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Abstract Data hiding systems have emerged as a so-
lution against the piracy problem, particularly those

based on quantization have been widely used for its

simplicity and high performance. Several data hiding

applications, such as broadcasting monitoring and live
performance watermarking, require a real-time multi-

channel behavior. While Digital Signal Processors (DSP)

have been used for implementing these schemes achiev-

ing real-time performance for audio signal processing,

custom hardware architectures offer the possibility of
fully exploiting the inherent parallelism of this type of

algorithms for more demanding applications. This pa-

per presents an efficient hardware implementation of

a Rational Dither Modulation (RDM) algorithm-based
data hiding system in the Modulated Complex Lapped

Transform (MCLT) domain. In general terms, the pro-

posed hardware architecture is conformed by an MCLT

processor, an Inverse MCLT processor, a Coordinate

Rotation Digital Computer (CORDIC) and an RDM-
QIM processor. Results of implementing the proposed

hardware architecture on a Field Programmable Gate

Array (FPGA) are presented and discussed.

Keywords Data hiding · Audio Signal · FPGA ·
Multi-channel processing

1 Introduction

Expansion of the Internet service together with rapid

advance of high capacity storage systems such as Com-

pact Disc (CD) and Digital Versatile Disc (DVD) fa-

cilitated the fast and perfect copy of digital content.

All authors are with
The National Institute for the Astrophysics, Optics and Electron-
ics, Puebla, Mexico
E-mail: {jjuan,cferegrino,rcumplido,creta}@ccc.inaoep.mx

However, at the same time the use of these technolo-
gies cause serious problems, such as unauthorized copy-

ing and distribution of digital materials. Conventional

cryptography systems encrypt digital data during its

transmission and permit only authorized person to de-
crypt the encrypted data, however once such data are

decrypted they are totally vulnerable to illegal copying

and distribution. Digital watermarking (in this paper

data hiding is used indistinctly) has been considered

as a solution for these problems. During last decade
several watermarking algorithms have been developed.

Digital watermarking is a technique that embeds an im-

perceptible and statistically undetectable signal to the

digital contents. Watermarking algorithms must satisfy
some requirements, such as imperceptibility of embed-

ded signal (watermark), robustness to some common

intentional and non intentional attacks and high em-

bedding data rate. Especially high performance audio

watermarking algorithms are not easy to develop, be-
cause the human auditory system is more sensitive than

human visual system and small changes to the audio

signal due to the watermark embedding can be detected

by human ears [1]. Additionally in audio watermark-
ing systems blind watermark detection is required, be-

cause in many applications such as illegal copy control

systems, distribution and broadcasting monitor system

and audio steganography, original unwatermarked sig-

nal is not available in the detection stage.

In order to implement a real-time watermarking sys-
tem it is possible to choose between two main plat-

forms: Digital Signal Processors (DSP) and Field Pro-

grammable Gate Arrays (FPGA). Implementations on

DSPs have been previously reported [22,23]. Those im-
plementations do not exploit the possible parallelism

of several watermarking algorithms. Technical outposts

for DSP programming exist with the purpose of exploit-
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2

ing the parallelism of algorithms, nevertheless multi-

channel processing in demanding tasks, such as video

processing, is not straightforward. FPGA-based imple-

mentation of data hiding systems seems to be an inter-

esting option since its capacity for parallel processing
could allow multi-channel processing.

Hardware implementations of data hiding systems

have been poorly explored in the literature. In [24], the
author reports an FPGA implementation of a video wa-

termarking algorithm and its comparison with a DSP

implementation. Implementation results for both FP-

GAs and DSP devices suggest that the FPGA is a

better option in terms of processing speed, power con-
sumption and device cost. A data hiding system for

speech bandwidth and its hardware implementation is

proposed in [25]. The system uses data hiding tech-

niques to transmit high frequency speech components
in order to improve the speech quality in transmission

systems. The hardware implementation is carried out

using application software and one FFT implemented

in a hardware acceleration model. Due to the use of ap-

plication software, the performance is limited in speed
terms. In [26], a data hiding system using digital images

as host signals and its hardware implementation is pro-

posed. Performance results of the hardware implemen-

tation are superficially presented. However, the author
claims that implementation using FPGA allows its ap-

plication for real time multimedia data transmission. In

[27], hardware implementations of steganographic tech-

niques that can be applied to documents, images and

video is reported. According to the authors, implemen-
tation results show that real time performance is guar-

anteed. In [28] an steganographic micro-architecture and

its FPGA implementation is presented. The authors

propose a video or audio steganographic model in which
the hidden message can be composed and inserted in

the cover medium in real time. Real time performance

is demonstrated, with a reported throughput of 1.576

Mbps.

This work explores the suitability of exploiting the

parallelism of an audio data hiding system in a hard-

ware implementation. For prototyping and validation

purposes, the full data hiding system architecture has

been implemented in an FPGA. The outline of the pa-
per is as follows: Section 2 presents a revision of state-

of-the-art data hiding systems in audio signals. Section

3 details the proposed watermarking system. The cir-

cuit design, simulation results and hardware resources
are presented in Section 4. System evaluation in terms

of robustness and signal quality is presented in Section

5. Finally the conclusions are given in Section 6.

2 Data Hiding Systems in Audio Signals

Audio watermarking techniques can be classified in two

groups: time domain techniques and frequency domain
techniques. In the time domain techniques, watermark

embedding is carried out directly in the audio signal,

while in the frequency domain based system, the wa-

termark signal is embedded in frequency domain, such
as Discrete Fourier Transform (DFT), Discrete Cosine

Transform (DCT) and Discrete Wavelet Transform (DWT).

Generally it is difficult to satisfy two principal require-

ments (robustness and inaudibility), mentioned above,

using the time domain watermarking systems, the main
part of the psychoacoustic model is developed in the

frequency domain. This is because embedding a water-

mark in the time domain in an imperceptible manner

may be difficult mainly with non-linear data hiding al-
gorithms [2]. Because of this it is necessary to transform

the watermark from time domain to frequency domain,

apply the psychoacoustic model and transform the wa-

termark back to the time domain. Also time domain

watermarking system can be vulnerable to some com-
mon attacks, such as MP3 compression, filtering, noise

addition, etc [3].

During last decade, many audio watermarking algo-

rithms have been proposed in literature [1,4–8], how-

ever no method can satisfy all requirements mentioned

above. Echo hiding method is one of the successful tem-
poral domain method [4–6], that embed binary bits us-

ing echo signal with different delays. Echo hiding method

is usually imperceptible, however the method is vulner-

able to some malicious attacks, such as echoing and in
the watermark detection process requires high complex-

ity computation [9]. The spread-spectrum watermark-

ing method embeds a pseudo-random sequence gener-

ated by secret owner’s key into some frequency bands

of the audio signal in transformed-domain [7,10,11]. In
this method, firstly audio signal is transformed by Dis-

crete Cosine Transform (DCT), Discrete Fourier Trans-

form (DFT), or Discrete Wavelet Transform (DWT),

and a pseudo- random sequence is embedded in some
frequency bands considering the imperceptibility and

robustness requirements. Implementation of this method

is generally simple, but robust embedding causes au-

dible noise in the watermarked audio signal. A quan-

tization scheme quantizes audio data using the deter-
mined quantizer and embedding watermark bit value.

The Quantization Index Modulation (QIM) [12] ap-

pears to be a practical solution to the digital infor-

mation hiding problem. The main task in QIM based
method, such as Dither Modulation, is the design of

suitable quantizers used to embed the data. However

such simple method, as several other QIM based meth-
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3

ods, presents lack of robustness against the gain attack,

consisting in the multiplication of the host feature se-

quence by a gain factor p which is unknown to the

decoder. In order to reduce that vulnerability, several

schemes have been proposed [13,14]. Rational Dither
Modulation (RDM) was introduced as a solution to gain

attack in high-rate data hiding schemes [15].

On the other hand, when the watermarking pro-

cess is carried out in a block transform domain like
DCT, DFT or DWT the reconstructed signals exhibit

the block artifact effect. In order to beat block artifacts,

a family of lapped transforms was developed [16]; mod-

ulated lapped transform (MLT) is a member of that

family, MLT uses 2M samples in order to compute M

coefficients. The MLT has been used in several audio

coding standards [17]. However, MLT coefficients are

only real, so, there is no phase information. In [18],

the author proposed the Modulated Complex Lapped
Transform (MCLT), which is an extension of MLT, but

with complex components, also, fast MCLT algorithms

based on discrete cosine transform and discrete sine

transform were presented.

The MCLT domain has been satisfactorily used in

audio watermarking [11,19,20], due to its no block ar-

tifact property [16]. In [21] the authors show that it is

possible to hide about of 689 bits per second (bps) in a

CD-quality audio signal, using RDM in MCLT domain.

3 Proposed System

Figures 1 and 2 show the proposed data hiding system,
and the data recovery system, respectively. Original sig-

nal and watermarked signal are in Q15 format (along

this paper we use aQb syntax, where a is the number

of bits used to represent the integer part and b is the
number of bits used to represent the fractional part).

Each block in both figures is detailed in the following

subsections.

!"#$ %%"&'()* +,!-./! /!"#$%%"&'()*

0')1)234

5)1234

6378'93':8(

5)1234

;8*'87%:8<

,373

Fig. 1 Data hiding system

!"#$ %%"&'()* +,!-./!

0123'41'53(

6)7819 +3*&:3'3(

(121

;3*'32%53<

Fig. 2 Data recovery system

3.1 Malvar’s Fast Algorithm for the MCLT/Inverse
MCLT

In [29] the authors presented an FFT based fast al-
gorithm and its CPLD implementation of the MCLT,

however, that algorithm uses one pre-processing and

one post-processing stage. Malvar showed in [30] that

it is necessary only one post-processing stage after the
FFT for the MCLT computing and one pre-processing

stage before IFFT for the IMCLT computing.

3.1.1 Fast MCLT Algorithm

In [30] the author shows that the MCLT coefficients

X(k) can be obtained as follows:

X(k) = jV (k) + V (k + 1) (1)

where

V (k) = c(k)U(k)

c(k) = W8(2k + 1)W4M (k)

U(k) =

√

1

2M

2M−1
∑

n=0

x(n)W2M (kn)

(2)

and

WM (r) = exp

(−j2πr

M

)

(3)

U(k) is a 2M point FFT with orthonormal basis

function of the input block x(n), which means that
MCLT coefficients can be computed by first comput-

ing FFT of x(n) to obtain U(k) and then to carry out

the operations with factors c(k).

3.1.2 Fast Inverse MCLT

To carry out the IMCLT in [30] the author developed

the next relations:

Y (k) =
c∗(k)

4
[X(k − 1) − jX(k)] (4)

Where X(k) are the MCLT coefficients, the superscript
* denotes complex conjugation, and the modulation

c(k) is the same as that in (2). Using (4) we compute the

M first FFT coeficientes of y(n), but it is well known
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4

that FFT coefficients must satisfy the conjugate sym-

metry property

Y (2M − k) = Y ∗(k) (5)

Finally, we know that Y (0) and Y (M) must be real-
valued, after some manipulations,

Y (0) =
1√
8
[ℜ{X(0)} + ℑ{X(0)}]

Y (M) = − 1√
8
[ℜ{X(M − 1)} + ℑ{X(M − 1)}]

(6)

with ℜ and ℑ taking the real and imaginary parts, re-

spectively.

Malvar shows in [30] that equations (1), (4), (5)

and (6), used with FFT processors were the fastest

MCLT/IMCLT algorithms developed to that date. Next

subsection shows the implementation of the equation

(1) and FFT processor, corresponding to the MCLT
processor, and the implementation of the equations (4),

(5) and (6) and IFFT processor, corresponding to the

inverse MCLT processor.

3.2 Rational Dither Modulation

In [12] it was proposed a class of data hiding meth-

ods called Quantization Index Modulation(QIM) and

it works as follows: A scalar quantization scheme quan-

tizes a vector of samples x and assigns a new value to
the vector x based on the quantized vector value.

One of the worst attacks on QIM schemes is ampli-

tude scaling. Rational Dither Modulation (RDM) was

proposed as a possible solution to that attack by Perez-

Gonzalez et al. [15], in order to get a high rate data hid-
ing method invariant to gain attacks. The embedding

rule is as follows:

yk = g(yk−1)Qbk

(

xk

g(yk−1)

)

(7)

where yk is the RDM sample, yk−1 is a vector of
k − 1 past RDM samples, xk is the host sample, Qbk

is a message dependent quantizer and g is a function

satisfying the property:

g(py) = pg(y) (8)

where p is the gain attack.

Decoding is carried out by following the expression:

bk = arg min

∣

∣

∣

∣

zk

g(zk−1)
− Qbk

(

zk

g(zk−1)

)
∣

∣

∣

∣

(9)

where bk is the decoded bit, zk is the received signal

and zk−1 is a vector of k − 1 past received signals.

The problem of choosing a particular g function is

an important issue due to the intrinsic nonlinearity of

the quantization process, Perez-Gonzalez et al. [15] sug-
gests one subset based on Holder or lp vector-norms:

g(yk−1) =

(

1

L

k−1
∑

m=k−L

yp
m

)
1

p

, p ≥ 1 (10)

where L is the number of past RDM samples utilized

in the data hiding process. In [31] the authors proposed

to use moving averages instead of function g. In this

work the use of moving averages is also considered. Un-
der that consideration the embedding rule becomes:

yk = |ȳk|Qbk

(

xk

|ȳk|

)

(11)

and the detection is carried out like follows:

b̂k = argminbk={0,1}

∣

∣

∣

∣

zk − |ȳk|Qbk

(

xk

|ȳk|

)
∣

∣

∣

∣

(12)

Q (xk, ȳk, vkb) = q

(

xk

|ȳk|
+ vkb, ∆

)

− vkb (13)

where ȳk is the average of the 16 last yk values and q

is defined by equation 14

q(x, ∆) = round
( x

∆

)

∆ (14)

the vkb values are generated as follows:

for b = 0 vkb is a random value

for b = 1

φ(vkb) =

{

vk(b−1) + ∆
2 ; v(kb−1) < 0

vk(b−1) − ∆
2 ; v(kb−1) ≥ 0

(15)

From the RDM-QIM algorithm it is possible to see that
the pseudo-random numbers vkb generation (equation

15) can be carried out at the same time that the rest of

the procedures. Moreover, pseudo-random numbers can

be generated using previously reported efficient hard-

ware implementations of Linear Feedback Shift Regis-
ters (LFSR) [32]. In order to implement the function g

(equation 10), which uses a memory block, it is possible

to use a register file, which is able to perform several

additions and accumulations in parallel form with the
other modules of the algorithm. These characteristics

make the RDM-QIM algorithm suitable for a compact

and efficient hardware implementation in an FPGA.
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4 FPGA Hardware Implementations

The architecture was modeled in VHDL and simulated

using ModelSim. Synthesis results for the audio data

hiding architecture are presented in this section. For

the purpose of prototyping and validation, the archi-

tecture was synthesized, mapped, placed and routed for
the Xilinx’s Virtex-4 xc4vsx35 FPGA device using the

Xilinx’s ISE 9.1 design suite.

4.1 The MCLT and Inverse MCLT Processors1

The requirements for this MCLT implementation are:

input data with format Q15, output data with format

9Q15 and M = 128. Figure 3 shows the direct MCLT

processor. There are two blocks: an FFT processor and

butterfly-like stage that performs equation 1. The FFT
processor is implemented using a pre-designed core [34]

configured in streaming mode.

The c factors are stored in a ROM using format Q15

in the butterfly-like stage, it also contains a register in
order to store V (k + 1) when X(k) is computed and

the next clock cycle that value becomes V (k). Figure

4 shows the butterfly-like structure, where xk re and

xk im are the real and imaginary components of FFT

output, xk, respectively, xk index is the index of FFT
value being processed, c re and c im are the real and

imaginary components of factors c respectively, V re

and V im are the real and imaginary components of

V respectively and sal re and sal im are the real and
imaginary components of sal MCLT coefficients respec-

tively.

Fig. 3 Direct MCLT processor

When start goes high it begins the loading phase,

input data xn re(xn index) should arrive three cycles

later than the xn index it matches [34], therefore, it

is possible to use input data from an external mem-
ory or a frame buffer. The MCLT processor was de-

veloped in streaming mode, so, after an initial latency

1 These implementations were previously reported by the
authors in [33]

Fig. 4 Butterfly-like stage for the direct MCLT processor

of around 615 clock cycles, it begins outputting MCLT

values X(sal dir) = sal re(sal dir) + jsal im(sal dir)

and dv goes high. There is a M clock cycles latency due
to it is necessary to load 2M input samples in order to

get M MCLT coefficients.

The X(sal dir) values are presented in 9Q15 for-

mat. The calculations carried out in the butterfly-like

stage are 40 bit wide because c factors are in Q15 for-
mat and xk samples are in 9Q15 format, therefore, a

product between a Q15 number and a 9Q15 number re-

sults in a 9Q30 number, so it is necessary to truncate to

the most significative twenty five bits in order to satisfy
the constraint previously imposed.

After Place and Route procedure the maximum clock

rate is around 91 MHz. Due to the MCLT processor

is designed in streaming mode and, after the initial
latency, the MCLT processor gives a valid MCLT co-

efficient each clock cycle, it is possible to consider a

length-128 MCLT computing in 2.8 µs. The perfor-

mance demonstrated by our processor suggests it can

be used for multi-channel applications, for example, in
a typical block-based audio processing application, each

128 samples block is captured in 2.9 ms, if our MCLT

processor is able to carry out a length-128 MCLT com-

puting in 2.8 µs then it is possible to process around
1035 channels simultaneously. In a software implemen-

tation running on an Apple iMac, G5-based worksta-

tion with a 1.9 GHz processor and 2 GB of RAM 2

it was able to perform a length-128 MCLT comput-

ing in 625 µs. The system proposed in this paper per-
forms around 220 times faster that this software imple-

mentation. For a multi-broadcasting monitoring appli-

cation that performance is very useful. The processor

presented in [29] is able to perform a length-16 MCLT
in 6.06 µs, however, it is unfair to compare that imple-

mentation with our processor because the first one is

implemented in a CPLD with smaller performance in

comparison with the FPGA that we are using, but there

2 The same workstation is used for software implementatios
along this work.
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6

Table 1 FPGA’s resources utilized for MCLT/IMCL implementations.

Direct MCLT Inverse MCLT

RAMB16s 7 14
Slices 2301 3545

BUFGMuxs 1 1
DSP48s 58 58

Max. Clock Frequency (MHz) 91.5 72.3
Throughput (MSPS) 91.5 72.3

are no more MCLT implementations using configurable
structures reported in the literature.

Fig. 5 Inverse MCLT processor

Fig. 6 Butterfly-like stage for the inverse MCLT processor

The inverse MCLT processor was implemented in

a similar form, c∗ factors are stored in a ROM in the

butterfly-like stage block in figure 5. In this block, equa-
tions (4), (5) and (6) are computed.The MCLT coef-

ficients are watermarked in a sequential form, there-

fore, only two watermarked coefficients, in re(in dir)+

jin im(in dir) and in re(in dir−1)+ jin im(in dir−
1) are stored in a register system similar to the di-
rect MCLT processor, however, it is necessary to store

Y (k) values in a RAM in order to keep them accessi-

ble to the IFFT core. Figure 6 shows that butterfly-

like structure, where in re and in im are the real and
imaginary components of the watermarked sample in,

respectively, in index is the index of watermarked sam-

ple being processed, c re and c im are the real and

imaginary components of factors c∗ respectively, Y re

and Y im are the real and imaginary components of

Y. Internal control signal, generated in the control unit

block in figure 6, begins the loading process for IFFT

core in the right-hand block in figure 5 and control sig-
nals of IFFT core indicate when inverse MCLT is done.

The busy signal will go high when IFFT is being com-

puted, edone goes high one clock cycle immediately af-

ter done goes active, done will transition high for one

clock cycle when the transform calculation has com-
pleted, and finally, dv goes high when there is a valid

value xk re(xk index)+jxk im(xk index). After Place

and Route procedure the maximum clock rate is around

72 MHz. Due to, again, the inverse MCLT processor is
designed in streaming mode it is possible to consider a

length-128 inverse MCLT computing in 3.5 µs. Table

1 shows the FPGA resources utilized for, both direct

MCLT and inverse MCLT implementations, after Place

and Route procedure. From table 1 it can be seen that
the direct MCLT processor utilizes a minor number of

slices and RAM16s components than the inverse MCLT

processor does, it is due to the inverse MCLT proces-

sor uses a RAM stage and the direct MCLT processor
does not. Moreover, the input samples for the inverse

MCLT processor are 24 bits wide and, for the direct

MCLT processor they are 16 bits wide, then a greater

amount of slices for the inverse MCLT processor is nec-

essary. The throughput is affected for the same width
input conditions, in the direct MCLT processor it is

91.5 mega samples per second (MSPS) and for the in-

verse MCLT processor it is 72.3 MSPS. It is necessary

to truncate the 16 least significant bits in order to keep
the original signal width.

4.2 The Coordinate Rotation Digital Computer
(CORDIC)

With the purpose of transforming complex MCLT mag-

nitudes to polar representation and vice versa, a pre-

designed CORDIC core is used [35]. In order to trans-
form from rectangular to polar the CORDIC is config-

ured as rotate vector and, in the other hand, in order

to transform from polar to rectangular the CORDIC
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Fig. 7 Algorithm RDM-QIM. a) Insertion block diagram, b)
Quatifier block diagram, c) The vk generation stage, d) Detection
block diagram.

is configured as translate vector. Table 2 shows the

FPGA’s resources utilized for CORDIC implementa-
tions after Place and Route procedure. Both implemen-

tations are carried out with 25 iterations.

4.3 The RDM-QIM Algorithm3

Figure 7 shows a block diagram of the algorithm RDM-
QIM.

The insertion block (figure 7 module a)) allows con-
cealing a message’s bit bk within a carrier signal xk

using a key to obtain an output signal yk extremely

similar to the input signal xk. The signal yk can be

altered by an attack and be transformed into zk. The

detection block is able to retrieve the inserted bit on
the signal zk through the estimation of b̂k using the

same key. The hardware design of the insertion block,

based on equation 11, is composed of blocks in figure 7

module b) and 7 module c)

The quantifier Q (figure 7 module b)) used by the

algorithm represents equation 13 and requires a value vk

generated by the key and inserted bit bk, as well as the

carrier signal and the reference value which represents

the past events of the output signal.

The vk generation stage (figure 7 module c)) repre-

sents equation 15. The Linear Feedback Shift Register

(LFSR) block can generate pseudo-random numbers in
Q8 format from an specified key using a shift register

and taps according to the LFSR polinomy x6 +1 which

defines the largest sequence for a Q8 format [37]. The

transformation φ is implemented according to the equa-

tion 15 using Q8 format and ∆ = 0.25. Depending on
the bit bk, the value vk can be the pseudo-random num-

ber generated by LFSR or the value of the transforma-

tion φ. The algorithm requires a representative value of

past events, therefore a memory is needed. The mem-
ory stores information in 17Q8 format of the last 16

frames, so that when a new value arrives the old value is

replaced in the corresponding position and frame. The

3 This implementation was previously reported by the authors
in [36]

ȳk−1

yk−15

yk−16

yk−2

yk >> 4

<< 4 ȳk−1

ȳk

ȳk

Fig. 8 Architecture for the function g(.) computing

representative value is obtained by averaging the values
stored in the specific position of the 16 frames (function

g(.)). It is important to highlight that to avoid comput-

ing the average by accessing 16 times the memory, an

auxiliary memory stores the reference values in 17Q8

format of each frame and updates these values using
the equation 16,

ȳk =
ȳk−1 ∗ 16 + yk − yk−16

16
(16)

where ȳk−1 is the preceding average, yk is the cur-

rent output value and yk−16 is the output value of the

16th event. Both memories are initialized with 1s. By

computing the average in this way, fourteen adding op-

erations are avoided at the cost of an extra shift opera-
tion. Figure 8 shows the implementation of the average

computing using the equation 16. It has been shown

that it provides higher robustness to hide a symbol us-

ing several samples instead of one [21]. Modules as the
one shown in figure 8 allow to exploit the intrinsic par-

allelism of FPGA devices in block-based data hiding

systems, for example, if 64 samples are used to hide

one bit, it is possible to generate 64 modules working

in parallel fashion.

The division operations are performed by using the
division core from Xilinx ISE configured in pipeline

with latency of 54 cycles to accept dividends and di-

visors of 25 bits obtaining both quotient and residue

of 25 bits too. The division result in format 24Q24 is
compacted to generate a value with 17Q8 format by

truncating the 7 MSBs and the 16 LSBs. Due to the la-

tency generated by the division, a control unit is needed

to generate the control signals for the algorithm and to

store the input data in a memory avoiding multiple de-
lays in the signals. The hardware design of the detection

block is based on equation 12 and it is shown in figure

7d).

In the detection stage the quantization Q is done

for both values bk = {0, 1}. The quantization results
multiplied by the reference value generate z′k0 and z′k1.

It is important to mention that at this stage the refer-

ence value is determined by the input value zk. Except
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Table 2 FPGA’s resources utilized for CORDIC implementations.

Rotate vector Translate vector

Slices 1254 1412
BUFGMuxs 1 1

DSP48s 4 8
Max. Clock Frequency (MHz) 254 254

for this, all the blocks designed for the insertion stage

are used in the same way. After Place and Route pro-
cedure the maximum clock rate for the insertion and

detection stage is 84.8 MHz and 60.2 MHz respectively.

One sample is processed at each clock cycle in both

stages, therefore, the throughput for the insertion and

detection stages is 84.8 and 60.2 MSPS, respectively. In
a DSP implementation using a TMS320C6416 device it

is possible to achieve a throughput for the insertion and

detection stage of 690 and 440 kilo samples per second

(KSPS). It is important to note that our FPGA-based
RDM-QIM implementation overcomes the DSP imple-

mentation for more than two orders of magnitude which

is higher than the average improvement for DSP appli-

cations [38,39].

4.3.1 RDM-QIM Implementation Results

Table 3 shows the FPGA’s resources utilized for RDM-

QIM implementations after Place and Route procedure.
From table 3 it can be seen that the clock rate of de-

tection stage is the slower in the whole data recovery

system, therefore, the maximum clock rate of the data

recovery system will be about 60 MHz. On the other
hand, clock rate of insertion stage does not influence in

maximum clock rate of the whole data hiding system,

because in that system the slower block is the IMCLT

processor.

Finally, table 4 shows the FPGA’s resources utilized
for the proposed watermarking system implementation

after Place and Route procedure.

From table 4 it can be seen that in a real-time

multi-channel watermarking fashion it is possible to
process, for embedding, 819 channels and for detection,

682 channels of CD-quality audio signals due to each

sample is processed in a clock cycle. In a software im-

plementation it was able to process around of 5.1 chan-

nels simultaneously. The system proposed in this paper
performs around 160 times faster that a software im-

plementation.

5 System Evaluation

This section presents the robustness and quality signal

proofs applied to the watermarked signal. Due to the

hardware implementation was carried out using fixed

point arithmetic, there could be slight variations with
respect to the software implementation that uses float-

ing point arithmetic. Therefore, it is interesting to com-

pare the robustness and quality signal results of the

hardware and software implementations.

5.1 Robustness

In order to evaluate the robustness, classical audio wa-
termarking attacks were applied to the watermarked

signal. Table 5 shows the bit error rate (BER) of ex-

tracted hidden data after the Audio Stirmark attacks

[40] are applied. Generally, the embedded data are ro-

bust to various types of attacks, except copysample,
cutsample, echo, ffttests, flippsample and voicemove at-

tacks that are not so important since they consider-

ably distort the audio signal. From table 5 it is possi-

ble to observe that the hardware implementation and
software implementation results are very close. On the

other hand, BER showed in table 5 are very close to

the DSP implementation results reported in [21].

5.2 Imperceptibly Proof

In order to evaluate the signal quality after watermark-

ing process, the Modified Bark Spectral Distortion (MBSD)
prove was carried out [41,42]. The MBSD measure esti-

mates speech distortion in loudness domain taking into

account the noise-masking threshold in order to include

only audible distortions in the calculation of the distor-

tion measure. That proof was carried out using 5 differ-
ent kinds of music: Classic music, Rock music, Pop mu-

sic, Instrumental music and Latin music. Results shown

in table 6 suggest that the watermark is transparent to

the human auditory system. Software implementation
presents slightly better performance that the hardware

implementation. However, this difference is negligible.

6 Conclusions

In this paper, a hardware implementation of a proposed

audio data hiding system is presented. Using an FPGA
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Table 3 FPGA’s resources utilized for RDM-QIM implementations.

Insertion stage Detection stage

RAMB16s 5 5
Slices 1684 1784

BUFGMuxs 1 1
DSP48s 3 6

Max. Clock Frequency (MHz) 84.8 60.2

Table 4 FPGA’s resources utilized for the proposed watermarking system implementation.

Embedding system Detection system

RAMB16s 26 12
Slices 10196 5303

BUFGMuxs 1 1
DSP48s 131 68

Max. Clock Frequency (MHz) 72.3 60.2

Table 5 Bit Error Rate Results on Audio Signals Attacked With the Stirmark Audio Benchmark. Hardware (HW) and software (SW)
results.

BER BER BER

Attack HW SW Attack HW SW Attack HW SW

Original 0.000 0.000 Addbrum 100 0.000 0.000 Addbrum 1100 0.000 0.000

Addbrum 3100 0.000 0.000 Addbrum 4100 0.000 0.000 Addbrum 5100 0.000 0.000

Addbrum 7100 0.000 0.000 Addbrum 8100 0.000 0.000 Addbrum 9100 0.000 0.000

Addfftnoise 0.120 0.110 Addnoise 100 0.000 0.000 Addnoise 300 0.060 0.058

Addnoise 700 0.140 0.150 Addnoise 900 0.210 0.200 Addsinus 0.000 0.000

Compressor 0.220 0.200 Copysample 0.820 0.810 Cutsamples 0.800 0.800

Echo 0.610 0.610 Exchange 0.250 0.250 Extraestereo 30 0.180 0.160

Extraestereo 70 0.340 0.340 Fft hlpass 0.050 0.030 Fft invert 0.020 0.020

Fft stat 0.100 0.100 Fft test 0.900 0.900 Flippsample 0.810 0.800

Lsbzero 0.000 0.000 Normalize 0.000 0.000 Nothing 0.000 0.000

Lowpass 0.010 0.010 Resampling 0.000 0.000 Smooth 0.110 0.110

Stat1 0.090 0.000 Stat2 0.080 0.060 Voiceremove 0.780 0.780

Addbrum 2100 0.000 0.000 Addbrum 6100 0.000 0.000 Addbrum 10100 0.000 0.000

Addnoise 500 0.120 0.120 Amplify 0.000 0.000 Dynnoise 0.200 0.200

Extraestereo 50 0.230 0.210 Fft real reverse 0.010 0.010 Invert 0.000 0.000

Highpass 0.000 0.000 Smoth2 0.120 0.120 Zerocross 0.260 0.204

Table 6 MBSD evaluation results for five different kinds of mu-
sic. Hardware (HW) and software (SW) results.

MBSD (dB)

Music kind HW SW

Classic music -63.0 -64.0

Rock music -65.1 -66.0

Pop music -62.4 -63.0

Instrumental music -61.3 -62.0

Latin music -62.0 -62.0

it has been demonstrated that the system is able to pro-

cess, for embedding, 819 channels and for detection, 682

channels of CD-quality audio signals. The computing
time for each system suggests that in a watermarking-

based multi-broadcasting application our implementa-

tions will be very adequate. On the other hand, al-

though our MCLT/IMCLT implementations are part

of a data hiding system these can be used in other
different digital signal processing tasks such as noise

cancellation and acoustic echo cancellation with same

precision requirements. In the same way, due to the

RDM-QIM proposed architecture’s compact footprint,
it can be used as accelerator in microprocessor-based

systems for embedded applications or as a core in cus-

tom architectures. Robustness and quality signal proofs
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shown that watermarked signal is resistant to the main

attacks and transparent to the human auditory system.
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