
FPGA Implementation of a Modulated Complex Lapped Transform for
Watermarking Systems

Jose Juan Garcia-Hernandez, Claudia Feregrino-Uribe and Rene Cumplido
National Institute for Astrophysics, Optics and Electronics

Puebla, Mexico
Email: {jjuan,cferegrino,rcumplido}@inaoep.mx

Abstract

The Modulated Complex Lapped Transform (MCLT) is a
2x oversampled DFT filter bank. The MCLT has showed to
be a good selection in audio compression and watermarking
systems. It has been demonstrated that a length-M MCLT
can be mapped to a length-2M Fast Fourier Transform plus
M butterfly-like stages without data shuffling, therefore, the
MCLT is appropriate for efficient hardware implementa-
tions. This paper presents an efficient implementation of
the MCLT in a Field Programmable Gate Array (FPGA).
Results are presented and discused.

1 Introduction

The fast growth of the internet has increased the easy re-
production and retransmission of multimedia contents and,
as a consequence, both legal and unauthorized data manipu-
lation has also grown. One possible solution to this problem
is the use of watermarking techniques, in which an imper-
ceptible and statistically undetectable signature to multime-
dia content is added. A watermark must completely charac-
terize the person who embedded it and in order to be used to
prove the intellectual property of a digital media, any unau-
thorized removing or manipulation of the watermark must
render the digital media useless.

Several algorithms for watermarking embedding and de-
tection of watermarks have been proposed [1, 15, 7, 13, 6,
2]. The most efficient algorithms process the digital con-
tents in the transform domain, mainly in the Discrete Cosine
Transform (DCT) domain, however, the reconstructed sig-
nals using block transforms based systems exhibit the block
artifact effect.

In order to beat block artifacts a family of lapped trans-
forms was developed [9]; modulated lapped transform
(MLT) is a member of that family, MLT uses 2M samples
in order to compute M coefficients. The MLT has been used

in several audio coding standards [14]. However, MLT co-
efficients are only real, so, there is no phase information. In
[10], the author proposed the Modulated Complex Lapped
Transform (MCLT), which is an extension of MLT, but with
complex components, also, fast MCLT algorithms based on
discrete cosine transform and discrete sine transform were
presented.

The MCLT domain has been satisfactorily used in au-
dio watermarking [7, 8, 19], due to its no block artifact
property [9]. Watermarking systems in MCLT domain have
shown greater transparency than watermarking systems in
other domains [5].

On the other hand, some applications of watermarking
systems like broadcasting monitoring and live performance
record require to guarantee their operation in real time [16,
12], moreover, multi-channel processing is very desirable.

In order to develop a real-time watermarking system it
is possible to choose between two main platforms: Digi-
tal Signal Processors (DSP) and Field Programmable Gate
Arrays (FPGA). The first one has been previously reported
[3, 4], however, those implementations do not exploit the
possible parallelism of several watermarking algorithms,
therefore, FPGA implementation seems to be an interest-
ing option. In [17] authors presented an FFT based fast al-
gorithm and its CPLD implementation of the MCLT, how-
ever, that algorithm uses one pre-processing and one post-
processing stage. Malvar showed in [11] that it is necessary
only one post-processing stage after the FFT for the MCLT
computing and one pre-processing stage before IFFT for the
IMCLT computing.

MCLT implementation presented in this paper is one
stage of a whole real-time watermarking system under de-
velopment. The requirements for this MCLT implementa-
tion are: input data with format Q15, output data with for-
mat 9Q15 (along this paper we use aQb syntax, where a
is number of bits used to represent the integer part and b
is the number of bits used to represent the fractional part)
and M = 128. This proposed architecture can be used as
a coprocessor or as a module in specialized architectures

2008 International Conference on Reconfigurable Computing and FPGAs

978-0-7695-3474-9/08 $25.00 © 2008 IEEE

DOI 10.1109/ReConFig.2008.35

367

for watermarking systems that are continuously required to
perform the MCLT.

The outline of the paper is as follows: Section 2 presents
the Malvar’s fast algorithm via FFT. The circuit design, sim-
ulation results and hardware resources are presented in Sec-
tion 3. Finally the conclusions are given in Section 4.

2 Malvar’s Fast Algorithm

2.1 Fast MCLT algorithm

MCLT is a particular kind of a 2x oversampled general-
ized DFT filter bank whose basis are:

p(n, k) = pc(n, k)− jps(n, k) (1)

pc(n, k) = h(n)

√
2
M

cos(phase) (2)

ps(n, k) = h(n)

√
2
M

sin(phase) (3)

with:

h(n) = −sin
[(
n+

1
2

)
π

2M

]
(4)

and

phase =
(
n+

M + 1
2

)(
k +

1
2

)
π

M
(5)

Where n is the time-domain index, k is the frequency-
domain index, M is the sample block length and j =

√
−1.

The MCLT coefficients of input vector x are calculated as
X(k) = Xc(k)− jXs(k) with:

Xc(k) =
2M−1∑
n=0

x(n)pc(n, k),

Xs(k) =
2M−1∑
n=0

x(n)ps(n, k)

(6)

If M is even, it is possible to write h(n) like:

h(n) = − j
2
[W8M (2n+ 1)−W8M (−2n− 1)] (7)

where WM (r) is the common notation for the complex
exponential used in Fourier transforms, namely

WM (r) = exp
(
−j2πr
M

)
(8)

Combining (6) and (7), we obtain (9)
Using three basic properties of the complex exponential,

WM (a)WM (b) = WM (a + b), W2M (2r) = WM (r), and
j = W4(−1) and after some manipulations we get

X(k) = jV (k) + V (k + 1) (10)

where

V (k) = c(k)U(k)
c(k) = W8(2k + 1)W4M (k)

U(k) =

√
1

2M

2M−1∑
n=0

x(n)W2M (kn)

(11)

U(k) is a 2M point FFT with orthonormal basis function
of the input block x(n), which it means that MCLT coeffi-
cients can be computed by first computing FFT of x(n) to
obtain U(k) and then to carry out the operations with fac-
tors c(k).

2.2 Fast inverse MCLT

There is a simple relation between the output y(n) of
the inverse MCLT and the input x(n) to the direct MCLT,
namely

y(n) = x(n)h2(n) (12)

Considering the length-2M FFT of y(n) and the rela-
tionship (12), we get

Y (k) =

√
1

2M

2M−1∑
n=0

x(n)h(n)W2M (kn)h(n) (13)

Where Y (k) are the FFT coefficients of the output y(n).
Replacing the rightmost term h(n) by its representation in
(7), we obtain (14)

Using basic properties of the complex exponential, equa-
tion (15) is obtained.

Thus, replacing (15) into (14), we obtain,

Y (k) =
c∗(k)

4
[X(k − 1)− jX(k)] (16)

Where X(k) are the MCLT coefficients, the superscript *
denotes complex conjugation, and the modulation c(k) is
the same as that in (11). Using (16) we compute the M
first FFT coeficientes of y(n), but it is well known that FFT
coefficients must satisfy the conjugate symmetry property

Y (2M − k) = Y ∗(k) (17)

Finally, we know that Y (0) and Y (M) must be real-valued,
after some manipulations,

Y (0) =
1√
8
[<{X(0)}+ ={X(0)}]

Y (M) = − 1√
8
[<{X(M − 1)}+ ={X(M − 1)}]

(18)

with < and = taking the real and imaginary parts, respec-
tively.

368

X(k) = −j
√

1
2M

2M−1∑
n=0

x(n)W8M (2n+ 1)W8M [(2k + 1)(2n+M + 1)]

+ j

√
1

2M

2M−1∑
n=0

x(n)W8M (−2n− 1)W8M [(2k + 1)(2n+M + 1)]

(9)

Y (k) =
(
j

4

)√
2
M

2M−1∑
n=0

x(n)h(n)W2M (kn)[W8M (−2n− 1)−W8M (2n+ 1)] (14)

jW2M (kn)W8(−2n− 1) = W8M [(2k − 1)(2n+M + 1)]W8M [−(2k + 1)]W4M (−k)
jW2M (kn)W8(2n+ 1) = W8M [(2k + 1)(2n+M + 1)]W8M [−(2k + 1)]W4M (−k)

(15)

Malvar shows in [11] that equations (10), (16), (17)
and (18), used with FFT processors are the fastest
MCLT/IMCLT algorithms developed to date. Next section
shows the implementation of the equation (10) and FFT pro-
cessor, corresponding to the MCLT processor, and the im-
plementation of the equations (16), (17) and (18) and IFFT
processor, corresponding to the inverse MCLT processor.

3 FPGA Implementation

Figure 1 shows the direct MCLT processor. There are
two blocks: an FFT processor and butterfly-like stage that
performs equation 10. The FFT processor is implemented
using a pre-designed core [18] configured in streaming
mode.

The c factors are stored in a ROM using format Q15 in
the butterfly-like stage, it also contains a register in order
to store V (k + 1) when X(k) is computed and the next
clock cycle that value becomes V (k). Figure 2 shows the
butterfly-like structure, where xk re and xk im are the real
and imaginary components of FFT output, xk, respectively,
xk index is the index of FFT value being processed, c re
and c im are the real and imaginary components of factors
c respectively, V re and V im are the real and imaginary
components of V respectively and sal re and sal im are the
real and imaginary components of sal MCLT coefficients
respectively.

When start goes high it begins the loading phase, input
data xn re(xn index) should arrive three cycles later than
the xn index it matches [18], therefore, it is possible to use
input data from an external memory or a frame buffer. The
MCLT processor was developed in streaming mode, so, af-
ter an initial latency of around 615 clock cycles, it begins
outputing MCLT values X(sal dir) = sal re(sal dir) +
jsal im(sal dir) and dv goes high. There is a M clock cy-
cles latency due to it is necesary to load 2M input samples

Figure 1. Direct MCLT processor

Figure 2. Butterfly-like stage for the direct
MCLT processor

369

Table 1. FPGA’s resources utilized for MCLT/IMCL implementations.
Direct MCLT Inverse MCLT

External IOBS 89 134
RAMB16s 7 14

Slices 2301 3545
BUFGMuxs 1 1

DSP48s 58 58
Max. Clock Frequency (MHz) 91.5 72.3

Throughput (MSPS) 91.5 72.3

in order to get M MCLT coefficients.
The X(sal dir) values are presented in 9Q15 format,

which is a constrain imposed for the whole real-time water-
marking system under development. The calculations car-
ried out in the butterfly-like stage are 40 bit wide because
c factors are in Q15 format and xk samples are in 9Q15
format, therefore, a product between a Q15 number and a
9Q15 number results in a 9Q30 number, so it is necessary
to truncate to the most significative twenty five bits in order
to satisfy the constrain previously imposed.

For the purpose of simulation the MCLT processor was
implemented in a Virtex-4 xc4vsx35-12ff668 FPGA, af-
ter Place and Route procedure the maximum clock rate is
around 91 MHz. Due to the MCLT processor is designed
in streaming mode and, after the initial latency, the MCLT
processor gives a valid MCLT coefficient each clock cycle
it is possible to consider a length-128 MCLT computing in
2.8 µs. The performance demonstrated by our processor
suggests it can be used for applications of multi-channel,
for example, in a typical block-based audio processing ap-
plication, each 128 samples block is captured in 2.9 ms,
if our MCLT processor is able to carry out a length-128
MCLT computing in 2.8 µs then it is possible to process
around 1035 channels simultaneously. In a software imple-
mentation running on a Apple iMac, G5-based workstation
with and 1.9 GHz processor and 2 GB of RAM it was able to
perform a length-128 MCLT computing in 625 µs. The sys-
tem proposed in this paper performs around 220 times faster
that this software implementation. For a multi-broadcasting
monitoring application that performance is very useful. The
processor presented in [17] is able to perform a length-16
MCLT in 6.06 µs, however, it is unfair to compare that
implementation with our processor because the first one is
implemented in a CPLD with smaller performance in com-
parison with the FPGA that we are using, but there are no
more MCLT implementations using configurable structures
reported in the literature.

The inverse MCLT processor was implemented in a sim-
ilar form, c∗ factors are stored in a ROM in the butterfly-
like stage block in figure 3. In this block equations (16),
(17) and (18) are computed. In the watermarking system

Figure 3. Inverse MCLT processor

Figure 4. Butterfly-like stage for the inverse
MCLT processor

370

under development, MCLT coefficients are watermarked in
a sequential form, therefore, only two watermarked coeffi-
cients, in re(in dir)+jin im(in dir) and in re(in dir−
1)+jin im(in dir−1) are stored in a register system sim-
ilar to the direct MCLT processor, however, it is necessary
to store Y (k) values in a RAM in order to keep them ac-
cessible to the IFFT core. Figure 4 shows that butterfly-
like structure, where in re and in im are the real and imag-
inary components of the watermarked sample in, respec-
tively, in index is the index of watermarked sample being
processed, c re and c im are the real and imaginary com-
ponents of factors c∗ respectively, Y re and Y im are the
real and imaginary components of Y. Internal control sig-
nal, generated in the control unit block in figure 4, begins
the loading process for IFFT core in the right-hand block in
figure 3 and control signals of IFFT core indicate when in-
verse MCLT is done. The busy signal will go high when
IFFT is being computed, edone goes high one clock cy-
cle immediately after done goes active, done will transi-
tion high for one clock cycle when the transform calcula-
tion has completed, and finally, dv goes high when there is
a valid value xk re(xk index) + jxk im(xk index). The
inverse MCLT processor was also implemented in a Virtex-
4 xc4vsx35-12ff668 FPGA, after Place and Route proce-
dure the maximum clock rate is around 72 MHz. Due to,
again, the inverse MCLT processor is designed in streaming
mode it is possible to consider a length-128 inverse MCLT
computing in 3.5 µs. Table 1 shows the FPGA resources
utilized for, both, direct MCLT and inverse MCLT imple-
mentations, after Place and Route procedure. From table
1 it can be seen that the direct MCLT processor utilizes a
minor number of slices and RAM16s components than the
inverse MCLT processor does, it is due to the inverse MCLT
processor uses a RAM stage and the direct MCLT proces-
sor does not. Moreover, the input samples for the inverse
MCLT processor are 24 bit wide and, for the direct MCLT
processor they are 16 bit wide, then a greater amount of
slices for the inverse MCLT processor is necessary. The
throughput is affected for the same wide input conditions,
in the direct MCLT processor it is 91.5 mega samples per
second (MSPS) and for the inverse MCLT processor it is
72.3 MSPS.

4 Conclusions

This paper presents efficient MCLT and inverse MCLT
processors, based in the fastest MCLT algorithm available
currently. Implementations in state-of-the-art FPGAs are
presented and discussed too. The real-time watermarking
system constrains are covered satisfactorily. The comput-
ing time for each processor suggest that in a watermarking-
based multi-broadcasting application our implementations
will be very adequate. Although our implementations are

part of a watermarking system these can be used in other
different digital signal processing tasks such as noise can-
cellation and acoustic echo cancellation with same preci-
sion requirements. The MCLT/IMCT implementations pre-
sented in this paper have shown to be the fastest implemen-
tations reported currently.

Acknowledgment

The authors would like to thank CONACyT for financial
support.

References

[1] P. Bassia and I. Pitas. Robust audio watermarking in the
time-domain. IEEE Transactions on Multimedia, 3(2):232–
241, June 2001.

[2] W. Bender, D. Gruhl, and N. Morimoto. Techniques for data
hidding. IBM Journal, 2003.

[3] J. Garcia-Hernandez, M. Nakano, and H. Perez. Real time
implementation of low complexity audio watermarking al-
gorithm. In Proc. Third International Workshop on Random
Fields and Processing in Inhomogeneous Media, October
2005.

[4] J. Garcia-Hernandez, M. Nakano, and H. Perez. Real-time
mclt audio watermarking and comparison of several whiten-
ing methods in receptor side. In Proceedings of Eigth IEEE
ISM 2006, San Diego, CA, USA, pages 991–997, 2006.

[5] J. J. Garcia-Hernandez, M. Nakano-Miyatake, and H. Perez-
Meana. Data hiding in audio signal using rational dither
modulation. IEICE Electron. Express, 5(7):217–222, 2008.

[6] J. Haitsma, M. van der Veen, T. Kalker, and F. Bruekers.
Audio watermarking for monitoring and copy protection. In
ACM Multimedia Workshop Marina Del Ray, USA, pages
119–122, 2000.

[7] D. Kirovski and H. Malvar. Robust covert communication
over a public audio channel using spread spectrum. In 4th
International Information Hiding Workshop, April 2001.

[8] D. Kirovski and H. Malvar. Spread spectrum watermarking
of audio signals. IEEE Transactions on Signal Processing,
51(4):1020–1033, April 2003.

[9] H. S. Malvar. Signal Processing with Lapped Transforms.
Artech House, Inc., 1992.

[10] H. S. Malvar. A modulated complex lapped transform and
its applications to audio processing. Technical report, Mi-
crosoft Research, 1999.

[11] H. S. Malvar. Fast algorithm for the modulated complex
lapped transform. Technical report, Microsoft Research,
2005.

[12] T. Mizrahi. Real-time implementation for digital watermark-
ing in audio signals using perceptual masking. Technical re-
port, Signal and Image Processing Lab., Dept. of EE, Tech-
nion, 2002.

[13] C. Neubauer, J. Herre, and K. Brandenburg. Continuous
steganographic data transmission using uncompressed au-
dio. In Information Hiding Second International Workshop,
April 1998.

371

[14] S. Shlien. The modulated lapped transform, its time-varying
forms, and its applications to audio coding standars. IEEE
Transactions on Speech and Audio Processing, 5:359–366,
1997.

[15] M. D. Swanson, B. Zhu, and A. H. Tewfik. Robust audio
watermarking using perceptual masking. Signal Processing,
66:337–355, 1998.

[16] R. Tachibana. Sonic watermarking. EURASIP Journal on
Applied Signal Processing, pages 1956–1954, 2004.

[17] H.-M. Tai and C. Jing. Design and efficient implementa-
tion of a modulated complex lapped transform processor us-
ing pipelining technique. IEICE Trans Fundamentals, E84-
A(5):1280–1286, May 2001.

[18] Xilinx. Inc. Fast Fourier Transform v4.1, April 2007.
[19] R. Zezula and J. Misurec. Audio signal watermarking in

mclt domain with the aid of 2d pattern. In Proceedings
of 2nd International Conference on Digital Telecommuni-
cations, ICDT ’07, 2007.

372

