
H. Yin et al. (Eds.): IDEAL 2007, LNCS 4881, pp. 188–197, 2007.
© Springer-Verlag Berlin Heidelberg 2007

FPGA-Based Architecture for Computing Testors

Alejandro Rojas, René Cumplido, J. Ariel Carrasco-Ochoa,
Claudia Feregrino, and J. Francisco Martínez-Trinidad

Computer Science Department, INAOE, Apdo. Postal 51 &216
Tonantzintla, Puebla, México

{roherale, rcumplido, ariel, cferegrino, fmartine}@inaoep.mx

Abstract. Irreducible testors (also named typical testors) are a useful tool for
feature selection in supervised classification problems with mixed incomplete
data. However, the complexity of computing all irreducible testors of a training
matrix has an exponential growth with respect to the number of columns in the
matrix. For this reason different approaches like heuristic algorithms, parallel
and distributed processing, have been developed. In this paper, we present the
design and implementation of a custom architecture for BT algorithm, which
allows computing testors from a given input matrix. The architectural design is
based on a parallel approach that is suitable for high populated input matrixes.
The architecture has been designed to deal with parallel processing of all matrix
rows, automatic candidate generation, and can be configured for any size of
matrix. The architecture is able to evaluate whether a feature subset is a testor
of the matrix and to calculate the next candidate to be evaluated, in a single
clock cycle. The architecture has been implemented on a Field Programmable
Gate Array (FPGA) device. Results show that it provides significant
performance improvements over a previously reported hardware
implementation. Implementation results are presented and discussed.

Keywords: Feature Selection, Testor Theory, Hardware Architecture, FPGA.

1 Introduction

Although the theoretical aspect of computing irreducible testors is advanced, there are
not practical hardware implementations reported previously, excepting a brute force
approach [1]. The intensive computational requirements due to the exponential
complexity of the algorithms can be met by a combination of technology
improvements and efficient hardware architectures based on parallel computational
models. Specific parallel architectures can be designed to exploit the parallelism
found in the algorithms to speed up the processing. Further optimizations such as
incremental processing and the use of multiple processing elements are also possible.

In Pattern Recognition, feature selection is a very important task for supervised
classification. A useful way to do this selection is through Testor Theory. The concept
of testor for Pattern Recognition was introduced by Zhuravlev [2] in 1966. He defined
a testor as a subset of features that allows differentiating objects from different
classes. Testors are quite useful, especially when an object description contains both

 FPGA-Based Architecture for Computing Testors 189

qualitative and quantitative features, and maybe they are incomplete (mixed
incomplete data)[3].

However, the algorithms used to compute all irreducible testors have exponential
complexity which seriously limits their practical use. Since software implementations
of these algorithms do not provide a reasonable performance for practical problems,
an option is to migrate to hardware implementations based on programmable logic to
take advantage of the benefits that they offer.

This work is a continuation of the work reported in [1] and reports the development
of a configurable hardware architecture for computing testors using the BT algorithm.
The architecture is based on a candidate generator that jumps over unnecessary
candidates, thus reducing the number of comparisons needed.

The rest of the paper is organized as follows. Section 2 provides the theoretical
foundation of testor identification and describes the BT algorithm. Section 3 presents
the proposed hardware architecture. In section 4 the FPGA implementation and
experimental results are presented. In section 5, the performance improvements are
briefly discussed and the obtained results are compared against the brute force
approach, and software implementation. Finally, section 6 presents the concluding
remarks and directions for further research.

2 Algorithms for Computing Testors

Let TM be a training matrix with K objects described through N features of any type
(x1,…,xN) and grouped in r classes. Let DM be a dissimilarity Boolean matrix
(0=similar,1=dissimilar), obtained from feature by feature comparisons of every pair
of objects from T belonging to different classes. DM has N columns and M rows,
where M>>K.

Testors and Irreducible Testors are defined as follows:

Definition 1. A subset of features T is a testor if and only if when all features are
eliminated, except those from T, there is not any row of DM with only 0´s.

Definition 2. A subset of features T is an irreducible testor if and only if T is a testor
and there is not any other testor T ' such that T '⊂T.

In definition 1, if there is not any row of DM with only 0´s it means that there is not a
pair of objects from different classes that are similar on all the features of T, that is, a
testor T allows differentiating between objects from different classes.

The number of rows in DM could be too large, therefore a strategy to reduce this
matrix without losing relevant information for computing irreducible testors was
introduced [4].

Definition 3. If t and p are two rows of DM, then p is a sub-row of t if and only if:

a) t has 1 everywhere p has 1
b) there is at least one column such that t has 1 and p has 0

Definition 4. A row t of DM is a basic row of DM if and only if DM does not have
any other row t’ such that t’ is a sub-row of t.

190 A. Rojas et al.

Definition 5. The matrix that contains only the basic rows of DM is called basic
matrix and is denoted by BM.

Let TT(M) be the set of all irreducible testors of the Boolean matrix M, then [4]:

Proposition 1. TT(DM)=TT(BM).

This proposition indicates that the set of all irreducible testors calculated using DM or
BM is the same. However, BM is smaller than DM and the construction of BM from
DM is a very fast process, for example, the time for obtaining a BM matrix with 48
columns and 32 rows from a DM matrix with 48 columns and 193,753 rows, is about
0.21 seconds on a PC with an Intel Pentium 4 processor running at 3.0GHz with 2GB
of RAM memory.

There are two kinds of algorithms for computing Irreducible Testors: the internal
scale algorithms and the external scale algorithms. The former analyzes the matrix to
find out some conditions that guarantee that a subset of features is an irreducible
Testor. The latter looks for Irreducible Testors over the whole power set of features;
algorithms that search from the empty set to the whole feature set are call Bottom-Top
algorithms and algorithms that search from the whole feature set to the empty set are
call Top-Bottom algorithms. The selected algorithm is a Bottom-Top external scale
algorithm, called BT. In order to review all the search space, BT codifies the feature
subsets as binary N-tuples where 0 indicates that the associated feature is not included
and 1 indicates that the associated feature is included. For computing testors, BT
follows the order induced by the binary natural numbers, this is, from the empty set to
the whole feature set. The BT algorithm is as follows:

Step 1.- Generate first no null N-tuple α=(α1,α2,...αΝ)=(0,...,0,1).
Step 2.- Determine if the generated N-tuple α is a testor of BM.
Step 3.- If α is a testor of BM, store it and take α’=α+2N-k where k is the index of the

last 1 in α.
Step 4.- If α is not a testor of BM, determine the first row ν of BM with only 0´s in

the columns where α has 1´s and generate α’ as:

jα ′ =
⎪
⎩

⎪
⎨

⎧

>
=
<

kjif

kjif

kjifj

0

1

α
,

where k is the index of the last 1 in ν.
Step 5.- Take α=α’
Step 6.- If α is not after (1,1,...,1,1) then, go to step 3
Step 7.- Eliminate from the stored testors those which are not irreducible testors.

Step 3 jumps over all the supersets that can be constructed from α by adding 1’s
(features) after the last 1 in α. For example if n=9 and α=(0,1,1,0,0,1,0,0,0) then k=6
and the following 2N-k-1=29-6-1=7 N-tuples represent supersets of the feature set
represented by α, which is a testor, and therefore these supersets are testors but they
are not irreducible testors, as it can be seen as follows:

 FPGA-Based Architecture for Computing Testors 191

α feature set
011001000
011001001
011001010

......
011001111
011010000

{x2,x3,x6}
{x2,x3,x6,x9}
{x2,x3,x6,x8}
.......
{x2,x3,x6,x7,x8,x9}
{x2,x3,x5}

α

α’=α+2N-k

7 non-irreducible testors

Step 4 jumps over all the sets that can not be a testor according to definition 1,
because for any combination of 0’s and 1’s in those N-tuples, the row ν has 0’s in
those positions. For example if α=(011001001) and ν=(100100000) following step 4,
the next N-tuple to be verified will be α’=(011100000) which has 1 in at least one
position where ν has 1 (x4). Note that all the N-tuples between α and the next N-tuple
to be verified are not testors, because of ν, as it can be seen as follows:

ν α feature set
100100000 011001001

011001010
011001011

......
011011111
011100000

{x2,x3,x6,x9}
{x2,x3,x6,x8}
{x2,x3,x6,x8,x9}
.......
{x2,x3,x5,x6,x7,x8,x9}
{x2,x3,x4}

α

α’

31 non-testors

In step 4, the jump will be bigger if k is smaller. For this reason the columns and
rows of BM are sorted is such way that the columns containing more 0´s are placed on
the right and the rows with more 0´s are placed upper. It is important to remark that
interchanging columns or rows will not affect the result of computing all irreducible
testors, just the information about which column corresponds to which feature must
be preserved [5], and that the process for reorganizing the rows and columns of BM is
very fast.

3 Proposed Architecture

The process of deciding if an N-tuple is a testor of BM involves comparing the
candidate against each one of the BM’s rows. For software-based implementations,
this presents a big disadvantage, in particular for large matrices with many rows. The
proposed hardware architecture exploits the parallelism inherent in the BT algorithm
and evaluates whether a candidate is a testor or not in a single clock cycle. It is
composed by two main modules as seen in Fig. 1. The BM module stores the input
matrix and includes logic to decide if an input N-tuple is a testor. The candidate
generator module produces the candidates to be evaluated by the BM module. To
calculate the next candidate according to the BT algorithm, the architecture feedbacks
the result of evaluating a candidate to the generator module that will generate the next
candidate as specified by the BT algorithm. This process does not introduce latency,
thus the architecture is capable of evaluating a candidate in a single clock cycle.

The BM module is composed of M sub-modules named Vx, as shown in Fig. 2.
Each Vx module contains a row (N bits) of the BM matrix and logic to perform testor
evaluation (Fig. 3). To decide if an N-tuple is a testor, a bitwise AND operation is
performed between the constant stored in each Vx module and the current candidate.

192 A. Rojas et al.

Fig. 1. Top-Level Architecture

If at least one bit of the AND operation result is TRUE, then the output is_testor of
that particular Vx sub-module will be TRUE, and if the outputs of all Vx sub-modules
are TRUE, then the output is_testor of the BM module will be TRUE, which means
that the candidate is declared a testor of BM.

Fig. 2. BM module

Fig. 3. Vx sub-module

When a candidate fails to be a testor of BM, the output V of the BM module
contains the value of the row closest to the top that caused the test to fail. If the
candidate is declared as testor, the output V is just ignored. The value of V is obtained

 FPGA-Based Architecture for Computing Testors 193

by using the output of a priority encoder as the select signal of a multiplexer that can
select among all the rows of BM. This is similar to having a read address in a register
file to access the value stored in a particular row.

The candidate generator module uses the feedback from the BM module to
calculate the next candidate to be evaluated. As specified by the BT algorithm, there
are two ways of generating the next candidate according to the evaluation result of the
previous candidate. The candidate generator module consists of two sub-modules, the
first sub-module (jump_1) generates the next candidate when the previous candidate
is a testor and the second sub-module (jump_2) generates the next candidate when the
previous candidate fails to be a testor. The next candidate is selected by a multiplexer
according to the evaluation result of the previous candidate (Fig.4).

Fig. 4. Candidate generator module

Fig. 5 shows the jump_1 sub-module. It uses a priority encoder to obtain the index
of the last ‘1’ in the previous candidate value. The next candidate value is obtained by
adding 2N-k to the previous candidate as indicated by the step 3 of the BT algorithm.

Fig. 5. Jump_1 sub-module

Fig. 6 shows the jump_2 sub-module. Besides the value of the previous candidate,
it uses an input V that contains the value of the row of BM that caused the previous
candidate not to be a testor. A priority decoder obtains the index k of the last ‘1’ of V.
By taking the value of the previous candidate, the next candidate is obtained by letting
all bits to the left of the kth position unchanged, the bits to the right are changed to ‘0’,
and the kth bit is set to ‘1’. See step 4 of the algorithm.

194 A. Rojas et al.

Fig. 6. Jump_2 sub-module

4 FPGA Implementation and Results

The proposed architecture was modeled in the VHDL Hardware Description
Language under a structural approach. The VHDL model of the proposed architecture
is fully parameterizable in terms of the matrix dimensions (N,M). The VHDL model
was simulated and validated both functional and post-synthesis with ModelSim v6.0.
The VHDL model was synthesized with Xilinx ISE v9.0 targeted for a medium size
state-of-the-art Virtex-II Pro XC2VP30 FPGA device from Xilinx [6]. The use of the
FPGA technology was chosen because it provides a rapid prototyping platform and is
specially suited for implementing algorithms based on bit level operations.

The design was implemented on XtremeDSP Development Kit for Virtex-II Pro
from Xilinx [7]. This board allows performing hardware-in-the-loop type of
simulation using the PCI bus [8]. Although the synthesis results for all test cases show
that the architecture can operate in excess of 50MHz, for the purpose of a fair
comparison with the work reported in [1], the following results were calculated
considering 50MHz as the operating frequency.

In order to show the performance of the proposed architecture, it was compared
against the brute force implementation reported in [1], and software implementations
of the BT algorithm and CT algorithms [9]. For experimentation purposes, basic
matrices from 20 to 30 columns by 100 rows were randomly generated. Figure 7
shows the resulting processing times and Table 1 shows additionally the percentage of
candidates tested by the BT algorithm.

0
50

100
150
200
250
300
350

20 21 22 23 24 25 26 27 28 29 30

Number of Columns

Ti
m

e
in

 s
ec

on
ds BT-Software

CT-Software

Brute Force [1]

Proposed
Architecture

Fig. 7. Processing time in seconds for randomly generated data

 FPGA-Based Architecture for Computing Testors 195

Table 1. Processing times in seconds for different implementations of BT and CT algorithms

Software
implementations

Hardware implementations
Matrix

BT CT
[1] (Brute

Force)
Proposed

Architecture

Percentage of
candidates
tested - BT
algorithm

20x100 1.55 2.06 0.021 0.004 17.79
21x100 2.23 3.16 0.042 0.006 14.59
22x100 4.73 5.11 0.084 0.009 11.38
23x100 7.61 6.72 0.168 0.016 9.54
24x100 14.50 11.55 0.335 0.027 7.94
25x100 22.56 14.78 0.671 0.047 7.08
26x100 33.80 23.43 1.342 0.079 5.86
27x100 54.68 34.14 2.684 0.140 5.20
28x100 99.34 71.75 5.369 0.209 3.88
29x100 177.25 112.33 10.737 0.316 2.94
30x100 295.92 164.84 21.475 0.517 2.41

The processing time t for a specific matrix is given by:

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

100

2 c

f
t

N

where f is the clock frequency of the architecture and c is the percentage of candidates
tested. Note that the value of c is data dependent, i.e. it varies according to each BM
matrix.

These experiments show that the proposed architecture allows running BT 570
times faster that the software implementation and 318 times faster than software
implementation of CT for N=30 and M=100. The improvement against the brute force
for this matrix is 40X, this is because the percentage of candidates tested by BT is
~2.4%. The software implementations were executed on a PC with an Intel Pentium 4
processor running at 3.0GHz with 2GB of RAM memory.

The architecture has been designed to process variable sizes of the BM matrix. The
maximum size of the matrix that can be implemented is only limited by the available
resources on the target FPGA. The hardware resources utilization is proportional to
the size of the matrix, i.e. the total number of elements NxM. Table 2 summarizes the
FPGA resources utilization for large randomly generated matrices of 100 columns by
100 to 300 rows. Note that the number of columns was set to 100 as most of the
practical problems that use testor theory will have at most this number of columns.

These results show that the hardware resources required to implement the
architecture are proportional to the total number of elements in the BM matrix, e.g the
100x200 matrix requires twice as much slices than the 100x100 matrix. Note that
even for the larger matrix (30,000 elements), the number of slices used is around 71%
of the total available, which means that matrices up to around 40,000 elements can be
processed with this modest size FPGA device. In this approach the matrix is declared
as constant, which means that for any new matrix to be processed the architecture has

196 A. Rojas et al.

to be resynthesized and the FPGA configured. However, this process takes only a few
extra seconds, but as no flip-flops are needed to store the matrix, the FPGA resources
utilization is considerably reduced.

Table 2. Hardware resources utilization for large matrices

Matrix Frec. (MHz) Slices Flip-Flops
100x100 87.73 3,391 (24%) 601 (2%)
100x150 82.37 5,064 (36%) 801 (2%)
100x200 80.49 6,567 (47%) 966 (3%)
100x250 75.99 8,060 (58%) 1,288 (4%)
100x300 77.00 9,778 (71%) 1,704 (6%)

5 Discussion

The proposed architecture provides higher processing performance than the
previously reported hardware implementation as it now performs the complete BT
algorithm. In spite of the added functionality, the architecture still is capable of
performing the number of operations needed to test if an N-tuple is a testor of BM in a
single clock cycle. Thus the performance improvement is directly related to the
percentage of candidates tested (c), which in turn heavily depends on the values in the
BM matrix. However, for real data this improvement could be significantly higher.

Experiments show that the proposed architecture allows computing testors faster
than software implementations of the BT and CT algorithms, with improvements in
the range of 2 orders of magnitude. However, for very large real data this
improvement could be significantly higher. Additionally, an advantage of the
proposed architecture is that it requires only one clock cycle to test each candidate
independently of the number of rows, whereas software implementations processing
time will significantly increase for matrices with a large number of rows.

It is important to highlight that the proposed architecture computes testors and the
decision about which of them are irreductible has to be taken after each testor is
found, this applies also to software-based implementations.

6 Conclusions

In this work, an efficient hardware implementation of the BT algorithm for computing
testors is presented. The high performance of the proposed architecture is feasible due
to the high level of parallelism implicit in the BT algorithm that can be efficiently
implemented on a FPGA. The architecture is capable of evaluating a candidate in a
single clock cycle for any BM matrix, regardless of the number of columns and rows,
being the only limitation the size of the used FPGA device. The architecture provides
a good trade-off between performance and hardware resource utilization and it is
suitable to be used as a high performance processing module in a hardware-in-the-
loop approach.

 FPGA-Based Architecture for Computing Testors 197

Even though the proposed architecture offers an improvement compared with a
previously reported hardware implementation, further improvements, such as testing
two or more candidates per iteration, are still possible. Also, because resource
requirements are relatively small, a scheme where the processing core can be
replicated will also be explored; this will effectively reduce the processing times
proportionally to the number of processing cores that can be accommodated on the
FPGA device. The final goal is to build a high performance flexible
hardware/software platform for computing testors. On this direction, we are currently
exploring the implementation of hardware architectures for more sophisticated
algorithms like LEX [10].

References

1. Cumplido, R., Carrasco-Ochoa, A., Feregrino, C.: On the Design and Implementation of a
High Performance Configurable Architecture for Testor Identification. In: Martínez-
Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp.
665–673. Springer, Heidelberg (2006)

2. Dmitriev, A.N., Zhuravlev, Y.I., Krendeliev, F.P.: About Mathematical Principles of
Objects and Phenomena Classification. Diskretni Analiz 7, 3–15 (1966) (in Russian)

3. Martínez-Trinidad, J.F., Guzmán-Arenas, A.: The Logical Combinatorial Approach to
Pattern Recognition an Overview through Selected Works. Pattern Recognition 34(4),
741–751 (2001)

4. Lazo-Cortes, M., Ruiz-Shulcloper, J., Alba-Cabrera, E.: An Overview of the Evolution of
the Concept of Testor. Pattern Recognition 34(4), 753–762 (2001)

5. Sánchez Díaz, G., Lazo Cortés, M.: Modifying BT Algorithm for Improving its Runtimes.
Revista Ciencias Matemáticas 20(2), 129–136 (2002) (in Spanish)

6. Virtex-II Pro Data sheet, www.xilinx.com
7. XtremeDSP Development Kit for Virtex-II Pro, www.xilinx.com
8. Gomez, M.: Hardware-in-the-Loop Simulation. Embedded Systems Programming 14(13)

(2001)
9. Bravo Martinez, A.: Algorithm CT for Calculating the Typical Testors of k-valued Matrix.

Revista Ciencias Matematicas 4(2), 123–144 (1983) (in Spanish)
10. Santiesteban-Alganza, Y., Pons-Porrata, A.: LEX: A New Algorithm for Computing

Typical Testors. Revista Ciencias Matemáticas 21(1), 85–95 (2003) (in Spanish)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

