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Abstract. Support Vector Machines (SVM) is a new family of Machine
Learning techniques that have been used in many areas showing remark-
able results. Since training SVM scales quadratically (or worse) accord-
ing of data size, it is worth to explore novel implementation approaches
to speed up the execution of this type of algorithms. In this paper, a
hardware-software architecture to accelerate the SVM training phase is
proposed. The algorithm selected to implement the architecture is the Se-
quential Minimal Optimization (SMO) algorithm, which was partitioned
so a General Purpose Processor (GPP) executes operations and control
flow while the coprocessor executes tasks than can be performed in paral-
lel. Experiments demonstrate that the proposed architecture can speed
up SVM training phase 178.7 times compared against a software-only
implementation of this algorithm.
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1 Introduction

Support Vector Machines (SVM) is a recent technique that has been widely used
in many areas showing remarkable results, specially in data classification [5]. It
was developed by Vladimir Vapnik in the early 90’s and created an explosion
of applications and theoretical analysis that has established SVM as a powerful
tool in Automatic Machine Learning and Pattern Recognition [10].

Due to SVM’s training time scales quadratically (or worse) according to
training database size [2], the problems that can be solved are limited. Many
algorithms have been proposed to avoid this restriction, although at present
there are three basic algorithms for training SVM [11]: Chunking [9], Sequential
Minimal Optimization (SMO) [8] and SV MLight [6] (this algorithm is an im-
provement to [7]). SMO has proved to be the best of them because it reduces the
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training time, it does not need expensive computational resources as the others,
it is easily programmable and it does not require complex math libraries to solve
Quadratic Programming (QP) problems that SVM involves.

SVM is inadequate for large scale data classification due to the high train-
ing times and computational resources that it requires. Because of this, is very
important to explore techniques that can help to improve SVM’s performance.
This is the case of hardware-software architectures, especially, GPPs that can
enhance their instruction set by using an attached coprocessor.

To prove the feasibility using hardware-software architectures to accelerate
algorithms, a Field Programmable Gates Arrays (FPGA) is used as a prototyp-
ing platform. A FPGA is an integrated circuit that can be configured by the user
making possible to build circuits. FPGAs are formed by logic blocks wired by
reprogrammable connections, who can be configured to perform complex combi-
national functions (even to implement a GPP). FPGAs are used in many areas
obtaining significant speed ups, such as automatic target recognition, string pat-
tern matching, transitive closure of dynamic graphs, Boolean satisfiability, data
compression and genetic algorithms [3], among others.

In this paper, SMO’s performance was analyzed to identify those sections that
are responsible of the processing bottleneck during its execution. To accelerate
SMO, a hardware-software architecture was designed and implemented. In this
architecture, hardware executes the most time-consuming functions while the
software executes control flow and iterative operations.

This paper is organized as follows: in Section II describes the different ap-
proaches to implement processing algorithms, including a brief description of the
FPGAs. In Section III, the SVM and their theoretical foundation are revised as
well as the most cited algorithms that train SVM are described, explaining their
characteristics and particularities, specially for the SMO algorithm. In Section
IV the architecture proposed is described, detailing software and hardware im-
plementations while in Section V the results are shown. The work is concluded
in Section VI.

2 Platforms for algorithms implementation

There are two main approaches to implement algorithms. The first one consists in
building Application Specific Integrated Circuits (ASICs)[3]. They are designed
and built specifically to perform a given task, and thus they are very fast and
efficient. ASICs can not been modified after fabrication process and this is their
main disadvantage. If an improvement is needed, the circuit must be re-designed
and re-builded, incurring in the costs that this entails.

The second one consists in using a GPP which is programmed by software;
it executes the set of instructions that are needed by an algorithm. Changing
the software instructions implies a change in the application’s behavior. This
results in a high flexibility but the performance will be degraded. To accomplish
certain function, the GPP, first must read from memory the instructions to
be executed and then decode their meaning into native GPP instructions to
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determine which actions must be done. Translating the original instructions of
an algorithm introduces a certain delay.

The hardware-software architectures combines the advantages of those two
approaches. It aims to fills the gap between hardware and software, achieving
potentially much higher performance than software, while maintaining a higher
level of flexibility than hardware.

In classification tasks, many algorithms are expensive in terms of process-
ing time when they are implemented in GPP and they classifies large scale data.
When a classification algorithm is implemented, it is necessary to perform a high
amount of mathematical operations that can not be done without the flexibility
that software provides. So, a hardware-software architectures offer an appropri-
ate alternative to implement this type of algorithms.

FPGAs appeared in 1984 as successors of the Complex Programmable Logic
Devices (CPLDs). The architecture of a FPGAs is based on a large number
of logic blocks which performs basic logic functions. Because of this, an FPGA
can implement from a simple logical gate, to a complex mathematical function.
FPGAs can be reprogrammed, that is, the circuits can be ”erased” and then, a
new algorithm can be implemented. This capability of the FPGAs allow us to
create fully customized architectures, reducing cost and technological risks that
are present in traditional circuits design.

3 SVM for data classification

SVM is a set of techniques based on convex quadratic programming for data
classification and regression. The main goal of SVM is to separate training data
into two different groups using a decision function (separating hyperplane) which
is obtained from training data. The separating hiperplane can be seen, in its
simplest way, as a line in the plane whose form is y = w · x + b or w · x − b = 0
for the canonical hyperplane. SVM classification (in a simple two-class problem)
simply looks at the sign of a decision function for an unknown data sample.

Training a SVM, in the most general case, is about to find those λ’s that
maximizes the Lagrangian formulation for the dual problem LD according to
the following equation:

LD =
l∑

i=1

λi − 1
2

l∑
i,j=1

yiyjK (xi · xj) λiλj (1)

subject to:
l∑

i=1

yiλi = 0; 0 � λi � C, i = 1, 2, ..., l (2)

where K(xi · x) is a positive definite kernel that maps input data into a
high dimension feature space where linear separation becomes more feasible [12].
xi,xj ∈ Rd are the input vectors of the ith and jth training data respectively, l is
the number of training samples; y ∈ {−1; 1} is the class label; λ = λ1, λ2...λn are
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the Lagrange multipliers for the training dataset in the Lagrangian formulation.
So,the unknown data can be classified using y = sign

(∑l
i=1 yiλiK (xi · x) − b

)

where b is the SVM’s threshold and is obtained using λi (yi (w · xi − b) − 1) =
0, i = 1, 2, ..., l for those data samples with λi > 0 (those data samples are called
Support Vectors).

The kernel function depends on the user’s choice, and the resultant feature
space determines the functional form of the support vectors; thus, different ker-
nels behave differently. Some common kernels can be found on [7]. Many of the
kernel functions are formed by Linear Kernel, except RBF one. Mathematically,
to accelerate the Linear Kernel implies to accelerate the others. Because of this,
the Linear Kernel is focused in this paper.

4 Architectural design

SMO is basically a sequential algorithm: heuristic hierarchy is formed by a set of
conditional evaluations which decides the algorithm behavior, with every evalu-
ation depending on the result of the previous evaluation. Because of this sequen-
tiality, SMO can not be implemented as it is in hardware. In addition, the highly
time-consuming functions are fully parallelizable, as it is the case of kernel func-
tion computation. Thus, a hardware-software architecture that implements in
hardware the most time-consuming functions and heuristic hierarchy in software
could be the right approach for reducing execution time in SVM training.

4.1 SMO’s performance profiling

There are a few SMO’s performance analyses in the literature. Only Dey et al.
in [4] analyze SMO’s performance and identify the most time-consuming func-
tions. In their paper, Dey et al. demonstrate the convenience of using hardware-
software architectures to speed up algorithms and use SVM as an example to
prove this approach. In order to identify task level hot spots in SMO’s execution
and to validate Dey’s results, a performance profiling was made. The results are
shown in Fig. 1(a).

It was observed that 77% of the total calls in SMO corresponds to the
dot product function. The time profile analysis shows that 81% of the total ex-
ecution time was spent by the dot product function. As a result of performance
analysis it is evident that the dot product function is responsible of bottleneck
in SMO’s execution. Fig. 1(b) supports this conclusion. From the performance
analysis we concluded that using a hardware-software architecture to implement
SMO algorithm, where software implements heuristic hierarchy, and hardware
implements the dot product function could obtain an speed up of at least one
order of magnitude when is compared to software implementations.

4.2 Architecture description

Fig. 2 shows a diagram of the proposed architecture. The architecture is formed
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Fig. 1. Performance profile analysis.
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Fig. 2. Diagram of the proposed architecture.

by a GPP that can enhance its performance by using a coprocessor, where the
control structures are executed in software on the GPP and the dot product
computations are executed on the coprocessor. The software reads the training
file, initializes the data structures and receives the parameters for the SMO.
Thus, when training starts, the software executes control mechanisms and the
coprocessor executes high time-consuming functions.

4.3 Software Implementation

To accomplish the proposed architecture, the software implementation must first
load a training file and algorithm parameters. After that, the application exe-
cutes the SMO algorithm and selects the correct branch from the heuristic hi-
erarchy that SMO implements. When a dot product is needed, the application
indicates the vectors that will be sent to the coprocessor. When the computation
is finished, the application obtains the resulting dot product from the coproces-
sor, generates the output file with the training results and finishes the training
process.
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Fig. 3. Description of the proposed architecture.

4.4 Hardware Implementation

The hardware architecture for the dot product calculation will be named Dot-
Product, while SMO with the dot product function implemented in hardware will
be named FSMO. For this architecture, the training dataset will be represented
as a matrix without using any compression method and requires that values of
the matrix to be 1 or 0. Since the dot product is calculated many times and the
values for this calculation remains constant, the right strategy to avoid unwanted
delays is to map the training dataset inside the coprocessor. The dot product
is dotProduct =

∑l
i,j=1 xi · xj where xi and xj are training vectors and l is the

number of elements on vectors. The digital architecture that implements this
mathematical expression consists of 5 main blocks as shown in Fig. 3(a).

INPUTS represents control signals, registers and data necessary for the ar-
chitecture to work. BLOCK RAM is a memory block that contains the training
dataset. Each row corresponds to one training data sample. The Processor El-
ement (PE) is the basic computation unit which calculates the dot products
of two input vectors. OUTPUT is the element that addresses the dot product
computation results, and CONTROL LOGIC are those elements that permit to
control and data flow inside the architecture.

Through INPUTS, the DotProduct architecture obtains the indexes that will
be used on the dot product calculation. INPUTS is used for mapping training
data into BLOCK RAM. At this point, all data necessary to calculate a dot
product of input vectors are inside the DotProduct architecture. Those two vec-
tors whose indexes were given through INPUTS are delivered to the PE where
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Fig. 4. Hardware implementation of DotProduct architecture.

the dot product is calculated and then, the result is stored in OUTPUTS. A
general view of architecture is shown in Fig. 3(b).

There are two registers, I REG A and I REG B, which hold indexes of train-
ing data samples that will calculate the dot product. Register C REG controls
when to load data, when to read from BLOCK RAM or when to start a dot
product calculation. C REG is shown in Fig. 3(c). The Phase bit states whether
the architecture is in the Initialization and Load Data Phase (set to 0) or in the
Processing Phase (set to 1). When Reset is active (set to 1), all registers are
initialized to 0, Initialization and Load Data Phase are enabled and the PE is
ready to process new data. The Finish bit indicates when processing is finished
and it is active at 1.

When FSMO starts, the Initialization and Load Data Phases are activated
(the Phase bit of C REG is set to 0). After this, register I REG B is disabled
and the address bus of BLOCK RAM is connected to I REG A indicating the
address where the value stored in matrix will be written (see Fig. 3(b) for more
details) ensuring data transfer from training dataset into BLOCK RAM. When
BLOCK RAM is filled, the architecture stays at this state while the Phase bit
of C REG is 0. When the Phase bit is changed to 1, matrix input is disabled
and I REG B is enabled and connected to BLOCK RAM. At this moment,
the training data samples whose indexes are stored in I REG A and I REG B
are delivered to the PE where the dot product is calculated. The result of the
dot product computation is stored in R REG, Finish bit is activated and the
architecture is ready to calculate a new dot product.

The PE calculates the dot product of two given training data samples. For
this training dataset representation, the dot product computation is reduced to
apply a logical AND operation between input vectors and counts the number
of 1’s in resulting vector. In this way, the architecture that implements the PE
is shown in Fig. 4. Notice that the PE can calculate a dot product using three
clock cycles; so, the processing time for the dot product calculation is: t = 3 · v
where v is the number of dot products. To prove the validity of the architecture
proposed, the DotProduct architecture was implemented using VHDL language
over ISE 9.2 Xilinx suite, and was simulated using ModelSIM SE 6.5. Hardware
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Table 1. Experimental results of training Adult with FSMO

Corpus Objs. Iter. Training Time b Non Bound Bound

Adult sec. C.C.(1012) Support Vectors Support Vectors

1 1605 3474 364 1.089 0.887 48 631

2 2265 4968 746 2.232 1.129 50 929

3 3185 5850 1218 3.628 1.178 58 1212

architecture was implemented on an XtremeDSP Virtex IV Development Kit
card. The software application was written using Visual C++ 6.0 and ANSI C.

Based on the fact that the Linear Kernel are used by many others, the
Dot Product architecture is suitable to perform others kernel functions. Using
the Dot Product architecture as starting point, any of most used kernel are ob-
tained just adding some blocks that implement the rest of their mathematical
formulation.

5 Experiments and Results

Since the dot product is the responsible of the bottleneck in SMO execution, a
performance profile for this function was made. Eight experiments were carried
out using a Pentium IV processor running at 3GHz and the results are shown in
Fig. 1(b). The number of clock cycles required grows with the size of the input
vectors.

In hardware, the dot product calculation is independent of input vector size.
The DotProduct architecture can handle input vectors of 128-bits wide in 3 clock
cycles: 1) receives data samples indexes, 2) fetches data sample vectors and 3)
calculates the dot product. If the dot product calculation in software of two input
vectors of 128-bits wide is compared with hardware implementation, the second
one will be completed at 3 clock cycles while the first one will be completed
between 45957 and 78411 clock cycles.

5.1 Experiments on Adult dataset

Adult dataset [1] was used by Platt in [8] to prove the feasibility of SMO, and
the same dataset was used here to prove the feasibility of proposed architecture.
Adult dataset consists of 9 corpuses which contain between 1605 and 32562
data samples of 123 characteristics each one. DotProduct can manage training
datasets of 4096 training data samples of 128 characteristics because of area
limitations of the chosen FPGA. Only Adult-1, Adult-2 and Adult-3 have sizes
that can be handled by the DotProduct architecture and the results of training
those datasets are shown in table 1. In those tables, C.C. means Clock Cycles.
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Table 2. Experimental results of Adult’s training with Platt’s SMO

Corpus Objs. Iter. Time b Non Bound Bound
Adult sec Support Vectors Support Vectors

1 1605 3474 0.4 0.884 42 633

2 2265 4968 0.9 1.127 47 930

3 3185 5850 1.8 1.173 57 1210

Table 3. Deviation in Adult training for FSMO and Platt’s SMO.

Corpus Threshold b Dif. %
Adult FSMO SMO(Platt)

1 0.887279 0.88449 0.0027 0.257

2 1.129381 1.12781 0.0015 0.139

3 1.178716 1.17302 0.0056 0.483

Table 2 shows the results for Platt’s SMO. There is a deviation in threshold
b for this implementations when is compared to FSMO. Platt in [8] does not
present any implementation detail so it is not possible explain exactly the reason
of this deviation: the epsilon value of the PC could be responsible for that
behavior. Table 3 shows that in the worst case, the deviation incurred is less
than 0.5% when is compared to Platt’s SMO. So, the proposed architecture
trains correctly the SVM.

5.2 Analysis of results

In this paper the hardware architecture to speed up the dot product computation
was implemented taking advantage of parallel capabilities of hardware. Also, the
heuristic hierarchy of SMO was implemented in software and it uses the hardware
architecture for the dot product calculations. FSMO trains correctly a SVM, and
it accuracy is over 99% compared to Platt’s implementation [8].

After the synthesis of the DotProduct architecture, it was determined that
this architecture can run at 35 MHz of maximum frequency. Since the dot prod-
uct in hardware takes three clock cycles is then the DotProduct architecture
could calculate 11666666 dot products of 128-bits wide input vectors in a sec-
ond. Meanwhile, the same operation for input vectors of 128-bits wide using a
Pentium IV processor running at 3GHz of frequency requires 45957 clock cycles,
so in this processor, we can calculate 65278 dot products in a second. This demon-
strates that the DotProduct architecture can run up to 178.7 times faster than
its implementation in a modern GPP. The DotProduct architecture requires 33%
of the available reprogrammable area, thus we can extend it to handle training
datasets three times bigger. Larger training datasets can be handled if external
memories are used, in this case the architecture can be extended 10 more times.
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6 Conclusions

In this paper we proposed a hardware-software architecture to speed up SVM
training. SMO algorithm was selected to be implemented in our architecture.
SMO uses a heuristic hierarchy to select two candidates to be optimized. The dot
product calculation in SMO spent 81% of the total execution time so this func-
tion was implemented in hardware while heuristic hierarchy was implemented
in software, on the GPP. To validate the proposed architecture we used an
XtremeDSP Virtex IV Development Kit card as coprocessor obtaining a speed up
of 178.7x for the dot product computations when compared against a software-
only implementation running on a GPP.
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