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Abstract 
 
It has been demonstrated with recent software 
implementations of context modeling the capability of 
PPM (Prediction by Partial Matching) [1] type of 
algorithms to achieve very high compression rates. 
However, the cost is high in terms of computational 
complexity and low speed. Hardware implementations of 
compression algorithms are capable of increasing 
compression speed by at least an order of magnitude 
compared with same compression methods implemented 
in software. In this paper we investigate and study the 
issues related to simplification of one PPM type of 
algorithms, the PPMC [2] to achieve high performance. 
 
1. Introduction 
 

Nowadays, there is an ever-increasing demand for 
faster and better digital communications.  The explosive 
growth of telecommunications requires large amounts of 
data to be transmitted or stored in the least possible time. 
Data compression allows systems both to gain space for 
storage and increase the bandwidth for data transmission, 
offering a vehicle for cost reduction and efficient 
operation. Examples of devices that benefit from data 
compression are routers, hard disks and modems. 

There is a continuing demand for improved 
compression. Network applications make it difficult for 
software compression to deliver the demanding speeds. 
Hardware lossless data compression helps digital devices 
to handle large volumes of data and satisfy the required 
compression speeds, enhancing the scope and cost-
effectiveness of data transmission.  

Generally, commercial hardware data compressors are 
dictionary-based and use LZ-type of algorithms [3]. 
Statistical algorithms, as PPMC that predict symbols 
based on statistics, achieve higher compression but at the 
expense of higher complexity and lower speed. To date, 
the research into PPMC compression model has generated 
only software simulations and no hardware 
implementations have been developed. This paper 
identifies and analyses the main computational 
requirements of PPMC, analyzes the interaction and 
tradeoffs between algorithmic desired characteristics and 

hardware capabilities to ensure the effective mapping of 
algorithmic computational requirements into compression 
architectures.  

The remainder of this paper is organized as follows. 
Section 2 covers related work and explores the PPMC 
technique. Section 3 identifies its main computational 
requirements. Section 4 looks into the issues that impact 
compression performance and hardware design. Section 5 
shows the hardware modeling and Section 6 looks into the 
hardware requirements. Finally Section 7 concludes. 
 
2. Related work 
 

The PPMC model is the first practical implementation 
of the PPM class of compression algorithms[2]. The 
scheme maintains a dictionary containing a statistical 
model of the data, assigns probabilities to the symbols and 
sends these probabilities to an arithmetic  coder[4], which 
codifies these probabilities into bits.   

The statistical model in its simplest form counts the 
number of times each symbol has occurred in the past and 
assigns a probability of occurrence to the symbols 
accordingly. A more sophisticated model is context based, 
where not just the frequency of the symbol is used to 
predict but also the particular sequence of symbols that 
immediately preceded that symbol. This sequence of 
symbols is called context and its length is the order of the 
context. 

A PPMC model of order o reads a symbol s and 
considers the previous o symbols as the current context. 
Then it searches in the dictionary for the symbol s 
preceded by the context of order o. If the symbol is found, 
its probability is sent to the coder. If the symbol is not 
found, the model estimates the probability of the novel 
event by ‘escaping’ to the next lower order o-1, 
transmitting an escape code (esc). Then, the process 
continues until the symbol is found or the model reaches 
the order –1, where all symbols have the same probability 
of occurrence. The model is then updated adding the 
symbol s to the corresponding contexts. Next, s becomes 
part of the oth order context to predict the next symbol. 

PPMC ‘computes’ symbol and escape probabilities 
using the method C (from where the model takes its name) 
with the following formulas: 
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where p(s|context) is the probability that symbol s will 
occur given that context has occurred; fs is the frequency 
count of symbol s; k is the number of different symbols 
seen in the current context, and t is the sum of the 
frequency counts of all symbols in the current context.  

The PPMC algorithm is carefully tuned to improve 
compression and increase execution speed by using lazy 
exclusions [5], taking into account frequency counts in 
context levels at or above the context in which a symbol 
was predicted. Then, in the updating process just these 
frequency counts are updated. 

Table 1 shows a 2nd order PPMC model at some stage 
in the compression process. An ‘empty’ context means 
that there is no context to follow; the counts represent the 
frequency of the symbols. Frequency  counts of 0 indicate 
that the symbol has not been seen in the corresponding 
context. The ‘total’ is the sum of the frequency counts (t). 
Order -1 is a special case that has, and thus predicts, all 
possible symbols of 8 bits, so t=256.  

For example, in English text if the stream ‘th’ occurred, 
it is more probable the next symbol would be ‘e’ rather 
than ‘u’. Then, according to Table 1, if the current context 
is ‘th’ and the incoming symbol were ‘u’, the model 
escapes from 2nd order with 059.0=h')p('esc'|'t , and the 
symbol is predicted by order 1 with 009.0)'|''(' =hup . 
Later, during the model updating, the frequency counts 
and the total are augmented by 1. Table 1 would update 
‘u’ count in 2nd and 1st orders, from 0 to 1 and from 2 to 3 
respectively. 

 Note that from Table 1 p(‘i’|‘th’)=0.217 and 
p(‘i’|‘h’)=0.115. Then, the entropy, El= - log2 pl, 
quantifies the information content, where El is the entropy 
and pl is the probability of the lth symbol. 

According to this formula, symbol ‘i’ would be 
codified with 2.20 and 3.12 bits in 2nd and 1st orders 
respectively. Generally and as shown in this example, the 
higher the order of the context the higher the probability 
of occurrence and the fewer the bits needed to codify the 
symbol. Thus, the higher the order the better the 
compression. 

The arithmetic coder [4] requires the probabilities in 
the form of cumulative frequencies (provided by the 
model) to encode the symbols. Any practical 
implementation of the model considers restrictions of the 
maximum frequency counts the model can handle. The 
model avoids overflow of the counts by halving all of 
them once a certain threshold has been reached. This 
technique is called count scaling. 

Some other variants of PPM models have emerged: 
PPMD [6], PPMD+ [7], PPM* [8], PPMZ [9], PPMII 
[10], they differ in terms of escape strategy and order of  

 
the model. Most of the models maintain digital search 
trees or tries, particularly suited for fast search operations 
in software. Other authors explore prefix trees in PPM* 
[11] to overcome compression of previous versions, or 
self-organizing lists as elements of hash tables [12] to 
improve speed. However, none of these variants seem 
suitable for simplification and practical implementation in 
hardware. 

It was mentioned in [12] that the complexity and space 
requirements of PPMC algorithm have prevented its 
practical use, and no hardware implementations have been 
built. Ten years later, current advances in technology 
allow fitting millions of gates in a single chip, which 
makes worth reviewing the algorithm. 

 
3. Key computational requirements 
 

After reviewing PPMC, the searching and updating 
processes can be identified as the most demanding. As 
mentioned in [13], the more complex algorithms generally 
use more complex data structures, and the reduction in 
speed is generally due to searches and maintenance of 
these structures.  

As well as searching and updating, other issues emerge 
when implementing the algorithm, related with space 
constrains, where scaling counts and discarding policy 
become important. Discarding refers to the measures 
adopted by developers to continue model adaptation once 
the dictionary space allocated for the model has been 
occupied. Next we will describe each of the issues. 

The first computational requirement we consider is 
searching. In PPMC software implementation [2] the 
searching time is O(log2 n), where n is the number of 
items in the trie, this results in a two-fold speed increase 
from previous PPM implementations, but additional space 
is required for the maintenance of the structure. Also self-
organizing lists have been used for PPMC [12], where 
searching and updating time is limited by the size of the 

Table 1. Example of the PPMC model* 

Order 2 1 0 -1 

Context 
Symbols 

‘th’ ‘h’ empty empty 

‘a’ 8 33 226 1 
‘e' 51 110 362 1 
‘i’ 22 24 188 1 
‘o’ 7 16 248 1 
sp 6 14 781 1 
‘.’ 1 1 16 1 
‘u’ 0 2 84 1 

Total (t) 95 200 1,905  

* The frequency counts were obtained from 
a piece of English text of the file alice29.txt, 

part of Canterbury Corpus [16] 
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list. Frequently-occurring symbols require a lower 
searching time. Generally, as the order of the model 
increases, the searching operations become slower.  

Second, we consider the model updating process. The 
complexity of the model updating process depends on two 
main issues: 1) the data structure that stores the modeling 
information and 2) how information is stored. Simple data 
structures and simple data usually lead to simple updating 
processes. The PPMC model maintenance requires 
updating symbol and context frequency counts. When 
counts are not kept in cumulative form they must be 
computed on-the-fly, which is time consuming. As the 
model order increases, updating becomes more complex.  
The insertion time of a new dictionary entry depends on 
the data structure. A table may require O(1), while a trie 
may take O(o), where o is itself the order of the model. 
Updating cumulative frequency counts in a table may take 
O(q) where q is the size of the alphabet. However, if 
efficient structures [14] are considered, the time may be 
reduced to O(log2q).  

Third, the discarding policy is important due to the 
storage space limitations for modeling information. In 
PPMC [2], the trie growth proceeds at full speed while 
memory is available. Once the memory is exhausted, the 
entire trie is discarded. To avoid inefficient coding at this 
stage, the model keeps the last 2,048 symbols transmitted 
and rebuilds the trie from this information. This solution 
lessens the degradation in compression performance due 
to rebuilding. 

Finally, we consider scaling. Since storage space is 
restricted, the maximum number of bits for frequency 
counts is limited. To avoid overflow, the model scales 
counts. In addition to solving the problem, the 
compression ratio of the model is slightly improved[5]. 
However, the time consumption increases and makes the 
entire compression process slower and probably not worth 
the increase in compression rates. 

Discarding policy and scaling counts are irrelevant to 
the algorithm itself but they have to be considered for its 
implementation, and may have a big impact in its 
performance due to the number and type of operations 
performed. 

One last computational requirement, associated with 
modeling is the coding process. In particular, arithmetic 
coding executes adds, multiplications and divisions during 
the coding process [4]. Due to the complexity of the 
divide operations, it is expected that arithmetic coder will 
execute slowly.  

Simpler operations are performed faster but care must 
be taken if compression performance is to be maintained. 
Additionally, some operations for a renormalization 
procedure [15] have to be considered. 
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Figure 1. Performance comparison of PPMC and 

commercial chips 
 
4. Compression performance 
 

In this section we consider several issues that impact 
the PPMC compression performance and that must be 
considered for its hardware implementation. The most 
important is the data structure that will store the model, 
then the dictionary size, block size, order of the model and 
discarding policy, as all of these issues have direct impact 
in its hardware requirements and performance. We 
compare the performance of PPMC algorithm against 
several commercial compression chips and later we focus 
on relevant characteristics for a hardware design of the 
algorithm. 

Experiments show how and to what extent the design 
issues impact compression performance. Canterbury 
Corpus [16] is used as a test bed, it includes a collection 
of  11 files, ranging in size from 3K to 1,029K, from C 
and LISP source code, html files, technical writings and 
text files.  
 
4.1 Data structure 
 
The data structure was selected as the most  important 
issue due to the impact in area requirements in a hardware 
implementation of this algorithm. Area requirements have 
been one of the issues that have stopped the hardware 
development of PPMC, since a direct implementation of a 
binary search tree can be complex. Also, this structure is 
what stores the modeling information. Binary search trees 
are tuned for fast software operations and a better 
hardware replacement must be considered. Literature 
shows [13, 17, 18] that CAMs (Content-Addressable 
Memories) are such replacement. They have the ability to 
search its entire list of available codes in a single 
transaction.  

To observe how PPMC performs using a matrix data 
structure (that can be directly implemented in a CAM 
array in hardware), it is compared with commercial 
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Figure 2. Impact of dictionary size in compression 

performance of PPMC 
 

compression chips. All of them use CAMs for model 
storage and are LZ-based (use LZ[3] algorithms), 
including LZS [17], ALDC [18] and DCLZ [19]. X-Match 
[20] is also dictionary-based but uses a different 
algorithm. To provide fair results, all algorithms are set to 
similar circumstances. The results from the commercial 
chips were obtained executing demo versions provided by 
the companies. Compression ratios result from dividing 
input bits by output bits, the lower the ratio the better the 
compression. 

In spite of the restrictions imposed to PPMC it is the 
best performer, see Figure 1. The experiments of the 
following sections use a similar data structure for model 
storage because it best resembles a CAM array. Thus it 
seems sensible to consider in more depth the design of 
hardware structures to support this. 
 
4.2 Dictionary size 

 
The storage space available limits the dictionary size, 

which impacts the compression performance. Intuitively, 
the bigger the dictionary the more accurate statistics of the 
data can be learn. But also, the smaller the dictionary the 
lower the space requirements. So, finding a balance 
between dictionary size and compression warrants high 
compression performance.  

To find that balance, a 3rd order PPMC model is 
simulated and different dictionary sizes are applied for 
every run. The results are shown in Figure 2, where each 
dictionary entry on the X-axis is a 3rd order context plus 
the symbol it predicts. As expected, compression improve 
as the dictionary size increases. 

With smaller dictionaries, the increase in space 
requirements are not significant and the gains in 
compression are considerable. However, as the dictionary 
size increases, these gains become smaller, until the 
increase in compression is not worth the increase in space 
requirements. Additional space for frequencies and/or 
cumulative frequencies has to be considered. 
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 Figure 3. Impact of block size on compression 
performance 

 
 
 
 
 
 
 
 
 
4.3 Block size 

 
According to the application of the PPMC compressor, 

it can compress blocks of different sizes. For example, for 
software compression used in off-line applications, an 
entire file can be compressed. However, in on-line or on-
the-fly applications, like computer networks, it is not 
possible to compress entire files, since information is 
transmitted in packets of a fixed size, depending on the 
network. So, we investigate the impact of the block size 
on the PPMC model performance. We have carried out 
experiments with compressing blocks of different sizes, 
ranging from 256 bytes to 32,768 bytes. Figure 3 shows 
the experimentation results. The dictionaries are large 
enough to allocate the biggest block size tested without 
reusing space. According to our results, compression 
performance improves as block size increases.  It is 
expected that large blocks require more space for model 
storage than small blocks, if the compression ratio is to be 
maintained. So, a careful selection of block size is 
required. 

 
4.4 Order of the model 
 

It has been mentioned in section 2 that the higher the 
order of the model, the better the compression, but it is 
also true that the compression speed diminishes and the 
space requirements increase considerably. To find a 
balance between these requirements and the compression 
results, it has been carried out some experimentation.  

Table 2. Impact of model order on 
compression performance 

Model 
Order Compression rates 

0th 0.556 

1st 0.467 

2nd 0.405 

3rd 0.388 
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Table 3. Percentage predictions for each 
order of the model with Canterbury 

Corpus 

Order of the contexts Order 
of the 
model 3rd  2nd  1st  0th  -1st  

3rd 58.75 13.34 16.12 8.74 3.05 

2nd  74.12 15.04 7.91 2.93 

1st   89.32 7.80 2.88 

 
As part of a study of the order of the model, we 

considered the percentage of predictions made by each 
context order within the model. Orders of the model 
considered for this experiment are 1st, 2nd and 3rd. The 
dictionary size is 2,048 positions for 3rd, 2nd and 1st orders  
and 257 and 256 positions for 0th and –1st respectively. 
The block size is 4,096 bytes due to this size represents a 
typical packet size found in many computers and 
telecommunication systems. The discarding policy is 
LRU.  

The experiment helps to identify how much weight 
each context order has in the model and if the type of data 
influence that result. This fact may help later on to 
determine the size of the dictionary. 

Results are shown in Table 2. The figures in the table 
confirm that the higher the order the better the 
performance. Higher order models (above 3) were not 
tested, but there are studies in the literature [8] that reveal 
that for text, there is a little improvement in compression 
performance with models of orders higher than 5. 

 The percentage of predictions is showed in Table 3. 
The first row shows results for a 3rd order model and 
indicates the percentage of the order of the contexts that 
compose it. The second and third rows show results for 
2nd and 1st order models respectively. More than 50% of 
the predictions are made by the 3rd order contexts and 
surprisingly, more symbols are predicted by the 1st order 
contexts than by the 2nd order ones. 

The statistics of the model gathered by the highest 
order contexts are more accurate; for this reason, although 
in higher order models the percentage of predictions in the 
highest context seems to diminish, the compression ratios 
improve. 

It is worth mentioning that, normally, PPM models 
have an exponential growth of memory as the order of the 
model increases [8], see Table 4. 

This case considers keeping all possible contexts in the 
model. However, a practical implementation of PPMC 
must observe space limitations. An advantage of using a 
CAM-like structure in a hardware implementation, is that 
the space requirements can grow linearly allowing 
significant memory savings. 

Table 4. Possible number of contexts as the 
order of the model increases 

Model Order Possible contexts 
0th 256 

1st (256)2=65,536 
2nd (256)3=16,777,216 
3rd (256)4=4,294,947,296 

 
4.5 Discarding policy 
 

A discarding policy is a technique used to continue 
model adaptation once the space assigned for model 
storage has been exhausted. The most common discarding 
policies in practical compression implementations are: 

•  LRU (Least Recently Used). The system keeps 
track of the recently used phrases. The phrase to 
discard is the least recently used.  

• LFU (Least Frequently Used). This policy is 
similar to LRU, except that it maintains 
frequently used phrases. The phrase discarded is 
the one with fewer occurrences. 

• Climb and Reset (either randomly any entry or 
the entire model). Climb policy moves up one 
position the entry that just matched, it can be 
performed in constant time [21]. Resetting 
randomly any entry requires generating the 
random positions to be discarded, this seems to 
be the simplest policy but the worst performer. 

Table 5 summarizes our analysis on these policies. 
From the literature [2,4,16] and our analysis we know that 
LRU policy ensures the maximum memory utilization, and  
it adapts well to changes. However, resetting the entire 
dictionary is the simplest and more attractive policy to be 
implemented in hardware. 

It has to be considered that both discarding policies, 
LRU and resetting (the entire dictionary) have 
considerable advantages for a practical implementation of 
the PPMC algorithm. On one hand, LRU provides good 
compression ratios, on the other hand, resetting is a very 
simple approach to continue adaptation. However, both 
also have disadvantages, LRU is time consuming and 
depending on the statistics storage (specially in a 
hardware implementation if a CAM is to be used) the 
adaptation can be very complex. Then, a balance has to be 
done in choosing the better discarding policy according to 
the application requirements. 

 
4.6 Multi-dictionary model 
 

As two discarding policies have been considered the 
best in last section for their good adaptation and simplicity 
respectively, we propose merging them to provide faster 
and simpler reuse of dictionary positions. This merging 



 6

 
 
results in a multi-dictionary model, that looks for the 
simplification of the LRU complexity and the 
improvement of the compression performance of reset 
policy. It uses each dictionary for storing contexts of a 
single order. For example, a 2nd order model has 4 
dictionaries, for  –1st, 0th, 1st and 2nd order contexts 
respectively. The strategy to follow is simple; when one of 
the dictionaries (except for orders –1 and 0) becomes full, 
it can be reset.  

This combined discarding policy has not been tested, 
so there is not knowledge about the performance of the 
model under these conditions. The following experiment 
should provide this knowledge.  A 3rd order model is 
simulated, the dictionary and block sizes are the same as 
for the last experiment. Obviously, the discarding policies 
are LRU and resetting the dictionaries that fill up. 

When the dictionaries fill up the space assigned to 
them they are reset, except for orders –1 and 0. To 
compare the results, a model with separated dictionaries 
but using the LRU policy was simulated. 

Table 6 shows the compression results of this multi-
dictionary policy. The first column shows the compression 
ratio when storing the modeling information in a single 
dictionary. The second and third columns show results for 
a multi-dictionary PPMC, using the LRU and resetting an 
entire dictionary discarding policy respectively. From the 
table, storing data in separated dictionaries and resetting 
one of the dictionaries does not harm compression ratios, 
just a minimum 1% degradation is observed compared 
with the LRU policy. 

Table 7 shows the space requirements for the model 
that stores the data in a single dictionary and uses an LRU.  

Table 6. Compression performance of the 
compression model 

PPMC 
single dictionary 

LRU 
policy 

Resetting a 
dictionary 

0.389 0.388 0.393 

 
Table 7. Space requirements for a single 

dictionary 
Space requirements (bits) Dictionary 

order Symbols Frequencies Cumulative 
frequencies 

3rd, 2nd, 1st 65,536 73,728 73,728 

0th 2,313 3,084 3,084 

-1 2,048 2,048 2,048 
Total 227,617 bits 

 
Table 8. Space requirements for separated 

dictionaries 

Space requirements (bits) Dictionary 
order Symbols Frequencies Cumulative 

frequencies 
3rd 65,536 24,576 24,576 
2nd 49,152 24,576 24,576 
1st 32,768 24,576 24,576 

0th 2,313 3,084 3,084 
-1st 2,048 2,048 2,048 

Total 309,537 bits 
 
The extra requirements for maintaining the policy are 

to be considered, at least 2,048*9 (length of the dictionary 
* width) bits are required. 

Table 8 shows the space requirements for the multi-
dictionary model. A few bits more are necessary to keep 
the number of positions being used in each dictionary. 

Comparing Table 7 and Table 8, it can be seen that up 
to 21% extra space is required when the model is stored in 
separated dictionaries. 

Independently of the discarding policy used, separating 
the modeling information in several dictionaries does not 
harm compression ratios, as this experiment showed. 

Resetting part of the model when one of the 
dictionaries has filled up provides compression ratios 
close to the LRU policy and simplifies considerably the 
complexity of the model at the cost of higher space 
requirements. This may be the equivalent to the discarding 
policy used in [2], where part of the trie is kept to 
reinitialize the model. 

It is worth mentioning that an additional, and very 
important, gain of using multiple dictionaries is the 
possibility of searching for the symbols in parallel, i.e .it is 
possible to look in all the dictionaries for the symbol at 
the same time, what reduces considerably the searching 
time. 

Table 5. Common discarding policies used in 
compression practical implementations 

Discarding 
policy Function Advantages Disadvantages 

Least 
Recently 
Used 
(LRU) 

Removes 
the 'oldest' 
entry 

Discard less 
probable 
symbols/contexts 

Maintains sorted 
the used 
dictionary 
positions 

Least 
Frequently 
Used 
(LFU) 

Removes 
entries 
used less 
times 

Do not move/add 
counts 

Maintains sorted 
the use 
frequency 
dictionary 
positions 

Climb 

Moves 
only one 
position to 
the front 

Easy to maintain 
Need to 'move' 
data and 
frequency counts 

Reset 
Randomly 

Frees any 
entry 
randomly 

Do not need to 
manage the 
positions to free 

Generates 
random 
numbers. Need 
to update many 
counts 

Reset the 
Entire 
Dictionary 

Resets the 
dictionary 

Very easy to 
maintain 

May harm 
compression 
results 
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4.7 Resizing the dictionary 
 

From Table 3 we know the percentage of predictions 
made by each order context and from Table 6 we know 
that the multi-dictionary model not really harms 
compression ratios. Taking into account both results, it 
seems helpful to resize the dictionaries according to the 
percentage of symbols predicted in each context. This 
could result in considerable savings in space. 

The simulation of the model has been done separating 
contexts of the same order in different dictionaries and 
having different space limitations proportionally to the 
percentage of predictions made by each context order.  

The compression ratio obtained was 0.397, just about 
1% of degradation compared with the model that uses 
multiple dictionaries but has 2,048 positions for each of 
them. In this case, the dictionary of 2nd order contexts 
saves 75% of the positions and the dictionary of 1st order 
contexts halves its size. 

Then, there are significant savings in space 
requirements, about 59% as shown in Table 8 and 
compared with Table 9. 

From this experiment we can conclude that it is 
possible to change the dictionary sizes according to the 
percentage of predictions given in each context order.  

A good measure to minimize space requirements in this 
model is to further study the order of the model to 
implement, and the weight that the contexts of each order 
have in the predictions. If possible, the study of the type 
of data also helps to define well-balanced dictionaries in 
terms of size, as this experiment confirms. 

 
5. Hardware Modeling 
 

PPMC hardware suitability is proved by the 
implementation of a 1st order hardware-modeling unit 
coupled with an arithmetic coder module. This unit is 
modeled with the SystemC modeling platform from the 
Open SystemC Initiative (OSCI). Our system is compiled 
with the VC ++ compiler, version 6.0, on a Windows NT 
platform. The assumptions are indicated in Table 10, and 
the arithmetic coder module uses the code from [4], which 
was adapted to the new requirements. The coder inputs the 
output signals from the model. 

Both, compressor and decompressor were built as 
SystemC designs, the compression results were verified 
against a behavioral C language simulation.   

Figure 4 illustrates the pseudocode of the algorithm for 
the compressor. Input data are entered to a shift register 
that assembles the context and the input symbol to 
produce the dictionaries input. When indicated by the 
control, this context and symbol are searched in parallel in 
the dictionaries. Each dictionary inputs the contexts 
according to its order.  

Table 9. Space requirements resizing the 
dictionaries 

Space requirements Dictionary 
order Symbols Frequencies Cumulative 

frequencies 
3rd 65,536 24,576 24,576 

2nd 12,288 6,144 6,144 

1st 16,384 12,288 12,288 

0th 2,313 3,084 3,084 

-1st 2,048 2,048 2,048 
Total 194,849 bits 

 
Cumulative frequency counts are transferred from the 

dictionaries to the output logic. If the search operation in a 
dictionary is not successful, escape cumulative 
frequencies are output. The output logic selects the best 
match and sends it to the coder together with other signals 
needed to codify them and form the compressed data. 

There is one dictionary per every order of the model. 
The dictionary of order –1 contains the control logic and 
an array of symbol frequencies in cumulative form, where 
the index in the array indicates the symbol. Dictionaries of 
order 0 and above contain a memory block and two 
registers. They are managed by simple control logic 
indicating when to search or update. The memory block 
includes a CAM array to store the input data and two 
register files to store the frequency counts and cumulative 
frequency counts of the symbols and their contexts. 

The decompressor architecture is similar to the 
compressor although its task is more complex. Its 
operations include serial and parallel searches. Serial 
searches are required when the model looks for symbols. 
When the model is being updated, it requires searching for 
escape symbols and, in this case, parallel searches in the 
dictionaries are performed. 

 
6. Hardware Requirements 
 

The architecture of the model, simulated in behavioral 
form, was analyzed to get an estimated number of gates 
required. The model estimated gate count is based on the 
1st order model of Figure 4 and is shown in Table 11. 

The compressor architecture estimated size is 
approximately 3 million NAND equivalent gates, from 
which most of the space is assigned to storage and 
updating of data. 

On average, 3.29 and 7.5 behavioral clock cycles are 
required to process a symbol for compressor and 
decompressor respectively. These figures were obtained 
by dividing the number of behavioral clock cycles 
required to compress complete data set by the number of 
symbols compressed. The figures are simulation times and 
do not necessarily correspond to machine cycles. 
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Clear the dictionaries; 
Set LC(longest context) to context; 
set CO (context order) to order of the model; 
 
DO 
{ 

read in a symbol from the data stream; 
search for LC & incoming symbol in all the dictionaries; 

          select best match and set BMO = order of best match; 
IF (order of best match = CO) 
{ 

output symbol cumulative frequencies; 
update frequencies in dictionary of CO; 

         } 
         ELSE 
        { 
               from BMO to CO do: 
                      output ‘escapes’ (CFEsc) of orders BMO+1 to CO; 
                      output CFs from BMO; 
                      add LC + symbol to dictionaries of  orders BMO+1 to    
                        CO); 
                      update frequency counts in dictionary of BMO; 
        } 
        recompute cumulative frequencies, CFs; 
        update LC; 
         compute arithmetic coding operations; 
} WHILE( more data is to be compressed); 

Figure 4. Pseudocode for the parallel PPMC  
 
It seems feasible to implement the PPMC model using 

present day technology, in a single digital VLSI integrated 
circuit or in other technologies such as FPGAs, e.g. Xilinx 
FPGA Virtex-II family, that has up to 10 million usable 
gates. Further work involves taking this design into an 
FPGA to get accurate performance results. 

 
7. Conclusions 
 

PPMC statistical model has been analyzed, its main 
computational requirements and its hardware design issues 
have been identified. A new hardware architecture has 
been proposed for this algorithm that promises high 
operating speeds while maintaining its compression 
performance. 
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