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Abstract

Securing communication sessions between networked
embedded systems is a major challenge that needs to be ad-
dressed as an increasing number of such systems become
Internet-enabled. Securely and quickly establishing a ses-
sion key between communicating nodes in a network re-
quires authentication of node identities. In this paper, we
propose a simple elliptic-curve based key negotiation proto-
col suitable for fully hardware implementation as a protocol
on chip (PoC). The protocol uses the elliptic curve variants
of both the Diffie Hellmann exchange and the Digital Sig-
nature Algorithm. Timing results demonstrate that an end-
to-end protocol run can be performed in as little as 28ms
on a 25MHz clock, which is several times faster than previ-
ous microprocessor-based implementations of similar pro-
tocols. The results indicate that session keys can thereby
have shorter lifetimes, since there is little computational
overhead in re-generating them, thus enhancing overall se-
curity of the networked embedded systems.

1. Introduction

Securing communication sessions between networked
embedded systems is a major challenge that needs to be ad-
dressed as an increasing number of such systems become
Internet-enabled. Embedded systems, e.g. thermostat con-
trollers, wireless sensors, and video surveillance units may
be installed in a single network, and other agents such as
PDAs, mobile phones and computers may need to connect
to these networks in order to monitor or control them re-
motely. Any compromise of the security of communications
between such systems could have devastating, and some-
times even fatal, consequences. Cryptographic operations
provide one method of securing data transmitted between

these systems, the main goal being the secure establish-
ment of session keys for encryption and decryption of all
exchanged data.

In the recent years, a number of solutions have been pro-
posed to achieve this goal [1]-[4]. Majority of these so-
lutions rely on the availability of general-purpose micro-
processors and sufficient memory to perform cryptographic
operations. However, some embedded systems may be un-
able to provide general purpose microprocessors that can
establish session keys for communication or those proces-
sors may be unable to provide that service fast enough.
For that reason, specialised cryptoprocessors are sometimes
added, but they typically support multiple cryptographic al-
gorithms, which may be unnecessary in many embedded
applications. However, there is a growing need for quick,
secure negotiation of session keys for use in communica-
tion between networked embedded systems.

Elliptic curve cryptography (ECC) has become the pub-
lic key scheme of choice, primarily because of the relatively
strong security it provides for a much smaller key size as
opposed to similarly strong schemes like RSA [5]. For in-
stance, 1024-bit RSA is sometimes considered equivalent
to 139-bit ECC [1]. This lower number of bits for the same
level of security means that hardware implementations of
ECC potentially require fewer resources and are computa-
tionally less expensive for the same level of security pro-
vided by other cryptographic schemes. Consequently, ECC
is expected to provide an optimal solution for generating
encryption keys for securing networked embedded systems.

The Diffie Hellmann algorithm [6], originally proposed
in the 1970s, offers a simple, flexible method of securely es-
tablishing a single shared session key through an exchange
of various parameters which a third party cannot use to de-
termine the final key. A variant of this algorithm, the El-
liptic Curve Diffie Hellmann (ECDH) has been developed
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Figure 1. A network of nodes authenticated
by a Certificate Authority (CA) server

for elliptic curves. However, the ECDH, as well as the orig-
inal Diffie Hellmann algorithm, is susceptible to man-in-
the-middle attacks, whereby an intervening party can mas-
querade as an honest party and intercept communications
between two nodes. To counter this attack, honest parties
need to be able to authenticate each other and proceed with
the Diffie Hellmann protocol only after successful authenti-
cation.

The Elliptic Curve Digital Signature Algorithm
(ECDSA), a variant of the Digital Signature Algorithm
(DSA), can be used by communicating parties to sign
respective pieces of data using their private key [7]. At
authentication stage, a recipient can use a sender’s public
key to verify that the signature generated by the sender
was in fact signed using the sender’s private key. When
combined with the ECDH, therefore, secure authentication
protocols can be developed. Thus, to address the challenge
of securely establishing session keys between various
nodes in a network of embedded systems and remote
connection agents, fast implementations of ECDH and
ECDSA algorithms are needed.

This paper presents a simple key agreement protocol
consisting of both algorithms implemented on a single chip
that can reside at the network interfaces of communicat-
ing embedded nodes. It is customized and implemented as
a protocol on chip (PoC) and can also be used in remote
agent nodes that need to connect to the network and ac-
cess data on one or more embedded system nodes Figure 1.
The implementation of the PoC re-uses a fast scalar ellip-
tic curve multiplier that had earlier been developed as part
of an ECC-based encryption and compression module [9].
The implementation assumes a 163-bit binary field (F2163 )
for elliptic curve computations and has been shown to pro-
vide fast establishment of session keys between two parties
barring only network constraints.

The organization of this paper is as follows. Section 2
briefly reviews elliptic curve cryptography, including the
ECDH and ECDSA algorithms, which are essential to the
proposed key agreement protocol. Section 3 summarizes
related research in the area of secure protocols for low-
power devices such as wireless sensors, and hardware im-
plementations of elliptic curve cryptography. In Section 4
we describe the key agreement protocol that has been im-
plemented on chip, including details of authentication and
key exchange. The actual functional modules on the chip
are described in Section 5. Section 6 documents the results
of synthesis and simulation on an FPGA prototype. Finally,
Section 7 concludes this paper with recommendations for
further research.

2. Review of Elliptic Curve Cryptography
(ECC)

Elliptic curves are generally represented by one of the
following equations [7]:

y2 + xy = x3 + a2x
2 + a6 (1)

y2 + y = x3 + a4x + a6 (2)

The constants can either be polynomial or normal basis
numbers. In this paper, a polynomial basis implementation
over the curve defined in equation 1 was assumed. While
normal basis arithmetic implementations often lead to fast
and efficient implementations in hardware, field inversion
routines are known to utilize far more resources when im-
plemented using normal basis in hardware [8].

Elliptic curve points are identified by their coordinates
P (x, y). Addition and doubling of points are essential to
elliptic curve arithmetic. Addition of two different points
P1(x1, y1) and P2(x2, y2) on a curve yields a third point
P (x3, y3) = P (x1, y1) + P (x2, y2) as defined by the fol-
lowing equations:

x3 =
(

y2 − y1

x2 − x1

)2

+
(

y2 − y1

x2 − x1

)
+ x1 + x2 + a2 (3)

y3 =
(

y2 − y1

x2 − x1

)
(x1 + x3) − y1 (4)

Doubling of a point on the curve to yield P (x3, y3) =
2P (x1, y1) is achieved using the following equations:

x3 =
(

x1 +
y1

x1

)2

+
(

x1 +
y1

x1

)
+ a2 (5)

y3 = x3

(
x1 +

y1

x1
+ 1

)
+ x2

1 (6)
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where P1(x1, y1) is not the point at infinity.
Scalar-point multiplication over an elliptic curve refers

to the multiplication of a point on a curve by a scalar value
to yield another point on the curve. Scalar multiplication in-
volves a combination of doubling and adding points starting
from the original point on the curve until the multiplication
is complete.

Encryption & Decryption: An elliptic curve is de-
fined over the domain parameters (a2, a6, P (x, y), n) where
P (x, y) is a base point chosen on the curve and n is the
prime number order of the point. In ECC, communicat-
ing parties use a public-private key pair, where the private
key is a scalar secret k, and the public key is the point
K = kP (x, y). When sending a message, an honest party
A obtains a random value r and requests B’s public point
B = bP . A then computes the random point R = rP and
the secret key S = rB. The x-component of S is used to
generate a key by applying a key derivation function, and
the result is XORed with the message to be encrypted. The
message is sent to B along with the random point R. B
decrypts the message by computing the same shared secret
S = bR.

Elliptic Curve Diffie Hellmann (ECDH): The Diffie Hell-
mann protocol can be used to establish a shared secret be-
tween two communicating parties. The elliptic curve ver-
sion assumes a public elliptic curve, where the domain pa-
rameters (a2, a6, P (x, y), n) are known to an attacker. Two
honest parties A and B generate their respective secrets wA

and wB and compute public keys accordingly:

A : WA = wAP (x, y) (7)

B : WB = wBP (x, y) (8)

They exchange public keys and can compute the same
shared secret, from which a bit mask can be generated using
a key derivation function.

A : SAB = wAWB = wAwBP (x, y) = wBwAP (x, y)
(9)

B : SBA = wBWA = wBwAP (x, y) = wAwBP (x, y)
(10)

An attacker only sees the values WA and WB but can-
not compute the secret key SAB = SBA because of the
intractability of the elliptic curve discrete logarithm prob-
lem.

Elliptic Curve Digital Signature Algorithm (ECDSA):
The ECDSA can be used to verify the authenticity of a mes-
sage transferred between two recipients. In this algorithm,
the signer’s public key is used by the recipient to verify that
the signer in possession of the corresponding secret key did

send the message transferred across [7]. Signature gener-
ation for a party A with public-private key pair (WA, wA)
entails the following steps using the elliptic curve domain
parameters (a2, a6, P (x, y), n):

1. Generate a random value r modulo n and compute the
random point R(xR, yR) = rP (x, y)

2. The first component of the signature is:
s1 = xR(modn)

3. Compute the hash of the message:
h = Hash(message)

4. The second component of the signature is:
s2 =

(
h+s1wA

r

)
(modn)

The signatures are transferred across along with the mes-
sage to party B, which is already in possession of A’s public
key . B can then verify that the message was indeed sent by
A, using as follows:

1. Compute the hash of the message:
h

′
= Hash(message).

2. Compute

u = h
′

s2
(modn)

and
v = s1

s2
(modn).

3. Compute the point on the elliptic curve:
N(xN , yN ) = uP + vWA.

4. If xN (modn) = s1 then the signature has been veri-
fied and the message has been authenticated.

3. Related Work

In the last few years, a number of authentication proto-
cols have been devised and implemented for use in embed-
ded sensor networks. [1] is an implementation of a pro-
tocol on a 32-bit ARM7TDMI RISC microprocessor that
uses the ECDSA as its basis for authentication, targeting
mobile phones, handheld devices and smartcards. The au-
thentication protocol involves a server, a terminal user try-
ing to connect to the network, and a certificate authority that
enables the user and the server to authenticate one another
and establish a session key. The implementation is a com-
plete software library of ECC functions that can operate on
a wide range of elliptic curves.

In [2], an end-to-end wireless security protocol using
ECDH was implemented in software on a Chipcon CC1010
(based on 8-bit 8051 architecture), targeting wireless sensor
networks. The aim of this implementation was to establish
secure end-to-end connections between a sensor and a base
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station without the need for cryptographic co-processors.
Unfortunately, because there is no way for communicating
parties to authenticate one another in this scenario, the pro-
tocol implemented is unable to withstand the man-in-the-
middle attack.

Another recent advancement in securing communica-
tions between a sensor and a security manager is [3], which
is targeted primarily at self-organizing networks. This is a
hybrid authentication scheme that moves the more complex
cryptographic functions to the server, while at the same time
maintaining de-centralized online key management. Com-
municating nodes are authenticated using public-key cer-
tificates that are generated offline before nodes join the net-
work. The ECC operations were implemented on a Mit-
subishi M16C microprocessor.

TinyPK [4] is an RSA based public key protocol that al-
lows authentication and key agreement between a sensor
network and a third party as well as between two sensor
networks. Here again, a certificate authority (CA) is used
to sign a third party’s public key, but TinyPK does not use
certificates as it assumes that nodes have little processing
power to deal with certificates. Because of this, there is
no way to deal with a third party private key that has been
compromised. Authentication is performed at a sensor node
by verifying an external party’s public key. After success-
ful authentication, a sensor node encrypts its session key as
well as a nonce (a timestamp) using the third party’s public
key and sends it back to the third party. In this manner, a
secure session key is established for communication. The
Diffie Hellmann protocol was also implemented as part of
TinyPK, as the RSA public-private operations were found to
be too slow. The TinyPK was implemented on UC Berke-
ley’s MICA 2 platform in the TinyOS development environ-
ment.

The research cited focuses on implementing the cryp-
tographic protocols on general-purpose microprocessors.
This implies that network nodes each have to provide an ad-
ditional general purpose microprocessor as well as the ad-
ditional memory required to perform the cryptographic op-
erations. In addition, the end-to-end session times of these
protocols are typically in the range of hundreds of millisec-
onds to seconds, which may be adequate for target applica-
tions involving human user access [1], [2]. However, where
speed of key agreement is particularly an issue, e.g. where
remote agents need to control embedded nodes in real-time,
a hardware implementation clearly offers considerable ad-
vantages.

One such hardware implementation of an elliptic curve
cryptosystem was developed in [10], which is able to gen-
erate 4000 digital signatures per second on a 233-bit bi-
nary field Koblitz curve. The complete ECDSA algorithm
is implemented, and the entire chip can operate at up to
100MHz. Another very recent implementation is described

in [9], which is the first hardware architecture that combines
elliptic curve cryptography and lossless data compression.
The high speed offered by these hardware implementations
makes them very attractive for implementing entire proto-
cols on chip, thereby also removing the need for an ad-
ditional microprocessor. Hence, our approach was to use
an existing hardware based elliptic cryptosystem and to de-
velop a simple secure protocol on a single chip that can be
configured for use in networked embedded systems and re-
mote agents.

4. Protocol Design
In the proposed protocol, we address the challenge of

authenticating communicating parties using digital certifi-
cates. Certificates are generated by a trusted certificate au-
thority (CA) and comprise of node public keys and node
identities. We use ECDSA to authenticate public keys gen-
erated from private keys.

The certification generation authority is assumed to be a
trusted and secured server that maintains a database of the
identities of honest nodes and their long-term public keys.
(Depending on the network environment, a powerful com-
puting CA server may not always be available.) For test
purposes, the server was implemented using the C code for
ECDSA and ECDH originally made available in [7]. The
CA server code accesses a database of test node identities
and their corresponding long-term public keys. The CA
server makes these public keys available to all trusted nodes,
i.e. nodes that have been previously registered with the CA
server. All nodes are bound to this single CA server in the
network via the CA server certificate which comprises of a
unique identifier, the CA identity Ssrv , and the CA’s long-
term public key Wsrv(x, y). In addition, each node keeps a
counter that tracks the number of sessions that the node and
the CA server have previously established. A correspond-
ing counter is maintained for each node in the CA server’s
database. The counter value forms a part of the ECDSA
message when server-node communications are established
in order to protect against replay attacks. The counter value
is not transferred across but is kept in memory at both ends,
and is incremented simultaneously upon termination of the
session. If the counter values no longer synchronize, a com-
promise, or at least an error, can certainly be assumed at one
end, and a physical reset of the PoC will become necessary.
Until then, that node identity will be treated as unauthorized
on the server. In case of compromise of the CA server pri-
vate key, none of the nodes will successfully communicate
with the CA server since the counter will not be synchro-
nized, and a new CA binding must be issued.

Inter-node communication is coordinated by the CA
server, whereby the server establishes two separate Diffie-
Hellmann sessions between honest parties A and B, and
separately deploys the public keys and signatures of A and
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Figure 2. Simple authenticated session key
establishment protocol.

B to one another, i.e. A receives the certificate of B and
vice-versa. The server can then designate A or B as the ini-
tiator of all communications between them. Figure 2 out-
lines the protocol for both CA server-node and inter-node
communication. The initiator first of all generates a random
temporary secret qi from which a temporary Diffie Hell-
mann public key Qi is derived. This public key forms part
of the message to be signed during the signature genera-
tion phase. The identifier I of the initiator is concatenated
with the message. If the initiator is either the CA or a node
requesting to communicate with the CA, then the node-
specific server counter c also forms part of the ECDSA mes-
sage. The ephemeral public key Qi together with the rest of
the ECDSA message is then signed by the signature gener-
ator (SGEN) module using the initiator’s long-term private
key wi and sent across along with the signatures (si1, si2)
and a token message to initiate communication. The re-
cipient of the initiator’s signature and temporary public key
uses the initiator’s long-term public key Wi to verify that the
temporary public key Qi has indeed been generated by the
initiator. The message to be hashed as part of the ECDSA
verification step (SVER) is re-calculated using the tempo-
rary public key Qi and the initiator’s identity I . If the ini-
tiator is the CA or a node that requested to communicate
with the CA, then the node-specific counter c is again in-
cluded as part of the re-calculated message, which is then
hashed and processed as part of the verification stage.

When the initiator’s temporary Diffie-Hellmann key
has been authenticated, the recipient generates its own

ephemeral secret qr and corresponding ephemeral Diffie-
Hellmann key Qr and signs it using its long-term private
key wr. This ephemeral key is sent back to the initiator
which then verifies it. After successful authentication at
both ends, the communicating parties establish the same
shared secret Ssession, which is then passed through a key
derivation function to obtain an XOR mask Ksession that
can be used for direct encryption and decryption of data as
described in [7].

When the session key is established, communicating
parties can exchange encrypted data. Either communicat-
ing party reserves the right to terminate the connection, in
which case an encrypted terminate op-code is sent across
and acknowledged, and the session key is automatically
made invalid. The protocol interface we have developed al-
lows for the embedded application to terminate the session
if required. Session keys typically also have a lifetime that
can be specified as part of the protocol configuration.

When a key expires, or when a session is terminated, the
node-specific counter is incremented at both ends as long
as one of the communicating parties is the CA server. This
ensures against replay attacks on the server-node commu-
nication. As long as the counter is synchronized at both
ends, successful session key establishment is guaranteed.
This also ensures that even if either the server private key or
the node private key is compromised, previous session keys
will not be recovered from transcripts by an adversary. This
guarantees full forward secrecy, as opposed to the protocol
developed in [3], which only offers half forward secrecy in
such a situation. If it happens that the counters are no longer
synchronized, a physical reset of the PoC will be required,
as mentioned earlier.

Inter-node communication, on the other hand, does not
use node-specific counters because of the amount of mem-
ory required to store counters for every other party that a
node may be in communication with. In this case, the safety
against replay attacks and compromise of previous keys can
be established if the CA server is configured to command
nodes to re-generate their long-term public-private key pair
upon expiry of their certificates. The PoC also supports re-
generation of the long-term key pair. When such a request
is to occur, the server sends a plaintext op-code message,
which is signed using the server’s private key. The recipient
verifies the op-code and the signature, sets up a temporary
session key, and invokes a pseudo-random number genera-
tor to generate a new value, which is then cryptographically
hashed to yield the new private key. The result is multiplied
by the elliptic curve base point, and the computed point is
saved as the new long-term public key. This public key is
encrypted using the temporary session key and sent back
to the server, which then updates its database with the new
long-term public key of the node.
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Figure 3. Chip Layout

5. PoC Architecture

The elliptic scalar multiplier and point adder form the
core of the elliptic curve cryptoprocessor. As indicated
before, we have re-used a very fast cryptoprocessor that
had previously been developed in conjunction with a loss-
less data compression engine [9]. The performance figures
make such a cryptoprocessor suitable for a hardware imple-
mentation of the key agreement protocol. The block dia-
gram of Figure 3 describes the top-level architecture of the
system.

The top-level PoC functional units, which are described
in more detail in the remaining part of this section, in-
clude the Signature Generation and Verification Units, Pub-
lic/Session Key Generation Unit, Key Derivation Function
Unit, Parameter Memory Unit, and Pseudo-Random Num-
ber Generator. These functional units require service from
low level cryptographic processing elements and arithmetic
logic unit as needed. The entire protocol is driven by a hi-
erarchical finite state machine (HFSM). The top-level FSM
in the PoC control unit initiates the lower level FSMs in
each unit accordingly. Some of these units interact with the
lower-level elliptic curve scalar multiplier unit, which also
functions as an elliptic point adder depending on an input
operation signal. Another lower-level unit is the big integer
arithmetic and logic unit (ALU), which processes 164-bit
signed integers and is used by both the ECDSA signature
generation and signature verification modules.

Parameter Memory Unit: The parameter memory unit
(PMU) is a RAM block that stores all the node configura-

tion data, such as the node’s identifier, long- and short-term
secrets, long- and short-term public keys, and server bind-
ings (i.e. server identifier and long-term public keys). The
only part of the PMU that is public to the world is the in-
coming address of the signature and public key of an exter-
nal party that requests communication with the node. This
part of the PMU is considered “volatile”, i.e. it holds no
long-term data. In addition, it can only be updated when
there is no communication session in progress, i.e. the pre-
vious session has expired or been terminated. Any request
to update any other part of the memory unit in the PoC,
whether anonymously (while no session is in progress) or
even during authenticated inter-node communication is de-
nied. The CA server, however, has the ability to update the
server binding information, as well as to instruct the PoC
to regenerate its public-private key pair once a session has
been set up between the CA server and the node. All such
commands can only be processed once a session key has
been established with the CA server. This restriction en-
sures that the PMU is kept relatively secure, and that a ses-
sion key establishment routine cannot be interfered with by
a network attacker.

Signature Generation and Verification Units: Each of
these units comprises of two hierarchical FSMs. The lower-
level FSM of the signature generator directly computes the
signature from a set of input parameters. The higher-level
FSM provides the interface to the PMU and sets up the in-
put parameters to the lower-level. It also provides the in-
terface to the ALU, the ECC multiplier-adder module, and
the hashing module. The hashing module is an embedded
implementation of the SHA-1 algorithm. This hierarchical
structure allows for easy re-configuration of the PMU with-
out affecting the lower-level. The same applies for the sig-
nature verification unit, SVER. The big integer ALU, which
is used by these units, performs 164-bit modulo addition,
modulo division and modulo multiplication, which are the
main operations required for ECDSA.

Public/Session Key Generation Unit: This unit gener-
ates either a temporary Diffie Hellmann public key, which
is then signed by the PoC, or the final shared session key
depending on the stage of the protocol. The core operation
is the elliptic curve point-scalar multiplication.

Key Derivation Function (KDF) Unit: When a shared
session key is generated, it needs to be fed into a key deriva-
tion function module that can provide a secret key mask for
use in encryption. This key derivation function [7] follows
the draft specification of IEEE P1363 and computes a re-
cursive SHA-1 hash of the session key generated before-
hand concatenated with a number of the node parameters
(e.g. node identifier, identifier of the other party, etc.) to
yield the secret key mask. In addition, the KDF unit per-
forms encryption and decryption once the session key mask
is generated. This key mask is saved in a 160-bit register,
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and is not exposed to the top-level PoC interface. Therefore
the top-level FSM of the PoC has no access to the final key
mask generated or to the session key for that matter. These
values are not saved in the parameter memory unit either,
thus further ensuring their safety. The KDF unit performs
encryption and decryption of incoming 32-bit data to the
PoC when the encrypt/decrypt signal goes high. Encryption
involves a simple XOR operation between the data and the
key mask.

Pseudo-Random Number Generator (PRNG): The gen-
eration of cryptographically strong random numbers was
not the focus of this research, and so a simple linear shift
feedback register, using a random seed, is used as the PRNG
in this module. This level of simplicity was sufficient to
test proof-of-concept of the PoC operation, although in a
real-world deployment, a random number generator with a
higher level of unpredictability is required, since it is used
to generate an ephemeral secret for ECDH and a random
number for digital signature generation. All random num-
bers generated for signature generation are performed mod-
ulo n, where n is the order of the base point of the elliptic
curve.

6. Implementation Results

Table 1 displays the results of synthesis of the PoC de-
sign on an Altera Stratix II FPGA device. The PoC success-
fully synthesizes at a 163-bit binary field size. The PMU,
which stores partly pre-loaded node configuration data, only
ever uses 38 192-bit values for a single protocol run. How-
ever, to support computing multiple session keys for simul-
taneous communication with multiple parties, the memory
unit provides 256 192-bit locations implemented in FPGA
internal memory blocks. An 80-bit counter value is used for
synchronizing communication sessions, and the node and
server identities each span 192 bits.

Table 1. PoC FPGA synthesis results
Device Stratix II EP2S90F1020C3

Total pins 81/759 (10%)
Total memory bits 49,152/4,520,448 (1%)

Total ALUTs 40,234/72,768 (55%)
Total registers (FFs) 20,236

The timing results for the various modules, as well as for
the entire end-to-end protocol operation that includes initia-
tion, authentication and key generation, are shown in Table
2. For prototype verification a 25MHz clock was chosen to
drive the operation. An end-to-end session protocol only re-
quires one exchange (two transactions) of ephemeral ECDH
data together with the generated signature, thus keeping
the communications overhead to a minimum. The cryp-

Table 2. Timing results for sub-modules
(clocked at 25MHz)

Unit Time (ms)
End to End Protocol 28
Signature Generation 3.9
Signature Verification 5.5
Public Key Generation 5.3
Session Key Generation 2.1
ECC Scalar Multiplication 2.1
ECC Point Addition 0.012
ALU Modulo Multiplication 1.1
ALU Modulo Division 0.64

tographic operations are evenly balanced at both ends of
the protocol, since each party has to perform ECDH and
ECDSA signature generation and verification routines. An
end-to-end run of the protocol takes only 28 ms to execute
at 25MHz.

In Table 3 end-to-end protocol session times and other
protocol-related features are compared across a range of im-
plementations developed in recent years. A direct compar-
ison between these systems is not possible, since the five
cited implementations do not possess identical levels of se-
curity. However, the results in this table give an indica-
tion of relative performance and illustrate that a full hard-
ware implementation can yield very fast key agreement.
Thus, with the PoC, session keys can have much shorter
lifetimes, since they can be re-generated quickly and more
often if necessary without detriment to application perfor-
mance. Shorter key lifetimes greatly enhance overall secu-
rity of the system, since less transaction data is available
per session key in transcripts of any session that a malicious
third party can use to decrypt the data transmitted.

7. Concluding Remarks

Networked embedded devices often operate in insecure
environments, where the data transferred between them is
visible to a third party. Consequently, cryptographic key
agreement protocols are needed to safeguard the transmit-
ted data. In this paper, we have proposed a simple elliptic
curve based protocol that uses ECDSA to authenticate com-
municating parties and ECDH to establish the session key.
Certificates are issued by a special CA server, and nodes
(embedded devices and any remote agents) can initiate com-
munication between one another. The protocol has been
implemented on a single chip utilizing a high-speed scalar-
point multiplier, and can reside at the network interfaces of
nodes that can support such a device. The high speed of key
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Table 3. Comparison of protocol performance and features

Protocol Cryptosystem
End-to-end

Implementation
Certificate Number of

time (ms) Usage Transactions
[1] ECC 160 Prime 140 Software Yes 4
[2] ECC 132 OEF1 3000 Software No 4
[3] ECC 160 Prime 760 Software Yes 5
[4] RSA 1024 > 14500 Software No 2

Our PoC ECC 163 Binary 28 Hardware Yes 2

negotiation also permits session keys to have much shorter
lifetimes, thereby enhancing the overall security of the com-
munication session.

We envisage a number of enhancements to the exist-
ing design. The PoC can be extended to support more
advanced protocols, such as the Elliptic Curve Key Ex-
change v1.0 (ECKE-1) protocol [11], which was designed
to address various security attributes, such as known key
security, forward secrecy, key-compromise impersonation
resilience, unknown key-share resilience, and key control.
The various components of the PoC, e.g. big integer arith-
metic and hashing, can be used to achieve the computa-
tions required by such protocols. Additionally, each PoC
is bound to a single CA server. This could pose a scalability
problem when nodes using the PoC have to switch between
multiple networks. Therefore we would like to develop a
special-purpose PoC for nodes that require bindings to mul-
tiple CA servers.
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