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Abstract. Irreducible testors (also named typical testors) are a useful tool for 
feature selection in supervised classification problems with mixed incomplete 
data. However, the complexity of computing all irreducible testors of a training 
matrix has an exponential growth with respect to the number of columns in the 
matrix. For this reason different approaches like heuristic algorithms, parallel 
and distributed processing, have been developed. In this paper, we present the 
design and implementation of a custom architecture for BT algorithm, which 
allows computing testors from a given input matrix. The architectural design is 
based on a parallel approach that is suitable for high populated input matrixes. 
The architecture has been designed to deal with parallel processing of all matrix 
rows, automatic candidate generation, and can be configured for any size of 
matrix. The architecture is able to evaluate whether a feature subset is a testor 
of the matrix and to calculate the next candidate to be evaluated, in a single 
clock cycle. The architecture has been implemented on a Field Programmable 
Gate Array (FPGA) device. Results show that it provides significant 
performance improvements over a previously reported hardware 
implementation. Implementation results are presented and discussed. 
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1   Introduction 

Although the theoretical aspect of computing irreducible testors is advanced, there are 
not practical hardware implementations reported previously, excepting a brute force 
approach [1]. The intensive computational requirements due to the exponential 
complexity of the algorithms can be met by a combination of technology 
improvements and efficient hardware architectures based on parallel computational 
models. Specific parallel architectures can be designed to exploit the parallelism 
found in the algorithms to speed up the processing. Further optimizations such as 
incremental processing and the use of multiple processing elements are also possible. 

In Pattern Recognition, feature selection is a very important task for supervised 
classification. A useful way to do this selection is through Testor Theory. The concept 
of testor for Pattern Recognition was introduced by Zhuravlev [2] in 1966. He defined 
a testor as a subset of features that allows differentiating objects from different 
classes. Testors are quite useful, especially when an object description contains both 
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qualitative and quantitative features, and maybe they are incomplete (mixed 
incomplete data)[3]. 

However, the algorithms used to compute all irreducible testors have exponential 
complexity which seriously limits their practical use. Since software implementations 
of these algorithms do not provide a reasonable performance for practical problems, 
an option is to migrate to hardware implementations based on programmable logic to 
take advantage of the benefits that they offer. 

This work is a continuation of the work reported in [1] and reports the development 
of a configurable hardware architecture for computing testors using the BT algorithm. 
The architecture is based on a candidate generator that jumps over unnecessary 
candidates, thus reducing the number of comparisons needed. 

The rest of the paper is organized as follows. Section 2 provides the theoretical 
foundation of testor identification and describes the BT algorithm. Section 3 presents 
the proposed hardware architecture. In section 4 the FPGA implementation and 
experimental results are presented. In section 5, the performance improvements are 
briefly discussed and the obtained results are compared against the brute force 
approach, and software implementation. Finally, section 6 presents the concluding 
remarks and directions for further research. 

2   Algorithms for Computing Testors 

Let TM be a training matrix with K objects described through N features of any type 
(x1,…,xN) and grouped in r classes. Let DM be a dissimilarity Boolean matrix 
(0=similar,1=dissimilar), obtained from feature by feature comparisons of every pair 
of objects from T belonging to different classes. DM has N columns and M rows, 
where M>>K. 

Testors and Irreducible Testors are defined as follows: 

Definition 1. A subset of features T is a testor if and only if when all features are 
eliminated, except those from T, there is not any row of DM with only 0´s. 

Definition 2. A subset of features T is an irreducible testor if and only if T is a testor 
and there is not any other testor T ' such that T '⊂T.  

In definition 1, if there is not any row of DM with only 0´s it means that there is not a 
pair of objects from different classes that are similar on all the features of T, that is, a 
testor T allows differentiating between objects from different classes. 

The number of rows in DM could be too large, therefore a strategy to reduce this 
matrix without losing relevant information for computing irreducible testors was 
introduced [4].  

Definition 3. If t and p are two rows of DM, then p is a sub-row of t if and only if: 

a) t has 1 everywhere p has 1 
b) there is at least one column such that t has 1 and p has 0 

Definition 4. A row t of DM is a basic row of DM if and only if DM does not have 
any other row t’ such that t’ is a sub-row of t. 
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Definition 5. The matrix that contains only the basic rows of DM is called basic 
matrix and is denoted by BM. 

Let TT(M) be the set of all irreducible testors of the Boolean matrix M, then [4]:  

Proposition 1. TT(DM)=TT(BM). 

This proposition indicates that the set of all irreducible testors calculated using DM or 
BM is the same. However, BM is smaller than DM and the construction of BM from 
DM is a very fast process, for example, the time for obtaining a BM matrix with 48 
columns and 32 rows from a DM matrix with 48 columns and 193,753 rows, is about 
0.21 seconds on a PC with an Intel Pentium 4 processor running at 3.0GHz with 2GB 
of RAM memory. 

There are two kinds of algorithms for computing Irreducible Testors: the internal 
scale algorithms and the external scale algorithms. The former analyzes the matrix to 
find out some conditions that guarantee that a subset of features is an irreducible 
Testor. The latter looks for Irreducible Testors over the whole power set of features; 
algorithms that search from the empty set to the whole feature set are call Bottom-Top 
algorithms and algorithms that search from the whole feature set to the empty set are 
call Top-Bottom algorithms. The selected algorithm is a Bottom-Top external scale 
algorithm, called BT. In order to review all the search space, BT codifies the feature 
subsets as binary N-tuples where 0 indicates that the associated feature is not included 
and 1 indicates that the associated feature is included. For computing testors, BT 
follows the order induced by the binary natural numbers, this is, from the empty set to 
the whole feature set. The BT algorithm is as follows: 

Step 1.- Generate first no null N-tuple α=(α1,α2,...αΝ)=(0,...,0,1).  
Step 2.- Determine if the generated N-tuple α is a testor of BM.  
Step 3.- If α is a testor of BM, store it and take α’=α+2N-k where k is the index of the 

last 1 in α. 
Step 4.- If α is not a testor of BM, determine the first row ν of BM with only 0´s in 

the columns where α  has 1´s and generate α’ as: 
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where k is the index of the last 1 in ν. 
Step 5.- Take α=α’  
Step 6.- If α  is not after (1,1,...,1,1) then, go to step 3 
Step 7.- Eliminate from the stored testors those which are not irreducible testors. 

Step 3 jumps over all the supersets that can be constructed from α by adding 1’s 
(features) after the last 1 in α. For example if n=9 and α=(0,1,1,0,0,1,0,0,0) then k=6 
and the following 2N-k-1=29-6-1=7 N-tuples represent supersets of the feature set 
represented by α, which is a testor, and therefore these supersets are testors but they 
are not irreducible testors, as it can be seen as follows: 
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α feature set   
011001000 
011001001 
011001010 

...... 
011001111 
011010000 

{x2,x3,x6} 
{x2,x3,x6,x9} 
{x2,x3,x6,x8} 
....... 
{x2,x3,x6,x7,x8,x9} 
{x2,x3,x5} 

α 
 
 
 
 
α’=α+2N-k 

 

 
7 non-irreducible testors 

 

Step 4 jumps over all the sets that can not be a testor according to definition 1, 
because for any combination of 0’s and 1’s in those N-tuples, the row ν has 0’s in 
those positions. For example if α=(011001001) and ν=(100100000) following step 4, 
the next N-tuple to be verified will be α’=(011100000) which has 1 in at least one 
position where ν has 1 (x4). Note that all the N-tuples between α and the next N-tuple 
to be verified are not testors, because of ν, as it can be seen as follows: 

ν α feature set   
100100000 011001001 

011001010 
011001011 

...... 
011011111 
011100000 

{x2,x3,x6,x9} 
{x2,x3,x6,x8} 
{x2,x3,x6,x8,x9} 
....... 
{x2,x3,x5,x6,x7,x8,x9} 
{x2,x3,x4} 

α 
 
 
 
 
α’ 

 

 
31 non-testors 

 

In step 4, the jump will be bigger if k is smaller. For this reason the columns and 
rows of BM are sorted is such way that the columns containing more 0´s are placed on 
the right and the rows with more 0´s are placed upper. It is important to remark that 
interchanging columns or rows will not affect the result of computing all irreducible 
testors, just the information about which column corresponds to which feature must 
be preserved [5], and that the process for reorganizing the rows and columns of BM is 
very fast. 

3   Proposed Architecture 

The process of deciding if an N-tuple is a testor of BM involves comparing the 
candidate against each one of the BM’s rows. For software-based implementations, 
this presents a big disadvantage, in particular for large matrices with many rows. The 
proposed hardware architecture exploits the parallelism inherent in the BT algorithm 
and evaluates whether a candidate is a testor or not in a single clock cycle. It is 
composed by two main modules as seen in Fig. 1. The BM module stores the input 
matrix and includes logic to decide if an input N-tuple is a testor. The candidate 
generator module produces the candidates to be evaluated by the BM module. To 
calculate the next candidate according to the BT algorithm, the architecture feedbacks 
the result of evaluating a candidate to the generator module that will generate the next 
candidate as specified by the BT algorithm. This process does not introduce latency, 
thus the architecture is capable of evaluating a candidate in a single clock cycle. 

The BM module is composed of M sub-modules named Vx, as shown in Fig. 2. 
Each Vx module contains a row (N bits) of the BM matrix and logic to perform testor 
evaluation (Fig. 3). To decide if an N-tuple is a testor, a bitwise AND operation is 
performed between the constant stored in each Vx module and the current candidate. 
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Fig. 1. Top-Level Architecture 

If at least one bit of the AND operation result is TRUE, then the output is_testor of 
that particular Vx sub-module will be TRUE, and if the outputs of all Vx sub-modules 
are TRUE, then the output is_testor of the BM module will be TRUE, which means 
that the candidate is declared a testor of BM.  

  

Fig. 2. BM module 

 

Fig. 3. Vx sub-module 

When a candidate fails to be a testor of BM, the output V of the BM module 
contains the value of the row closest to the top that caused the test to fail. If the 
candidate is declared as testor, the output V is just ignored. The value of V is obtained 
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by using the output of a priority encoder as the select signal of a multiplexer that can 
select among all the rows of BM. This is similar to having a read address in a register 
file to access the value stored in a particular row.  

The candidate generator module uses the feedback from the BM module to 
calculate the next candidate to be evaluated. As specified by the BT algorithm, there 
are two ways of generating the next candidate according to the evaluation result of the 
previous candidate. The candidate generator module consists of two sub-modules, the 
first sub-module (jump_1) generates the next candidate when the previous candidate 
is a testor and the second sub-module (jump_2) generates the next candidate when the 
previous candidate fails to be a testor. The next candidate is selected by a multiplexer 
according to the evaluation result of the previous candidate (Fig.4).  

  

Fig. 4. Candidate generator module 

Fig. 5 shows the jump_1 sub-module. It uses a priority encoder to obtain the index 
of the last ‘1’ in the previous candidate value. The next candidate value is obtained by 
adding 2N-k to the previous candidate as indicated by the step 3 of the BT algorithm.  

  

Fig. 5. Jump_1 sub-module 

Fig. 6 shows the jump_2 sub-module. Besides the value of the previous candidate, 
it uses an input V that contains the value of the row of BM that caused the previous 
candidate not to be a testor. A priority decoder obtains the index k of the last ‘1’ of V. 
By taking the value of the previous candidate, the next candidate is obtained by letting 
all bits to the left of the kth position unchanged, the bits to the right are changed to ‘0’, 
and the kth bit is set to ‘1’. See step 4 of the algorithm.  



194 A. Rojas et al. 

 

Fig. 6. Jump_2 sub-module 

4   FPGA Implementation and Results 

The proposed architecture was modeled in the VHDL Hardware Description 
Language under a structural approach. The VHDL model of the proposed architecture 
is fully parameterizable in terms of the matrix dimensions (N,M). The VHDL model 
was simulated and validated both functional and post-synthesis with ModelSim v6.0. 
The VHDL model was synthesized with Xilinx ISE v9.0 targeted for a medium size 
state-of-the-art Virtex-II Pro XC2VP30 FPGA device from Xilinx [6]. The use of the 
FPGA technology was chosen because it provides a rapid prototyping platform and is 
specially suited for implementing algorithms based on bit level operations.  

The design was implemented on XtremeDSP Development Kit for Virtex-II Pro 
from Xilinx [7]. This board allows performing hardware-in-the-loop type of 
simulation using the PCI bus [8]. Although the synthesis results for all test cases show 
that the architecture can operate in excess of 50MHz, for the purpose of a fair 
comparison with the work reported in [1], the following results were calculated 
considering 50MHz as the operating frequency. 

In order to show the performance of the proposed architecture, it was compared 
against the brute force implementation reported in [1], and software implementations 
of the BT algorithm and CT algorithms [9]. For experimentation purposes, basic 
matrices from 20 to 30 columns by 100 rows were randomly generated. Figure 7 
shows the resulting processing times and Table 1 shows additionally the percentage of 
candidates tested by the BT algorithm.  
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Fig. 7. Processing time in seconds for randomly generated data 
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Table 1. Processing times in seconds for different implementations of BT and CT algorithms 

Software 
implementations 

Hardware implementations 
Matrix 

BT CT 
[1] (Brute 

Force) 
Proposed 

Architecture 

Percentage of 
candidates  
tested - BT 
algorithm 

20x100 1.55 2.06 0.021 0.004 17.79
21x100 2.23 3.16 0.042 0.006 14.59
22x100 4.73 5.11 0.084 0.009 11.38
23x100 7.61 6.72 0.168 0.016 9.54
24x100 14.50 11.55 0.335 0.027 7.94
25x100 22.56 14.78 0.671 0.047 7.08
26x100 33.80 23.43 1.342 0.079 5.86
27x100 54.68 34.14 2.684 0.140 5.20
28x100 99.34 71.75 5.369 0.209 3.88
29x100 177.25 112.33 10.737 0.316 2.94
30x100 295.92 164.84 21.475 0.517 2.41

The processing time t for a specific matrix is given by:  

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

100

2 c

f
t

N

 

where f is the clock frequency of the architecture and c is the percentage of candidates 
tested. Note that the value of c is data dependent, i.e. it varies according to each BM 
matrix. 

These experiments show that the proposed architecture allows running BT 570 
times faster that the software implementation and 318 times faster than software 
implementation of CT for N=30 and M=100. The improvement against the brute force 
for this matrix is 40X, this is because the percentage of candidates tested by BT is 
~2.4%. The software implementations were executed on a PC with an Intel Pentium 4 
processor running at 3.0GHz with 2GB of RAM memory.  

The architecture has been designed to process variable sizes of the BM matrix. The 
maximum size of the matrix that can be implemented is only limited by the available 
resources on the target FPGA. The hardware resources utilization is proportional to 
the size of the matrix, i.e. the total number of elements NxM. Table 2 summarizes the 
FPGA resources utilization for large randomly generated matrices of 100 columns by 
100 to 300 rows. Note that the number of columns was set to 100 as most of the 
practical problems that use testor theory will have at most this number of columns.  

These results show that the hardware resources required to implement the 
architecture are proportional to the total number of elements in the BM matrix, e.g the 
100x200 matrix requires twice as much slices than the 100x100 matrix. Note that 
even for the larger matrix (30,000 elements), the number of slices used is around 71% 
of the total available, which means that matrices up to around 40,000 elements can be 
processed with this modest size FPGA device. In this approach the matrix is declared 
as constant, which means that for any new matrix to be processed the architecture has 
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to be resynthesized and the FPGA configured. However, this process takes only a few 
extra seconds, but as no flip-flops are needed to store the matrix, the FPGA resources 
utilization is considerably reduced.  

Table 2. Hardware resources utilization for large matrices  

Matrix Frec.  (MHz) Slices Flip-Flops 
100x100 87.73 3,391 (24%) 601 (2%) 
100x150 82.37 5,064 (36%) 801 (2%) 
100x200 80.49 6,567 (47%) 966 (3%) 
100x250 75.99 8,060 (58%) 1,288 (4%) 
100x300 77.00 9,778 (71%) 1,704 (6%) 

5   Discussion 

The proposed architecture provides higher processing performance than the 
previously reported hardware implementation as it now performs the complete BT 
algorithm. In spite of the added functionality, the architecture still is capable of 
performing the number of operations needed to test if an N-tuple is a testor of BM in a 
single clock cycle. Thus the performance improvement is directly related to the 
percentage of candidates tested (c), which in turn heavily depends on the values in the 
BM matrix. However, for real data this improvement could be significantly higher. 

Experiments show that the proposed architecture allows computing testors faster 
than software implementations of the BT and CT algorithms, with improvements in 
the range of 2 orders of magnitude. However, for very large real data this 
improvement could be significantly higher. Additionally, an advantage of the 
proposed architecture is that it requires only one clock cycle to test each candidate 
independently of the number of rows, whereas software implementations processing 
time will significantly increase for matrices with a large number of rows.  

It is important to highlight that the proposed architecture computes testors and the 
decision about which of them are irreductible has to be taken after each testor is 
found, this applies also to software-based implementations. 

6   Conclusions 

In this work, an efficient hardware implementation of the BT algorithm for computing 
testors is presented. The high performance of the proposed architecture is feasible due 
to the high level of parallelism implicit in the BT algorithm that can be efficiently 
implemented on a FPGA. The architecture is capable of evaluating a candidate in a 
single clock cycle for any BM matrix, regardless of the number of columns and rows, 
being the only limitation the size of the used FPGA device. The architecture provides 
a good trade-off between performance and hardware resource utilization and it is 
suitable to be used as a high performance processing module in a hardware-in-the-
loop approach.  
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Even though the proposed architecture offers an improvement compared with a 
previously reported hardware implementation, further improvements, such as testing 
two or more candidates per iteration, are still possible. Also, because resource 
requirements are relatively small, a scheme where the processing core can be 
replicated will also be explored; this will effectively reduce the processing times 
proportionally to the number of processing cores that can be accommodated on the 
FPGA device. The final goal is to build a high performance flexible 
hardware/software platform for computing testors. On this direction, we are currently 
exploring the implementation of hardware architectures for more sophisticated 
algorithms like LEX [10].  
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