

©2003 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or to

reuse any copyrighted component of this work in other works must be obtained

from the IEEE.”

 1

High performance PPMC Compression Algorithm

Feregrino Uribe C.
Computer Science Department, National Institute for Astrophysics, Optics and Electronics,

P.O.Box 51 and 216, Puebla, 72000, Mexico
cferegrino@inaoep.mx

Abstract

It has been demonstrated with recent software
implementations of context modeling the capability of
PPM (Prediction by Partial Matching) [1] type of
algorithms to achieve very high compression rates.
However, the cost is high in terms of computational
complexity and low speed. Hardware implementations of
compression algorithms are capable of increasing
compression speed by at least an order of magnitude
compared with same compression methods implemented
in software. In this paper we investigate and study the
issues related to simplification of one PPM type of
algorithms, the PPMC [2] to achieve high performance.

1. Introduction

Nowadays, there is an ever-increasing demand for
faster and better digital communications. The explosive
growth of telecommunications requires large amounts of
data to be transmitted or stored in the least possible time.
Data compression allows systems both to gain space for
storage and increase the bandwidth for data transmission,
offering a vehicle for cost reduction and efficient
operation. Examples of devices that benefit from data
compression are routers, hard disks and modems.

There is a continuing demand for improved
compression. Network applications make it difficult for
software compression to deliver the demanding speeds.
Hardware lossless data compression helps digital devices
to handle large volumes of data and satisfy the required
compression speeds, enhancing the scope and cost-
effectiveness of data transmission.

Generally, commercial hardware data compressors are
dictionary-based and use LZ-type of algorithms [3].
Statistical algorithms, as PPMC that predict symbols
based on statistics, achieve higher compression but at the
expense of higher complexity and lower speed. To date,
the research into PPMC compression model has generated
only software simulations and no hardware
implementations have been developed. This paper
identifies and analyses the main computational
requirements of PPMC, analyzes the interaction and
tradeoffs between algorithmic desired characteristics and

hardware capabilities to ensure the effective mapping of
algorithmic computational requirements into compression
architectures.

The remainder of this paper is organized as follows.
Section 2 covers related work and explores the PPMC
technique. Section 3 identifies its main computational
requirements. Section 4 looks into the issues that impact
compression performance and hardware design. Section 5
shows the hardware modeling and Section 6 looks into the
hardware requirements. Finally Section 7 concludes.

2. Related work

The PPMC model is the first practical implementation
of the PPM class of compression algorithms[2]. The
scheme maintains a dictionary containing a statistical
model of the data, assigns probabilities to the symbols and
sends these probabilities to an arithmetic coder[4], which
codifies these probabilities into bits.

The statistical model in its simplest form counts the
number of times each symbol has occurred in the past and
assigns a probability of occurrence to the symbols
accordingly. A more sophisticated model is context based,
where not just the frequency of the symbol is used to
predict but also the particular sequence of symbols that
immediately preceded that symbol. This sequence of
symbols is called context and its length is the order of the
context.

A PPMC model of order o reads a symbol s and
considers the previous o symbols as the current context.
Then it searches in the dictionary for the symbol s
preceded by the context of order o. If the symbol is found,
its probability is sent to the coder. If the symbol is not
found, the model estimates the probability of the novel
event by ‘escaping’ to the next lower order o-1,
transmitting an escape code (esc). Then, the process
continues until the symbol is found or the model reaches
the order –1, where all symbols have the same probability
of occurrence. The model is then updated adding the
symbol s to the corresponding contexts. Next, s becomes
part of the oth order context to predict the next symbol.

PPMC ‘computes’ symbol and escape probabilities
using the method C (from where the model takes its name)
with the following formulas:

 2

kt
k

contextescp
kt

f
contextsp s

+
=

+
=)|(and)|((1)

where p(s|context) is the probability that symbol s will
occur given that context has occurred; fs is the frequency
count of symbol s; k is the number of different symbols
seen in the current context, and t is the sum of the
frequency counts of all symbols in the current context.

The PPMC algorithm is carefully tuned to improve
compression and increase execution speed by using lazy
exclusions [5], taking into account frequency counts in
context levels at or above the context in which a symbol
was predicted. Then, in the updating process just these
frequency counts are updated.

Table 1 shows a 2nd order PPMC model at some stage
in the compression process. An ‘empty’ context means
that there is no context to follow; the counts represent the
frequency of the symbols. Frequency counts of 0 indicate
that the symbol has not been seen in the corresponding
context. The ‘total’ is the sum of the frequency counts (t).
Order -1 is a special case that has, and thus predicts, all
possible symbols of 8 bits, so t=256.

For example, in English text if the stream ‘th’ occurred,
it is more probable the next symbol would be ‘e’ rather
than ‘u’. Then, according to Table 1, if the current context
is ‘th’ and the incoming symbol were ‘u’, the model
escapes from 2nd order with 059.0=h')p('esc'|'t , and the
symbol is predicted by order 1 with 009.0)'|''(' =hup .
Later, during the model updating, the frequency counts
and the total are augmented by 1. Table 1 would update
‘u’ count in 2nd and 1st orders, from 0 to 1 and from 2 to 3
respectively.

 Note that from Table 1 p(‘i’|‘th’)=0.217 and
p(‘i’|‘h’)=0.115. Then, the entropy, El= - log2 pl,
quantifies the information content, where El is the entropy
and pl is the probability of the lth symbol.

According to this formula, symbol ‘i’ would be
codified with 2.20 and 3.12 bits in 2nd and 1st orders
respectively. Generally and as shown in this example, the
higher the order of the context the higher the probability
of occurrence and the fewer the bits needed to codify the
symbol. Thus, the higher the order the better the
compression.

The arithmetic coder [4] requires the probabilities in
the form of cumulative frequencies (provided by the
model) to encode the symbols. Any practical
implementation of the model considers restrictions of the
maximum frequency counts the model can handle. The
model avoids overflow of the counts by halving all of
them once a certain threshold has been reached. This
technique is called count scaling.

Some other variants of PPM models have emerged:
PPMD [6], PPMD+ [7], PPM* [8], PPMZ [9], PPMII
[10], they differ in terms of escape strategy and order of

the model. Most of the models maintain digital search
trees or tries, particularly suited for fast search operations
in software. Other authors explore prefix trees in PPM*
[11] to overcome compression of previous versions, or
self-organizing lists as elements of hash tables [12] to
improve speed. However, none of these variants seem
suitable for simplification and practical implementation in
hardware.

It was mentioned in [12] that the complexity and space
requirements of PPMC algorithm have prevented its
practical use, and no hardware implementations have been
built. Ten years later, current advances in technology
allow fitting millions of gates in a single chip, which
makes worth reviewing the algorithm.

3. Key computational requirements

After reviewing PPMC, the searching and updating
processes can be identified as the most demanding. As
mentioned in [13], the more complex algorithms generally
use more complex data structures, and the reduction in
speed is generally due to searches and maintenance of
these structures.

As well as searching and updating, other issues emerge
when implementing the algorithm, related with space
constrains, where scaling counts and discarding policy
become important. Discarding refers to the measures
adopted by developers to continue model adaptation once
the dictionary space allocated for the model has been
occupied. Next we will describe each of the issues.

The first computational requirement we consider is
searching. In PPMC software implementation [2] the
searching time is O(log2 n), where n is the number of
items in the trie, this results in a two-fold speed increase
from previous PPM implementations, but additional space
is required for the maintenance of the structure. Also self-
organizing lists have been used for PPMC [12], where
searching and updating time is limited by the size of the

Table 1. Example of the PPMC model*

Order 2 1 0 -1

Context
Symbols

‘th’ ‘h’ empty empty

‘a’ 8 33 226 1
‘e' 51 110 362 1
‘i’ 22 24 188 1
‘o’ 7 16 248 1
sp 6 14 781 1
‘.’ 1 1 16 1
‘u’ 0 2 84 1

Total (t) 95 200 1,905

* The frequency counts were obtained from
a piece of English text of the file alice29.txt,

part of Canterbury Corpus [16]

 3

list. Frequently-occurring symbols require a lower
searching time. Generally, as the order of the model
increases, the searching operations become slower.

Second, we consider the model updating process. The
complexity of the model updating process depends on two
main issues: 1) the data structure that stores the modeling
information and 2) how information is stored. Simple data
structures and simple data usually lead to simple updating
processes. The PPMC model maintenance requires
updating symbol and context frequency counts. When
counts are not kept in cumulative form they must be
computed on-the-fly, which is time consuming. As the
model order increases, updating becomes more complex.
The insertion time of a new dictionary entry depends on
the data structure. A table may require O(1), while a trie
may take O(o), where o is itself the order of the model.
Updating cumulative frequency counts in a table may take
O(q) where q is the size of the alphabet. However, if
efficient structures [14] are considered, the time may be
reduced to O(log2q).

Third, the discarding policy is important due to the
storage space limitations for modeling information. In
PPMC [2], the trie growth proceeds at full speed while
memory is available. Once the memory is exhausted, the
entire trie is discarded. To avoid inefficient coding at this
stage, the model keeps the last 2,048 symbols transmitted
and rebuilds the trie from this information. This solution
lessens the degradation in compression performance due
to rebuilding.

Finally, we consider scaling. Since storage space is
restricted, the maximum number of bits for frequency
counts is limited. To avoid overflow, the model scales
counts. In addition to solving the problem, the
compression ratio of the model is slightly improved[5].
However, the time consumption increases and makes the
entire compression process slower and probably not worth
the increase in compression rates.

Discarding policy and scaling counts are irrelevant to
the algorithm itself but they have to be considered for its
implementation, and may have a big impact in its
performance due to the number and type of operations
performed.

One last computational requirement, associated with
modeling is the coding process. In particular, arithmetic
coding executes adds, multiplications and divisions during
the coding process [4]. Due to the complexity of the
divide operations, it is expected that arithmetic coder will
execute slowly.

Simpler operations are performed faster but care must
be taken if compression performance is to be maintained.
Additionally, some operations for a renormalization
procedure [15] have to be considered.

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

X-Match DCLZ ALDC LZS PPMC
Compression algorithms

C
o

m
p

re
ss

io
n

 r
at

io

Figure 1. Performance comparison of PPMC and

commercial chips

4. Compression performance

In this section we consider several issues that impact
the PPMC compression performance and that must be
considered for its hardware implementation. The most
important is the data structure that will store the model,
then the dictionary size, block size, order of the model and
discarding policy, as all of these issues have direct impact
in its hardware requirements and performance. We
compare the performance of PPMC algorithm against
several commercial compression chips and later we focus
on relevant characteristics for a hardware design of the
algorithm.

Experiments show how and to what extent the design
issues impact compression performance. Canterbury
Corpus [16] is used as a test bed, it includes a collection
of 11 files, ranging in size from 3K to 1,029K, from C
and LISP source code, html files, technical writings and
text files.

4.1 Data structure

The data structure was selected as the most important
issue due to the impact in area requirements in a hardware
implementation of this algorithm. Area requirements have
been one of the issues that have stopped the hardware
development of PPMC, since a direct implementation of a
binary search tree can be complex. Also, this structure is
what stores the modeling information. Binary search trees
are tuned for fast software operations and a better
hardware replacement must be considered. Literature
shows [13, 17, 18] that CAMs (Content-Addressable
Memories) are such replacement. They have the ability to
search its entire list of available codes in a single
transaction.

To observe how PPMC performs using a matrix data
structure (that can be directly implemented in a CAM
array in hardware), it is compared with commercial

 4

0.30

0.35

0.40

0.45

0.50

0.55

0.60

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

Dictionary size (entries)

C
o

m
p

re
ss

io
n

 r
at

io

Figure 2. Impact of dictionary size in compression

performance of PPMC

compression chips. All of them use CAMs for model
storage and are LZ-based (use LZ[3] algorithms),
including LZS [17], ALDC [18] and DCLZ [19]. X-Match
[20] is also dictionary-based but uses a different
algorithm. To provide fair results, all algorithms are set to
similar circumstances. The results from the commercial
chips were obtained executing demo versions provided by
the companies. Compression ratios result from dividing
input bits by output bits, the lower the ratio the better the
compression.

In spite of the restrictions imposed to PPMC it is the
best performer, see Figure 1. The experiments of the
following sections use a similar data structure for model
storage because it best resembles a CAM array. Thus it
seems sensible to consider in more depth the design of
hardware structures to support this.

4.2 Dictionary size

The storage space available limits the dictionary size,

which impacts the compression performance. Intuitively,
the bigger the dictionary the more accurate statistics of the
data can be learn. But also, the smaller the dictionary the
lower the space requirements. So, finding a balance
between dictionary size and compression warrants high
compression performance.

To find that balance, a 3rd order PPMC model is
simulated and different dictionary sizes are applied for
every run. The results are shown in Figure 2, where each
dictionary entry on the X-axis is a 3rd order context plus
the symbol it predicts. As expected, compression improve
as the dictionary size increases.

With smaller dictionaries, the increase in space
requirements are not significant and the gains in
compression are considerable. However, as the dictionary
size increases, these gains become smaller, until the
increase in compression is not worth the increase in space
requirements. Additional space for frequencies and/or
cumulative frequencies has to be considered.

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

Block size (symbols)

C
o

m
p

re
ss

io
n

 r
at

io

 Figure 3. Impact of block size on compression
performance

4.3 Block size

According to the application of the PPMC compressor,

it can compress blocks of different sizes. For example, for
software compression used in off-line applications, an
entire file can be compressed. However, in on-line or on-
the-fly applications, like computer networks, it is not
possible to compress entire files, since information is
transmitted in packets of a fixed size, depending on the
network. So, we investigate the impact of the block size
on the PPMC model performance. We have carried out
experiments with compressing blocks of different sizes,
ranging from 256 bytes to 32,768 bytes. Figure 3 shows
the experimentation results. The dictionaries are large
enough to allocate the biggest block size tested without
reusing space. According to our results, compression
performance improves as block size increases. It is
expected that large blocks require more space for model
storage than small blocks, if the compression ratio is to be
maintained. So, a careful selection of block size is
required.

4.4 Order of the model

It has been mentioned in section 2 that the higher the
order of the model, the better the compression, but it is
also true that the compression speed diminishes and the
space requirements increase considerably. To find a
balance between these requirements and the compression
results, it has been carried out some experimentation.

Table 2. Impact of model order on
compression performance

Model
Order Compression rates

0th 0.556

1st 0.467

2nd 0.405

3rd 0.388

 5

Table 3. Percentage predictions for each
order of the model with Canterbury

Corpus

Order of the contexts Order
of the
model 3rd 2nd 1st 0th -1st

3rd 58.75 13.34 16.12 8.74 3.05

2nd 74.12 15.04 7.91 2.93

1st 89.32 7.80 2.88

As part of a study of the order of the model, we

considered the percentage of predictions made by each
context order within the model. Orders of the model
considered for this experiment are 1st, 2nd and 3rd. The
dictionary size is 2,048 positions for 3rd, 2nd and 1st orders
and 257 and 256 positions for 0th and –1st respectively.
The block size is 4,096 bytes due to this size represents a
typical packet size found in many computers and
telecommunication systems. The discarding policy is
LRU.

The experiment helps to identify how much weight
each context order has in the model and if the type of data
influence that result. This fact may help later on to
determine the size of the dictionary.

Results are shown in Table 2. The figures in the table
confirm that the higher the order the better the
performance. Higher order models (above 3) were not
tested, but there are studies in the literature [8] that reveal
that for text, there is a little improvement in compression
performance with models of orders higher than 5.

 The percentage of predictions is showed in Table 3.
The first row shows results for a 3rd order model and
indicates the percentage of the order of the contexts that
compose it. The second and third rows show results for
2nd and 1st order models respectively. More than 50% of
the predictions are made by the 3rd order contexts and
surprisingly, more symbols are predicted by the 1st order
contexts than by the 2nd order ones.

The statistics of the model gathered by the highest
order contexts are more accurate; for this reason, although
in higher order models the percentage of predictions in the
highest context seems to diminish, the compression ratios
improve.

It is worth mentioning that, normally, PPM models
have an exponential growth of memory as the order of the
model increases [8], see Table 4.

This case considers keeping all possible contexts in the
model. However, a practical implementation of PPMC
must observe space limitations. An advantage of using a
CAM-like structure in a hardware implementation, is that
the space requirements can grow linearly allowing
significant memory savings.

Table 4. Possible number of contexts as the
order of the model increases

Model Order Possible contexts
0th 256

1st (256)2=65,536
2nd (256)3=16,777,216
3rd (256)4=4,294,947,296

4.5 Discarding policy

A discarding policy is a technique used to continue
model adaptation once the space assigned for model
storage has been exhausted. The most common discarding
policies in practical compression implementations are:

• LRU (Least Recently Used). The system keeps
track of the recently used phrases. The phrase to
discard is the least recently used.

• LFU (Least Frequently Used). This policy is
similar to LRU, except that it maintains
frequently used phrases. The phrase discarded is
the one with fewer occurrences.

• Climb and Reset (either randomly any entry or
the entire model). Climb policy moves up one
position the entry that just matched, it can be
performed in constant time [21]. Resetting
randomly any entry requires generating the
random positions to be discarded, this seems to
be the simplest policy but the worst performer.

Table 5 summarizes our analysis on these policies.
From the literature [2,4,16] and our analysis we know that
LRU policy ensures the maximum memory utilization, and
it adapts well to changes. However, resetting the entire
dictionary is the simplest and more attractive policy to be
implemented in hardware.

It has to be considered that both discarding policies,
LRU and resetting (the entire dictionary) have
considerable advantages for a practical implementation of
the PPMC algorithm. On one hand, LRU provides good
compression ratios, on the other hand, resetting is a very
simple approach to continue adaptation. However, both
also have disadvantages, LRU is time consuming and
depending on the statistics storage (specially in a
hardware implementation if a CAM is to be used) the
adaptation can be very complex. Then, a balance has to be
done in choosing the better discarding policy according to
the application requirements.

4.6 Multi-dictionary model

As two discarding policies have been considered the
best in last section for their good adaptation and simplicity
respectively, we propose merging them to provide faster
and simpler reuse of dictionary positions. This merging

 6

results in a multi-dictionary model, that looks for the
simplification of the LRU complexity and the
improvement of the compression performance of reset
policy. It uses each dictionary for storing contexts of a
single order. For example, a 2nd order model has 4
dictionaries, for –1st, 0th, 1st and 2nd order contexts
respectively. The strategy to follow is simple; when one of
the dictionaries (except for orders –1 and 0) becomes full,
it can be reset.

This combined discarding policy has not been tested,
so there is not knowledge about the performance of the
model under these conditions. The following experiment
should provide this knowledge. A 3rd order model is
simulated, the dictionary and block sizes are the same as
for the last experiment. Obviously, the discarding policies
are LRU and resetting the dictionaries that fill up.

When the dictionaries fill up the space assigned to
them they are reset, except for orders –1 and 0. To
compare the results, a model with separated dictionaries
but using the LRU policy was simulated.

Table 6 shows the compression results of this multi-
dictionary policy. The first column shows the compression
ratio when storing the modeling information in a single
dictionary. The second and third columns show results for
a multi-dictionary PPMC, using the LRU and resetting an
entire dictionary discarding policy respectively. From the
table, storing data in separated dictionaries and resetting
one of the dictionaries does not harm compression ratios,
just a minimum 1% degradation is observed compared
with the LRU policy.

Table 7 shows the space requirements for the model
that stores the data in a single dictionary and uses an LRU.

Table 6. Compression performance of the
compression model

PPMC
single dictionary

LRU
policy

Resetting a
dictionary

0.389 0.388 0.393

Table 7. Space requirements for a single

dictionary
Space requirements (bits) Dictionary

order Symbols Frequencies Cumulative
frequencies

3rd, 2nd, 1st 65,536 73,728 73,728

0th 2,313 3,084 3,084

-1 2,048 2,048 2,048
Total 227,617 bits

Table 8. Space requirements for separated

dictionaries

Space requirements (bits) Dictionary
order Symbols Frequencies Cumulative

frequencies
3rd 65,536 24,576 24,576
2nd 49,152 24,576 24,576
1st 32,768 24,576 24,576

0th 2,313 3,084 3,084
-1st 2,048 2,048 2,048

Total 309,537 bits

The extra requirements for maintaining the policy are

to be considered, at least 2,048*9 (length of the dictionary
* width) bits are required.

Table 8 shows the space requirements for the multi-
dictionary model. A few bits more are necessary to keep
the number of positions being used in each dictionary.

Comparing Table 7 and Table 8, it can be seen that up
to 21% extra space is required when the model is stored in
separated dictionaries.

Independently of the discarding policy used, separating
the modeling information in several dictionaries does not
harm compression ratios, as this experiment showed.

Resetting part of the model when one of the
dictionaries has filled up provides compression ratios
close to the LRU policy and simplifies considerably the
complexity of the model at the cost of higher space
requirements. This may be the equivalent to the discarding
policy used in [2], where part of the trie is kept to
reinitialize the model.

It is worth mentioning that an additional, and very
important, gain of using multiple dictionaries is the
possibility of searching for the symbols in parallel, i.e .it is
possible to look in all the dictionaries for the symbol at
the same time, what reduces considerably the searching
time.

Table 5. Common discarding policies used in
compression practical implementations

Discarding
policy Function Advantages Disadvantages

Least
Recently
Used
(LRU)

Removes
the 'oldest'
entry

Discard less
probable
symbols/contexts

Maintains sorted
the used
dictionary
positions

Least
Frequently
Used
(LFU)

Removes
entries
used less
times

Do not move/add
counts

Maintains sorted
the use
frequency
dictionary
positions

Climb

Moves
only one
position to
the front

Easy to maintain
Need to 'move'
data and
frequency counts

Reset
Randomly

Frees any
entry
randomly

Do not need to
manage the
positions to free

Generates
random
numbers. Need
to update many
counts

Reset the
Entire
Dictionary

Resets the
dictionary

Very easy to
maintain

May harm
compression
results

 7

4.7 Resizing the dictionary

From Table 3 we know the percentage of predictions
made by each order context and from Table 6 we know
that the multi-dictionary model not really harms
compression ratios. Taking into account both results, it
seems helpful to resize the dictionaries according to the
percentage of symbols predicted in each context. This
could result in considerable savings in space.

The simulation of the model has been done separating
contexts of the same order in different dictionaries and
having different space limitations proportionally to the
percentage of predictions made by each context order.

The compression ratio obtained was 0.397, just about
1% of degradation compared with the model that uses
multiple dictionaries but has 2,048 positions for each of
them. In this case, the dictionary of 2nd order contexts
saves 75% of the positions and the dictionary of 1st order
contexts halves its size.

Then, there are significant savings in space
requirements, about 59% as shown in Table 8 and
compared with Table 9.

From this experiment we can conclude that it is
possible to change the dictionary sizes according to the
percentage of predictions given in each context order.

A good measure to minimize space requirements in this
model is to further study the order of the model to
implement, and the weight that the contexts of each order
have in the predictions. If possible, the study of the type
of data also helps to define well-balanced dictionaries in
terms of size, as this experiment confirms.

5. Hardware Modeling

PPMC hardware suitability is proved by the
implementation of a 1st order hardware-modeling unit
coupled with an arithmetic coder module. This unit is
modeled with the SystemC modeling platform from the
Open SystemC Initiative (OSCI). Our system is compiled
with the VC ++ compiler, version 6.0, on a Windows NT
platform. The assumptions are indicated in Table 10, and
the arithmetic coder module uses the code from [4], which
was adapted to the new requirements. The coder inputs the
output signals from the model.

Both, compressor and decompressor were built as
SystemC designs, the compression results were verified
against a behavioral C language simulation.

Figure 4 illustrates the pseudocode of the algorithm for
the compressor. Input data are entered to a shift register
that assembles the context and the input symbol to
produce the dictionaries input. When indicated by the
control, this context and symbol are searched in parallel in
the dictionaries. Each dictionary inputs the contexts
according to its order.

Table 9. Space requirements resizing the
dictionaries

Space requirements Dictionary
order Symbols Frequencies Cumulative

frequencies
3rd 65,536 24,576 24,576

2nd 12,288 6,144 6,144

1st 16,384 12,288 12,288

0th 2,313 3,084 3,084

-1st 2,048 2,048 2,048
Total 194,849 bits

Cumulative frequency counts are transferred from the

dictionaries to the output logic. If the search operation in a
dictionary is not successful, escape cumulative
frequencies are output. The output logic selects the best
match and sends it to the coder together with other signals
needed to codify them and form the compressed data.

There is one dictionary per every order of the model.
The dictionary of order –1 contains the control logic and
an array of symbol frequencies in cumulative form, where
the index in the array indicates the symbol. Dictionaries of
order 0 and above contain a memory block and two
registers. They are managed by simple control logic
indicating when to search or update. The memory block
includes a CAM array to store the input data and two
register files to store the frequency counts and cumulative
frequency counts of the symbols and their contexts.

The decompressor architecture is similar to the
compressor although its task is more complex. Its
operations include serial and parallel searches. Serial
searches are required when the model looks for symbols.
When the model is being updated, it requires searching for
escape symbols and, in this case, parallel searches in the
dictionaries are performed.

6. Hardware Requirements

The architecture of the model, simulated in behavioral
form, was analyzed to get an estimated number of gates
required. The model estimated gate count is based on the
1st order model of Figure 4 and is shown in Table 11.

The compressor architecture estimated size is
approximately 3 million NAND equivalent gates, from
which most of the space is assigned to storage and
updating of data.

On average, 3.29 and 7.5 behavioral clock cycles are
required to process a symbol for compressor and
decompressor respectively. These figures were obtained
by dividing the number of behavioral clock cycles
required to compress complete data set by the number of
symbols compressed. The figures are simulation times and
do not necessarily correspond to machine cycles.

 8

Clear the dictionaries;
Set LC(longest context) to context;
set CO (context order) to order of the model;

DO
{

read in a symbol from the data stream;
search for LC & incoming symbol in all the dictionaries;

 select best match and set BMO = order of best match;
IF (order of best match = CO)
{

output symbol cumulative frequencies;
update frequencies in dictionary of CO;

 }
 ELSE
 {
 from BMO to CO do:
 output ‘escapes’ (CFEsc) of orders BMO+1 to CO;
 output CFs from BMO;
 add LC + symbol to dictionaries of orders BMO+1 to
 CO);
 update frequency counts in dictionary of BMO;
 }
 recompute cumulative frequencies, CFs;
 update LC;
 compute arithmetic coding operations;
} WHILE(more data is to be compressed);

Figure 4. Pseudocode for the parallel PPMC

It seems feasible to implement the PPMC model using

present day technology, in a single digital VLSI integrated
circuit or in other technologies such as FPGAs, e.g. Xilinx
FPGA Virtex-II family, that has up to 10 million usable
gates. Further work involves taking this design into an
FPGA to get accurate performance results.

7. Conclusions

PPMC statistical model has been analyzed, its main
computational requirements and its hardware design issues
have been identified. A new hardware architecture has
been proposed for this algorithm that promises high
operating speeds while maintaining its compression
performance.

8. References

[1] J. G. Cleary, I. H. Witten, “Data compression using adaptive
coding and partial string matching”, IEEE Trans. on Comm.,
1984, 32 (4), pp. 396-402.
[2] A. Moffat, “Implementing the PPM Data Compression
Scheme”, IEEE Trans. on Comm., 1990, 38 (11), pp 1917-1921.
[3] Salomon, D. Data Compression: The Complete Reference,
Springer, USA, 2000, 2nd ed.
[4] I.H. Witten, R.M. Neal and J.G. Cleary, “Arithmetic Coding
for data compression”, Comm. of the ACM, 1987, 30 (6), pp.
520-540.
[5] Bell, T.J., Cleary J.G. and Witten I.H., Text compression,
Prentice Hall, Englewood Cliffs, NJ, 1990.
[6] Howard P.G., The design and analysis of efficient lossless

Table 10. Assumptions for the hardware
implementation of PPMC

Model Order 1st order PPMC model

Dictionary size 4096 positions for 1st order, 256 and
257 positions for 0th and –1st orders

Block size
4096 bytes, this size represent a typical
packet size found in many computers
and telecommunication systems

Data set Canterbury Corpus
Discarding policy Not required

 Table 11. Estimated system size
based on a 1st order PPMC model

Order Gate count
–1 18,432
0 219,248
1 3,117,056
Other Logic 568
Total Gate Size 3,289,999

 data compression systems, PhD Dissertation, Department of
Computer Sciences, Brown University, 1993.
[7] W.J. Teahan, “Probability estimation for PPM”, 2nd Second
New Zealand Computing Sciences Research Students’
Conference, NZCSRSC, April, 1995.
[8] J.G. Cleary and W.J. Teahan, “Unbounded length contexts
for PPM”, Computer Journal, 36 (5), 1993, pp. 1-9.
[9] C. Bloom, “New techniques in context modeling and
arithmetic encoding” IEEE DCC, Los Alamitos CA, March
1996, March, p. 426.
[10] D. Shkarin, “PPM: One step to practicality”, IEEE
DCC’02, Los Alamitos, CA, April 2002, pp. 202-211.
[11] M. Effros, “PPM performance with BTW complexity: a
new method for lossless data compression”, IEEE DCC’00, Los
Alamitos ,CA, March 2000, pp. 203-212.
[12] D.S. Hirschberg and D.A. Lelewer, “Context modelling for
text compression”, Image and Text Compression, Kluwer
Academic Publishers, Norwell, MA, 1992.
[13] Music Semiconductors, Application notes AN-N11,
September 1998, www.music-ic.com.
[14] P.M. Fenwick, “A new data structure for cumulative
frequency tables”, Software -Practice and Experience, 24 (3),
pp. 327-336
[15] P.G. Howard and J.S. Vitter, “Arithmetic coding for data
compression”, Proceedings of the IEEE, 82 (6), pp. 857-865.
[16] R. Arnold and T. Bell, “A corpus for the evaluation of
lossless compression algorithms”, IEEE DCC’97, Los Alamitos,
CA, March 1997, pp. 201-210.
[17] HiFn Application notes ‘How LZS compression works’,
available from www.hifn.com.
[18] D.J. Craft, “A fast hardware data compression algorithm
and some algorithmic extensions”, IBM Journal of Res. and
Dev., Data Compression technology in ASIC cores, 42 (6).
[19] Application note ‘10 MBytes/sec DCLZ Data Compression
Coprocessor IC’, from Advanced Hardware Technologies,
available from www.aha.com
[20] M. Kjelso, M. Gooch and S. Jones, “Design and
performance of a main memory hardware compressor”, 22nd
EUROMICRO, September 1996, pp. 423-430.
[21] R. William, Adaptive data compression, Kluwer, Boston,
London, 1991.

