos sin pérdida basada en un estudio realizado del impacto 
que presenta la selección del tamaño de los buffers. La arquitectura del 
compresor se implementa mediante el enfoque de arreglos sistólicos 
empleando dos elementos de procesamiento simples. Un prototipo del 
compresor de datos se realiza en un FPGA Xilinx XC2V1000 empleando el 
90% de los recursos disponibles y logrando un rendimiento de 11 Mbps. 
Debido a su bajo costo en área, una aplicación inmediata de la arquitectura 
desarrollada es para operar conjuntamente con un módulo de cifrado de llave 
pública. 
 
Key words: LZ77, FPGA, Systolic array. 

 

1    Introduction 

A common problem in computer data networks has been always the data rate. In 
this environment, the most important technique to improve the performance of a 
network is data compression. Data compression benefits in the sense that the 
process compression-transmission-decompression is faster than the process of 
transmitting data without compression. The main motivation to compress data is 
the cost reduction for transmitting and storing data. 

Data compression is the codification of a data body D into a smaller data body 
D’ [1]. The compression is lossless if D can be recovered (decompressed) entirely 
from D’. Data can be compressed only if it has redundancy, so, when 
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implementing compression algorithms, the search for redundancy implies a lot of 
operations, many times complex, and current processors do not have machine 
instructions to perform these operations efficiently. For this reason, a hardware 
solution is well suited to implement this kind of algorithms, especially for real time 
data processing.  

Compression performance is measured according to the compression ratio the 
methods achieve; this measurement is obtained following equation 1. A good data 
compressor must achieve a compression ratio less or equal to 0.5.  

in

out
c Size

SizeR =  

 

(1) 

 
For lossless data compression, algorithms can be dictionary-based or statistical. 

A statistical compressor can achieve better compression ratio than a dictionary-
based method but its computational complexity is higher. In both statistical and 
dictionary-based methods, a trade off between compression ratio and execution 
time needs to be established. Depending on the application, do not always the best 
compression method is required. 

In this paper, we evaluate the LZ algorithm and implement a variant [5] of its 
first proposal [2]. We analyze how compression ratio and throughput are affected 
depending on the buffer’s size selected. This study provides a good reference for 
making decisions when implementing such algorithm in both hardware and 
software. Moreover, we present the results of a hardware implementation of this 
algorithm on a FPGA device to show the area requirements. 

The paper is organized as follows: Section 2 explains the compression 
algorithm, Section 3 comments three approaches when implementing LZ-based 
algorithms in hardware and summarizes some related papers, Section 4 shows the 
performance of the algorithm depending on the selected buffer’s size, Section 5 
describe the hardware architecture of the implemented LZ compressor and 
summarizes synthesis results, finally, section 6 concludes this work. 

2    The LZ77 algorithm 

The LZ77 algorithm was proposed by Ziv and Lempel in 1977 [2]. It is a 
dictionary-based algorithm for lossless data compression that can achieve an 
average compression ratio and is considered universal, that is, it does not depend 
on the type of data being compressed. LZ77 algorithm was the first proposal of 
data compression based on a string dictionary instead of symbols’s statistics. Since 
its proposal, this algorithm has been improved in order to achieve better 
compression ratios and to reduce the required processing time [3], [4], [5]. 

The idea behind the LZ77 algorithm is to compress by replacing a symbol string 
by a pointer or position in a dictionary where such strings occur. The algorithm 
uses two buffers called searching-buffer and coding-buffer, see figure 1 a). 
Initially, the coding buffer is filled up with the first input symbols. Data 
compression is achieved by performing two steps. Step one consists of finding the 
longest substring in the searching buffer being the prefix in the coding buffer. If 
such string exists, a codeword is generated consisting of the pointer (P) or position 
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in the searching buffer of the matched string and its length (L). Steps 2 is depicted 
in figure 1 b). 

 In the second step, if a codeword was generated in the previous step, L new 
symbols are entered to the coding buffer by shifting to the left the symbols in both 
searching and coding buffers. Figure 1 c) depicts the second step for compression. 

 
 
 
 
 
 
 
 
 
 
 

a) 
 
 
 
 
 
 
 
 

b) 
 
 
 
 
 
 
 
 

c) 

Fig. 1. LZ77 algorithm. a) The buffers, b) step 1 and c) step 2 in the compression process. 

 
To avoid expansion in the output file, an especial action must be performed 

when a codeword substring is not found or when the length of the string found is 
less than the codeword size. Often, the action taken is to store the first symbols in 
the coding buffers whom size is less than the codeword and without compressing 
them. This implies the use of an extra bit to differentiate between compressed and 
uncompressed codes.   

Finding the longest substring is a key operation in the algorithm and also, the 
most time consuming. Searching for all possible substrings sequentially is a 
problem of complexity O(MN), so the execution time depends strongly on the size 
of the buffers. 
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The LZ77 algorithm has two major advantages among the known lossless data 
compressors. The first one is that it does not require prior knowledge or statistical 
characteristics of the symbols. This fact lets faster compression because a second 
pass over the data in not required as occurs in some statistical statistical methods. 
The second advantage is that the decompression process is easier and faster than 
the compression one. These two reasons made LZ77 attractive for us to implement 
it and study it as a competitive lossless data compressor to be used previous to an 
elliptic curve cryptographic system. 

Current dictionary-based lossless data compressors are based on the ideas of Ziv 
and Lempel and software implementation of such algorithms can be found in 
applications such as compress, zoo and pkzip.  

3   Related work 

Many lossless data compression hardware implementations have been reported, 
either statistical or dictionary based. On one hand, statistical lossless data 
compressors have been shown to be more expensive than dictionary based 
implementations, essentially in area requirements, although they provide better 
compression ratios [6], [7]. On the other hand, three approaches are distinguished 
in the hardware implementation of dictionary-based methods: the microprocessor 
approach, CAM (Content Addressable Memory) approach and systolic array 
approach [8]. The first approach does not explore full parallelism and is not 
attractive for real time applications. The second one is very fast but it is costly in 
terms of hardware requirements. The systolic array approach is not as fast as the 
CAM approach but its hardware requirements are lower and testability is better. 
The main advantage of this approach is that it can achieve a higher clock rate and it 
is easy implemented.  

Some papers, where a systolic approach for implementing the LZ77 algorithm is 
selected, have been reported. In these papers, the parallelism of the LZ77 algorithm 
is achieved by studying the data dependences in the computations. A dependence 
graph is drawn and form it a processor array is derived.  

In [8], the systolic array is composed of two different types of processing 
elements designed in such way that each one consumes few resources. The number 
of type 1 PE’s is only determined by the size of the coding buffer. This design was 
implemented on an ASIC platform using a 4.1K SRAM for the dictionary and 32 
processing elements. The reported throughput of the design was 100 Mbps 
operating at a clock rate of 100 MHz. In [9], an FPGA LZ77 implementation is 
reported. The implementation requires four Xilinx 4036XLA FPGAs to achieve 
100 Mbps throughput. The buffer’s size was 512 for the searching buffer and 63 
for the coding one.  In [10], a VLSI chip is fabricated. It contains 16 processing 
elements to find the longest substring in the LZ77 algorithm. The chip operates at 
100 MHz and has a throughput of 10 Mbps if a 1K-searching buffer and a 16-
coding buffer are used. As mentioned in the paper, if ten chips are connected in 
parallel, a compression rate of about 100Mbps can be achieved.  

These reported papers give us an idea of what can be expected from a hardware 
implementation but does not give us a guide to select the better parameters 
according to a specific application. In the following section, we show the results 
and comments about some software simulations we have carry out of the LZ77 
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algorithm in order to find the better choices of the size of the buffers in a LZ77 
implementation according to a specific application. 

4   The LZ77 algorithm: implementation issues 

In this section we present the simulation results and some comments about the 
performance of the LZ77 algorithm for different buffers sizes. The code was 
written in C and the performance was calculated according to simulations results 
using the Calgary Corpus [11].  
Two aspects have to be considered when implementing the LZ77 algorithm. In 
some cases, we will be interested in reaching a high compression ratio and in other 
ones we will sacrifice compression ratio in order to perform the compression 
faster. Another aspect is the throughput of the compressor. This is an important 
issue when the compressor is going to work jointly with another module. For that 
reason the compression performance needs to be known and it needs to be 
evaluated if it can operate transparently with another modules.  

Depending on the systolic array design, the latency to get a new codeword 
varies. The throughput and compression ratio improves when longer strings are 
found (matched), but this happens when a large searching buffer is used, what 
implies greater latency and longer codewords. Besides, a smaller buffer implies 
latency reduction but compression ratio gets worst. In figure 2, a graphic that 
shows what compression ratio can be achieved for different sizes of N and M is 
depicted. As shown in figure 1 a), N is the size of the searching buffer and M is the 
size of the coding buffer. 

Fig. 2.  Compression ratio for different buffer sizes 

In this experiment, the codeword is up to 2 bytes long. From figure 2, we can 
infer that we can only achieve good compression ratios for a searching buffer 
greater that 512 and a coding buffer greater than 15. Also, notice how a better 
compression ratio is achieved for a searching buffer greater than 4K and coding 
buffer greater than 7. In figure 2, for any value of N, as the number of bits for the 
coding buffer increases, the compression ratio improves but only up to a specific 
threshold. We can see that every line in the graph in bounded, so, compression 
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ratio improves a little bit when the coding buffer in greater that 32. According to 
the required application, we can chose values for N and M greater that 512 and 32 
respectively. 

Other important aspect to consider is the expected throughput that the 
compressor can achieve. Theoretically, data rate can be estimated by the equation 
2. 

MN
wLclkD s

r +
⋅

=  
(2) 

 
In equation 2, clk is the frequency (cycles per second), Ls is the longest match 

that can be found and w is the size in bits of the symbols being compressed.  
This equation gives us an estimation of the compression throughput and it is 

valid only for the best case that happens when the length of the strings matched is 
equal to the maximum value Ls.  However, we also need to known what occurs in 
the average case. The average number of symbols processed in each codification 
step was calculated and it is shown in figure 3.  

Fig. 3. Average of symbols processed in each codification step 

 
According to the graphic in figure 3, the best throughput is obtained when the 

searching buffer is 4K and coding buffer is 16. As in figure 2, average number of 
processed symbols does not increase when coding buffer is large. In the case of a 
512-searching buffer, the coding buffer can be 32, 64 or 127.   

Another important fact derived of our simulations is that when the size of the 
searching buffer is fixed and the size of the coding buffer varies, the compression 
ratio always improves if N grows. In some cases, varying the size of the coding 
buffer may be will not improve the compression ratio but the throughput will be 
increased.  
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5    Compressor Architecture 

A systolic array, used in this work, for the compressor is based on [9]. The 
compressor architecture is depicted in figure 4. The (M+N)-buffer is composed of 
two buffers: the first one is called the up-buffer to implement both the searching 
and the coding buffer, the second one called the shifter-buffer, that feeds the 
(M+1)-PE array. One N-bit counter is required to keep the current pointer in the 
searching buffer for the substring being matched. The codeword module checks for 
data expansion. A codeword is output only if the length of the last substring 
matched is greater that the length of the codeword. The control module coordinates 
the compression process performing the two steps in the LZ77 algorithm. This 
module is implemented as a finite state machine. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. General architecture of the LZ compressor 

 
The buffer is composed of registers connected in cascade. The up-buffer is 

controlled by an enable signal to permit entering new symbols to the buffer each 
clock cycle. The shifter-buffer has a similar structure to the up-buffer but it 
incorporates a multiplexer in each register. Also, an enable signal allows emitting a 
new Xi symbol to the PEs array every clock cycle. The block diagram of the buffer 
is shown in figure 5. In this figure, R represents a w-bit register and Xi represents 
the current value of each element in the buffer. The number of PEs in the array is 
determined only by the size of the coding buffer. The PEs array is composed of M 
Type-I PEs and 1 Type-II PE. All Type I PEs are connected forming an array; the 
type II PE is placed at the end of such array. This last PE keeps the pointer and 
length that are identified in the systolic array while symbols in the searching buffer 
enter serially to the type I PE array.  
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Fig. 5. Searching and coding buffer implementation 

 
Processing elements are depicted in figure 6. The type I processing element 

consist of one w-bit equal comparator, one log2N-bit, log2M-bit and w-bit register, 
two flip-flops, one log2M multiplexer and one 4-input AND gate. Type II PE 
consists of one log2N-bit and log2M-bit multiplexers, one log2N-bit and log2M-bit 
registers and a log2M-bit greater-comparer. The systolic array of this compressor 
consumes few resources and the number of PEs is only determined by the size of 
the coding buffer.  

 
 

 
 
 

Fig. 6. Type I and Type II processing elements (PEs) 

 

R

      x1                      x2        . . .                 xN                        x(N+M) 

Symbol     
 
 
       En 
 

      CLK 

0 

Sel 
 
 

 
 
En 

 
CLK 

xi

R … R
…

R

R R … R

M symbols Yi 



      9 

5.1     Implementation 

The compressor was fully described in VHDL language and synthesized for the 
Xilinx XC2v1000 FPGA. The most area consuming module of the compressor is 
the buffer. The basic cell in the shifter buffer is composed of a w-bit register and a 
w-bit multiplexer, for w = 8, each one of this cells consumes 5 slices. On the 
contrary, the systolic array occupies fewer resources, for log2N = 9 and log2M = 4, 
type I PE only requires 20 slices while type II PE requires 10 slices. The main 
synthesized modules are summarized in table 1. In the design, the critical path is 
determined by the comparer included in the type II PE.  

Since latency in each codification step is M+N, and all the architecture is 
dominated by a 219 MHz clock, we can derive, based on figure 3, that throughput 
of the compressor is 11Mbps.  

 

Table 1. Basic elements of the compressor architecture 

Module #Slices 
Type I- EP 20 
Type II- EP 10 
Buffer cell 5  

 

6     Conclusions 

We presented an extensive study about how the size of the buffers affects the 
throughput and compression ratio in the LZ77 algorithm. Knowing how the size of 
the buffers affects the compression ratios, throughput and latency is very important 
to make the better decision when implementing this algorithm. A prototype was 
implemented for buffers of different sizes that showed to be better for 
implementing a variant of the LZ77 algorithm in the FPGA we used, because of 
the high area requirements of the buffer. The systolic array, which performs the 
most time consuming part in the LZ77 algorithm occupies fewer resources than the 
buffer, so it is good idea to consider the buffer as a separate entity in the design.  

We are integrating the developed compressor to a public key cipher module. 
According to the area resources, we can choose the better parameters for the LZ77 
compressor for integrating both modules compression and encryption in a single 
chip. 

References 

1. Fowler, J. and Yagel, R., Lossless Compression of Volume Data, Symposium on 
Volume Visualization, pp. 43--50, Oct. 1994. 

2. Ziv, J. and Lempel, A., A Universal Algorithm for Sequential Data Compression, 
IEEE Trans. Information Theory, vol. 23, pp. 337-343, May 1977. 

3. Ziv, J. and Lempel, A., Compression of Individual Sequences via Variable-Rate 
Coding, IEEE Transactions on Information Theory, vol. 24, pp. 530-536, 1978. 



10        

4. Welch, T., A Technique for High-Performance Data Compression, IEEE Computer, 
vol. 17, pp. 8-19, June 1984. 

5. Storer, J.A. and Syzmanski, T.G., Data Compression via Textual Substitution, Journal 
of the ACM, No 29, pp. 928-951, 1982. 

6. Park, H., and Prasanna, V.K., Area Efficient VLSI Architecture for Huffman Coding, 
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 
Vol. 40, No. 9, pp. 568-575, September 1993. 

7. Liu, L., et. al., CAM-Based VLSI Architectures for Dynamic Huffman Coding, IEEE 
Transactions on Consumer Electronics, pp. 282-288, August 1994. 

8. Jung, B., and Burleson, W.P., Efficient VLSI for Lempel-Ziv Compression in Wireless 
Data Communication Networks, IEEE Transactions on Very Large Scale Integration 
Systems, Vol. 6, No. 3, pp. 475-483. September 1998. 

9. Hwang, W. and Saxena, N., A Reliable LZ Data Compressor on Reconfigurable 
Coprocessors, IEEE Sym. On Field Programmable Custom Computing Machines, 200. 

10. Hwang, S.A., and Wu, C.W., Unified VLSI Systolic Array Design for LZ Data 
Compression, IEEE Transactions on Very Large Scale Integration Systems, Vol. 9, 
No. 4, August 2001. 

11. Canterbury Corpus. Available from http://corpus.canterbury.ac.nz 
 


