
 

 

 

 

 

 

©2001 IEEE. Personal use of this material is permitted. However, permission to 

reprint/republish this material for advertising or promotional purposes or for 

creating new collective works for resale or redistribution to servers or lists, or to 

reuse any copyrighted component of this work in other works must be obtained 

from the IEEE.” 

 



GF (2m) Arithmetic Modules for Elliptic Curve Cryptography

Miguel Morales-Sandoval and Claudia Feregrino-Uribe
National Institute for Astrophysics, Optics and Electronics

Computer Science Department
Luis Enrique Erro No. 1, Sta. Ma. Tonantzintla, 72840 Puebla, México

{mmorales,cferegrino}@inaoep.mx

Abstract

This paper reports work in progress in the design, im-
plementation and evaluation of a reconfigurable finite field
arithmetic architecture with a direct application in Elliptic
Curve Cryptography (ECC) for mobile devices. This mod-
ule contributes to manage the current interoperability prob-
lems in ECC, that are due to the several choices in the im-
plementation of ECC cryptosystems. We report an evalua-
tion of some finite field arithmetic modules in an architec-
ture for computing scalar multiplication, which is the most
time consuming in ECC cryptographic schemes. The arith-
metic modules were evaluated for all the GF (2m) NIST el-
liptic curves in a hardware architecture implemented in field
programmable technology.

1. Introduction

The tendency in communications is the use of mobile de-
vices in a global communication world and the pervasive
and ubiquitous computing. These same devices are forming
Ad-Hoc networks and interacting with other devices to per-
form an specific task. Examples of this kind of networks are
sensor, automotive and personal networks. In this heteroge-
neous inter-networked device environment, security and in-
teroperability are two key aspects to take into account.

Classical information security services like confiden-
tiality, authentication, integrity and no-repudiation are not
straightly implemented in the wireless networks due to the
complexity of the cryptographic algorithms and the con-
strained computational resources in the mobile devices. Au-
thentication and confidentiality are two of the most required
security services in wireless communication for the follow-
ing scenarios:

• Current wireless networks use radio signals to com-
municate which makes any device can pick-up unpro-
tected signals and capture information. Confidential-

ity is required to ensure the privacy of information ex-
change.

• Mobile devices need to authenticate every time they
connect to a network or to a service provider in order
to guarantee that they are who they claim to be.

Elliptic Curve Cryptography (ECC) [10], [15] is a kind
of public key cryptosystem that guarantees all the above se-
curity services using shorter keys while provides the same
security level than other widely used cryptosystems, for ex-
ample RSA [17]. The use of shorter length keys implies
less space for key storage, time saving when keys are trans-
mitted and less costly arithmetic computations. These char-
acteristics make ECC the best and default choice to provide
security in wireless networks [11].

But ECC is more complex. Instead of a single encryption
algorithm like RSA, ECC can be implemented in different
ways. At the same time, the related arithmetic is more com-
plex. Modular and elliptic curve arithmetic is performed us-
ing operands of the same size in bits than the key being
used. Currently, a secure key size in ECC is greater than 163
bits. Arithmetic algorithms are the core operations of high
level security algorithms like encryption (for confidential-
ity) or digital signatures (for authentication). The interoper-
ability problem [23] related to ECC is due to the selection
of an underlaying finite field, a security level, the field rep-
resentation, arithmetic algorithms, an elliptic curve and the
coordinate system. Such problem must be addressed in or-
der to have a global security solution based on ECC tech-
nology.

Although there have been reported security hardware and
software solutions based on ECC, only a few of them in-
tent to solve the interoperability problem. While some of
the hardware solutions require more hardware area which
makes them unsuitable for constrained devices, the software
ones are implemented on workstations where the computa-
tional resources are not constrained as in the wireless de-
vices. A careful study of the best choices to meet through-
put and area requirements for mobile applications is un-

1-4244-0690-0/06/$20.00 ©2006 IEEE.



clear, making it difficult to provide an efficient and interop-
erable ECC security solution for mobile communications.

This paper reports work in progress toward the design
of a reconfigurable ECC security architecture that adapts to
changes in the ECC parameters while achieves the higher
throughput with minimal power consumption. We report an
evaluation of some of the finite field arithmetic algorithms
in a generic architecture for computing the most time con-
suming operation in ECC, the scalar multiplication.

2. Related work

The main problem for interoperability in elliptic curve
cryptography is the variety of ECC parameters that can be
used for implementation. An ECC cryptosystem is defined
as the tuple T = (GF (q), a, b,G, n, h), where GF (q) is a fi-
nite field, a and b define the elliptic curve on GF (q), G is a
generator point of the elliptic curve, n is the order of G, that
is, the smaller integer such that nG = O (identity point in
the additive group). h is called the co-factor and it is equal
to the total number of points in the curve divided by n.

Security services are provided by ECC cryptographic
schemes for key agreement, digital signatures and bulk
encryption. The most time consuming operation is such
schemes is the scalar multiplication, which is intrinsically
related to the tuple T . This costly elliptic curve operation is
performed according three layers:

At the top layer there are different methods for com-
puting the scalar multiplication independently of the
selected finite field. An scalar multiplication is the re-
sult of adding the point P to itself n− 1 times. That is,

kP = P + P + P + · · ·+ P︸ ︷︷ ︸
k times

This operation is a consecutive sum of points that can
be performed using two kinds of sums: the ECC-ADD,
which consist of the sum of two different points (P + Q)
and ECC-DOUBLE, which consist of the sum of the same
point (P + P ).

In the middle layer is the coordinate system being used.
Depending on this representation the ECC-ADD and ECC-
DOUBLE are defined in a different way. The simplest is
the affine representation (x, y) but most of the reported
ECC implementations use projective coordinates because of
point addition is free of finite field inversions, being this op-
eration the most time consuming.

At the lower layer is the finite field arithmetic. The per-
formance of the arithmetic units impacts the overall per-
formance of the scalar multiplication and hence the perfor-
mance of the ECC cryptographic schemes. Finite field op-
erations are multiplication, inversion, squaring and adding.
Depending on the finite field used, these operation are per-
formed in different ways. Also, several algorithms to per-

form these operations are reported but only a few of them
have been evaluated in order to discriminate them for spe-
cific applications.

While the number of ECC-ADD and ECC-DOUBLE op-
erations depends on the method chosen in the top layer, the
kind and number of operations in the finite field depends on
the coordinates used in the middle layer.

Efficient hardware/software implementations of the
scalar multiplication kP have been the main research
topic on ECC in recent years. Tables 1 and 2 summa-
rizes the algorithms used in each layer of kP and the timing
achieved. Table 3 shows the different approaches to imple-
ment the three layers of kP computation.

The main focus in the related works has been the per-
formance of the kP scalar multiplication. Our approach is
different. We aim to perform this operation as fast as pos-
sible but keeping a flexible architecture that can adapts to
several security levels. This implies a careful algorithms se-
lection and implementation, that leads to a dedicated unit
for scalar multiplication that performs well for several el-
liptic curves and finite fields. Table 1 shows how different
algorithm selection in each kP layer will lead to different
area/timing results. It is noted that several multipliers have
been used at different levels of parallelism. It is not clear
how these choices will impact the area resources of the co-
processor and what are the advantages of using one of the
reported multipliers: Karatsuba, LFRS, Massey Omura (M-
O), digit-serial (D-S). The same applies for the inversion
and square algorithms. This table also shows how current
ECC hardware solutions are not interoperable among them
(different elliptic curves). Although in some works the de-
sign of the arithmetic units is parameterizable in the order
field, the architecture needs to be reconfigured out of line
for other finite fields orders. It would be desired in mobile
devices a real time adaptation of the architecture to differ-
ent security levels. We aim to provide such architecture by
using dynamic reconfiguration.

2.1. Finite field arithmetic

Due to its mathematical properties, binary GF (2m) and
prime GF (p) fields have been widely used in cryptogra-
phy. For GF(2m), finite field operations depend on a basis,
which can be polynomial, normal or dual. In polynomial ba-
sis, the elements of GF(2m) are viewed as m−1 grade poly-
nomials A(x) with coefficients in GF(2) = {0, 1}. A basis
of GF(2m) is one of the form {1, t, t1, t2, tm−1}, where t is
a square of an irreducible m grade polynomial P (x) (can-
not be factored as two polynomials). Arithmetic in GF(2m)
with polynomial basis is arithmetic of polynomials mod-
ulo P (x). In normal basis, the irreducible polynomial is not
used. There is always a trade-off when using different bases
for both software and hardware implementations. Squaring



Ref. m kP method Coordinates Basis Multiplier Timing
Co-processors

[5]
270

D&A Projective ONB
M-O (3) 6.8

191 M-O (5) 2.3
155 M-O (7) 1.2

[1] 191 D&A Jacobian Polynomial LFSR (4) 3.7
[4] 113 2P Projective Polynomial Karatsuba 10.9

[9]
151

D&A Affine Polynomial ABC proc.
5.1

176 6.9
191 8.2
239 12.8

[13] 163
D&A

López-Dahab Polynomial D-S(41)
0.26

D&A NAF 0.23
D&A τ -adic NAF 0.07

[19] 191 Montgomery López-Dahab Polynomial Karatsuba Ofman 0.05
[2] 113 Montgomery López-Dahab ONB ONB Bit-serial (2) 0.27

[12]
113

D&A Affine ONB ONB Multiplier
3.7

155 6.8
281 14.4

Processors

[16] 167

D&A Jacobians

Polynomial

(4) D-S 0.96
(8) D-S 0.61

(16) D-S 0.36

Montgomery López-Dahab
(4) D-S 0.55
(8) D-S 0.35

(16) D-S 0.21

[6]

K163

Montgomery López-Dahab Polynomial D-S

0.14
k193 0.18
k233 0.22
163 1.5
193 1.83
233 2.21

[20] 160 Addition-Sub chain NAF Jacobians Polynomial 64-bit dual field Montgomery multiplier 0.19
[14] 160 D&A López-Dahab Polynomial Systolic Montgomery multiplier 3.810
[8] - New 3 bits at a time Projective Polynomial NA

Software

[22]

163

Windowed NAF Proyective Polynomial
Karatsuba

2.3
233 4.7
283 9.5
409 Window Comb 19.8
571 Window Comb 44.9

[7]
163

Fix Base Comb Proyective Polynomial -
1.68

233 3.96
283 5.91

Table 1. Approaches taken in ECC hardware and software implementations in GF(2m)

is easier in normal basis but inversion is slower than in poly-
nomial basis [2]. Orlando and Paar [16] states that multi-
pliers that use normal basis are prohibitively expensive in
terms of area when that order is high (m = 400, 500). Op-
timal normal basis shows some improvements in efficiency
but there are few fields for which there exist this kind of ba-
sis. Hankerson [7] and López and Dahab [3] reports a sur-
vey of methods (the above described) to compute the finite

field arithmetic for both GF(2m) and GF(p).

3. Architecture for scalar multiplication

3.1. The kP top layer

The operation kP , being k an element of the finite field
GF (q) and P a point in the elliptic curve defined on GF (q)



Ref. m Device Area Freq Time (msec)
Co-processors

[5]
155

XC4085XLA
63% 37 MHz 1.2

191 69% 36 MHz 2.3
270 82% 34 MHz 6.8

[1] 191 XCV1000 NA 50 MHz 3.72
[4] 113 AT40K Amtel (2304 CLB, 40 Kgates) 96% 12 MHz 10.9
[9] ¡255 XCV2000E 20%(4048 Slices, 74103 gates) 40MHz 5.1

[13] K163 XCV2000E (D = 41)10,017 LUTs 1930 FF 66 MHz 0.075
[19] 191 VirtexE 3200 56.39% (18314 CLB slices) 9.9 MHz 0.054
[2] 113 XC2V6000 6961 Slices 56 MHz 0.27

[12]
113

XCV300-4
1290 Slices 45 MHz 3.7

155 1567 Slices 36 MHz 6.8
281 2622 Slices 33 MHz 14.4

Processors
[16] 167 XCV400E-8 D = 4-16; 1627-3002 LUTs 85.7-76.7 MHz 0.55-0.36
[6] < 255 XCV2000E - 66.4 MHz -

[20] 160 ASIC 118 Kgates 510 MHz 0.19
[14] 160 XCV800 138 - 150 Kgates 47 MHz 3.81

Table 2. Devices used, area consumption and execution time in ECC implementations in GF (2m)

is the most time and computational demanding operation
in ECC cryptographic schemes. All the proposed methods
for computing this operation use the binary representation
of k and for each bit value they perform one of two addi-
tion rules: ECC-ADD and ECC-Double. Addition of points
has a geometrical interpretation and its definition varies de-
pending on the coordinates being used to represent the el-
liptic points.

The simplest way to compute kP is applying the binary
or standard method, which is defined as follows:

Binary method for scalar multiplication kP
Input: P = (x, y) x, y ∈ GF2m and k = (km−1, km−2, ..., k0)
Output: R = kP
R ← (0, 0)
S ← P
for i from 0 to m− 1

if ki = 1
R ← ECC-ADD(R, S)

end if
S ← ECC-Double(S)

end for

3.2. The kP middle layer

Using affine representation of elliptic curve points,
the ECC-ADD operation of two points P = (x1, y1),
Q = (x2, y2) is the point R = (x3, y3) where:

x3 ← λ2 + λ + x1 + x2 + a
y3 ← λ(x1 + x3) + x3 + y1

λ ← (y2 + y1)/(x2 + x1)

The ECC-DOUBLE operation is R = (x3, y3) =
P + P = 2P where:

x3 ← λ2 + λ + a
y3 ← x2

1 + λx3 + x3

λ ← x1 + y1/x1

So, for ECC-ADD it is necessary to perform two field
multiplications, one squaring and one inversion. The ECC-
Double requires one extra squaring operation. It es well
known that projective coordinates avoids the inversion oper-
ation in each ECC point addition but introduces more field
multiplication (seven for ECC-ADD and twelve for ECC-
Double). It can be beneficial from the point of view of tim-
ing but the inversion is required because only one inversion
operation is necessary at the end of the kP computation. So,
in a hardware implementation, the inversion module is not
avoided despite projective coordinates be used.

From this selection at the first and second layer of kP
computation, we propose a generic architecture that con-
sists of two dedicated units for ECC-ADD and ECC-Double
commanded by a control unit that performs the binary algo-
rithm for kP . Such architecture is shown in figure 1.

The multiplier, division and squaring modules can be up-
dated just by replacing them by better performed modules.
We select a field serial multiplier and compared with a digit
serial multiplier, we implemented the combinatorial squarer
proposed in [13] and design an architecture for the finite
field direct division algorithm proposed in [21].



Y

X

S
7

m

Squarer

Multiplier

m

S
5

x3

x
3

y3

x1 S
3

Divider

x
3

y
1

S
6

S
8

x1

S
2

m

m

S1

x2

y1

y
2 m

m

m

S4

x
1

Y

X

S
5

m

m

m

Squarer

Multiplier

m

S
3y1

ma

x
3

x3

y
3

x
1

x
1

S
2

S
1

Divider

x
3

y
1

S
4

S6

ECC-Double

ECC-ADD

Control Unit
(Binary method)

k P

a

S

R

S

R

Figure 1. Architecture for ECC-ADD and ECC-DOUBLE

3.3. The kP lower layer

We work with the binary field GF (2m) using polyno-
mial basis because of according to the literature, it leads to
efficient hardware implementations of ECC. Due that we
are targeting our hardware architecture to mobile devices,
we are interested in algorithms that consumes few resources
and hence, power consumption. We selected the the field se-
rial multiplier algorithm that computes a(x)b(x) mod F (x)
in m iterations. Then, we added parallelism to the multiplier
and we compare the gain in performance at the cost of area.

GF (2m) serial multiplication algorithm
Input: A(x), B(x) ∈ GF2m, F (x) the irreducible polyno-
mial of degree m
Output: C(x) = A(x)B(x) mod F (x)
C(x) ← 0
for i from m− 1 down to 0

C(x) ← C(x)x + A(x)bi + cm−1P (x)
end for

This algorithm can be improved gradually if instead of
considering just one bit of the polynomial B(x), a group of
bits is considered at each step of the field multiplication al-
gorithm. The number of bits considered is called the digit
d. So, a field multiplication computed by a digit serial algo-
rithm is performed as follows:

GF (2m) digit-serial multiplication algorithm
Input: A(x), B(x), F (x) ∈ GF2m, d the digit size and
s = dm/de
Output: C(x) ← A(x)B(x) mod F (x)
C(x) ← Bs−1(x)A(x) mod F (x)
for i from s− 2 down to 0

C(x)= A(x)· B(x) mod F(x)

A(x)

shift

B

shift

C

B(x)

F(x)

0

0

0

1

1

0

cm

bm-1

0 1

m

m

m

m

Figure 2. Hardware architecture for serial fi-
nite field multiplication

C(x) ← xdC(x)
C(x) ← Bk(x)A(x) + C(x) mod F (x)

end for

The digit-serial algorithm reduces the field multiplica-
tion computation to in m/d iterations but introduces com-
plexity in each step of the multiplication. For these two
kinds of multipliers, we designed two architectures shown
in figure 2 and 3. The squaring module is taken from [13]
which computes A(x)2 in just one clock cycle.

For inversion, we considering the Modified Almost In-
verse algorithm, the Fermant’s Theorem and the algorithm
for direct division proposed in [21]. The Fermant’s theo-
rem reuses the multiplier and the squaring modules but re-
quires m−1 iterations. This results in (m−1)xm iterations
if the serial multiplier is used or (m−1)x(m/d) iterations if



Buffer

Mul

Mul

C(x) = A(x) · B(x) mod F(x)

A(x)

B(x)

B

0

1

m

d

m

m

d m-d

Shift Digit

C

m

F(x)

m

m

m

m

m

A(x)

Xm+1

m

A (x)2  mod F(x)

m

m-2

Mul

a0

0
a1

0
.
.
.

am-1

XOR

d+2

m

m

Finite field digit-serial multiplier Finite field combinatorial squarer

Figure 3. Hardware architecture for digit serial finite field multiplication

the digit serial multiplier is used. On the contrary, the Mod-
ified Almost Inverse algorithm has a complexity similar to
the direct division algorithm which instead of computing
the inverse of a field element A(x), it performs the opera-
tion A(x)/B(x). Both methods perform at most 2m − 1 it-
erations but in the first one it is necessary to perform a mul-
tiplication that requires extra clock cycles. We implemented
the direct division algorithm defined as follows:

GF (2m) division algorithm
Input: X1(x), Y1(x) ∈ F2m , X1(x) 6= 0 and F (x) the
irreducible polynomial of degree m
Output: U(x) = Y1(x)/X1(x) mod P (x)
A(x) ← X1(x)
B(x) ← F (x)
U(x) ← Y1(x)
V (x) ← 0
while A(x) 6= B(x) do

if x divides to A(x)
A(x) ← A(x)x−1

if x divides to U(x) then U(x) ← U(x)x−1

else U(x) ← (U(x) + F (x))x−1

end if
else if x divides to B(x) then

B(x) ← B(x)x−1

if x divides to V (x) then V (x) ← V (x)x−1

else V (x) ← (V (x) + F (x))x−1

end if
else if deg(A(x)) > deg(B(x)) then

A(x) ← (A(x) + B(x))x−1

U(x) ← U(x) + V (x)
if x divides to U(x) then U(x) ← U(x)x−1

else U(x) ← (U(x) + F (x))x−1

end if

A

0

X
1
(x)

F(x)

Am

Um

B
Shift

Shift
V

U M

Y1(x)

mY
1
(x)/X

1
(x)

mod F(x)

m

Figure 4. Architecture for division in F2m

else
B(x) ← (A(x) + B(x))x−1

V (x) ← U(x) + V (x)
if x divides to V (x) then V (x) ← V (x)x−1

else V (x) ← (V (x) + F (x))x−1

end if
end if

end while

The architecture for the above division algorithm is de-
picted in figure 4.

4. Results

We evaluated all the above algorithms in our generic kP
architecture. All the GF (2m) arithmetic modules were de-
scribed in VHDL and are fully parameterizable in the field



order m. We design input and output interface modules to
allow a 32-bit interface with a host processor. All the arith-
metic modules for GF (2m) were synthesized for a Xilinx
XC2V2000 FPGA. The kP architecture was synthesized
for the binary field defined by m ∈ {163, 233, 283}. For
the case of m = 233, 283 we need to use the XC2V4000
FPGA due to higher area requirements.

Figures 5 shows the area resources requirements for the
multiplier, using the serial and digit version. The division
and squaring area consumption is shown in figure 6. It can
be seen the linear in area resources with respect to the secu-
rity level used.

150 200 250 300 350 400 450 500 550 600
0

2000

4000

6000

8000

10000

12000

m (field order)

F
P

G
A

 S
lic

es

Area resources for different paralellism grade in binary field multiplication

 

 

Serial
D = 4
D = 8
D = 16
D = 32

Figure 5. Area resources for GF (2m) multipli-
cation for different m values

150 200 250 300 350 400 450 500 550 600
0

500

1000

1500

2000

2500

3000

3500

4000

m (field order)

F
P

G
A

 S
lic

es

Area resources for binary field division and squaring

 

 

Divisor
Squarer

Figure 6. Area resources for GF (2m) multipli-
cation and squaring for different m values

Using the arithmetic modules, we evaluate them for the
generic elliptic curve for m = 163 recommended in SEC-1.

Figure 7 shows the timing spent for kP using the five dif-
ferent field multiplication modules. As we can see, differ-
ent to the assumption that a greater digit will perform the
kP operation faster, we found that the best timing for kP
is achieved when using a digit size of 8. This is due to the
higher complexity in the multiplier which produce a larger
clock cycle period. This observation is supported by the val-
ues listed in table 3.

0 5 10 15 20 25 30 35
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

d (digit in the finite field multiplier)

T
im

e 
(m

s)

Figure 7. Time (ms) for scalar multiplication
for m = 163 using different field multipliers

We validated all the architectures comparing results
against a software implementation that is a little modifica-
tion of the code available in [18].

5. Concluding remarks

We presented GF (2m) arithmetic modules for a re-
configurable Elliptic Curve Cryptography architecture. We
evaluated a serial and digit serial multiplier, a division al-
gorithm and a combinatorial squaring unit. We reported the
area requirements and the timing performance achieved. We
are going to use other arithmetic module for comparison,
among them, the Fermat Algorithm and the Ito-Tsuji algo-
rithms for inversion. This is in order to have a better way
to select the ones arithmetic modules that will be consid-
ered in the final reconfigurable architecture.

Acknowledgments

First author thanks the National Council for Science and
Technology (CONACyT) for financial support throw the
scholarship number 171577.



Multiplier Area Cycles/kP Clk period (ns) Time kP (ms)
Serial 5632 (52%) 72527 19.409 1.36
D = 4 6762 (62%) 52620 21.611 1.06
D = 8 7342 (68%) 49360 20.747 1.02
D = 16 8537 (79%) 47730 22.286 1.13
D = 32 10750 (99%) 46915 29.040 1.4

Table 3. Area/timing results for kP using different field multipliers

References

[1] M. Bednara, M. Daldrup, J. von zur Gathen, J. Shokrollahi,
and J. Teich. Reconfigurable implementation of elliptic curve
crypto algorithms. In IPDPS ’02: Proceedings of the 16th In-
ternational Parallel and Distributed Processing Symposium,
pages 284–291, Washington, DC, USA, 2002. IEEE Com-
puter Society.

[2] R. Cheung, N. Telle, W. Luk, and P. Cheung. Customizable
elliptic curve cryptosystems. IEEE Trans. on VLSI Systems,
13(9):1048–1059, Sept. 2005.

[3] R. Dahab and J. López. An Overview of Elliptic Curve Cryp-
tography. Technical Report IC-00-10, State University of
Campinas, Brazil, May 2000.

[4] M. Ernest et al. A Reconfigurable System on Chip Imple-
mentation for Elliptic Curve Cryptography over GF(2n). In
Proc. of the 4th International Workshop on Cryptographic
Hardware and Embedded Systems - CHES’2002, volume
2523 of Lecture Notes in Computer Science, pages 381–399,
Redwood Shores, CA, August 2002. Springer.

[5] M. Ernest et al. Rapid Prototyping for Hardware Accelerated
Elliptic Curve Public Key Cryptosystems. In Proc. of 12th
IEEE Workshop on Rapid System Prototyping, RSP’2001,
pages 24–31, Monterey, CA, June 2001.

[6] N. Gura et al. An End to End Systems Approach to Elliptic
Curve Cryptography. In Proc. of CHES 2002, volume 2523,
pages 349–365. Springer, 2002.

[7] D. Hankerson, L. López, and A. Menezes. Software
Implementation of Elliptic Curve Cryptography over Bi-
nary Fields. In Proc. of the Second International Work-
shop on Cryptographic Hardware and Embedded Systems,
CHES’2000, volume 1965 of Lecture Notes in Computer Sci-
ence, pages 1–24, Worcester, MA, August 2000. Springer.

[8] A. Hodjat, D. D. Hwang, and I. Verbauwhede. A scalable and
high performance elliptic curve processor with resistance to
timing attacks. In ITCC’05: International Conference on
Information Technology: Coding and Computing, volume I,
pages 538–543, 2005.

[9] T. Kerins et al. Fully Parameterizable Elliptic Curve Cryp-
tography Processor over GF(2m). In Proc. of 12th Interna-
tional Conference on Field Programmable Logic and Appli-
cation, FPL’2002, volume 2438 of Lecture Notes in Com-
puter Science, pages 750–759, Montpellier, France, Septem-
ber 2002. Springer.

[10] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of
Computation, 48(177):203–209, November 1987.

[11] K. Lauter. The advantages of elliptic curve cryptography
for wireless security. IEEE Wireless Communications, pages
62–67, 2004.

[12] P. Leong and K. H. Leung. A Microcoded Elliptic Curve Pro-
cessor Using FPGA Technology. IEEE Trans. on VLSI Sys-
tems, 10(5):550–559, October 2002.

[13] J. Lutz and A. Hasan. High performance fpga based ellip-
tic curve cryptographic co-processor. In ITCC’04: Interna-
tional Conference on Information Technology: Coding and
Computing, volume 2, page 486, 2004.

[14] N. Mentens, S. Berna, and B. Preneel. An FPGA Imple-
mentation of an Elliptic Curve Processor gf(2m). In Pro-
ceedings of the 14th ACM Great Lakes symposium on VLSI,
pages 454–457, Boston, MA, 2004.

[15] V. Miller. Use of Elliptic Curves in Cryptography. In Proc. of
Advances in Cryptology, CRYPTO’85, pages 417–426, Santa
Barbara, CA, August 1985.

[16] G. Orlando and C. Paar. A High-Performance Reconfig-
urable Elliptic Curve Processor for GF(2m). In Proc. of
the Second International Workshop on Cryptographic Hard-
ware and Embedded Systems, CHES’2000, volume 1965 of
Lecture Notes in Computer Science, pages 41–56, Worces-
ter, MA, August 2000. Springer.

[17] R. Rivest, A. Shamir, and L. Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Com-
mun. ACM, 21(2):120–126, 1978.

[18] M. Rosing. Implementing Elliptic Curve Cryptography.
Manning Publications, 1999.

[19] N. Saquib, F. Rodriguez, and A. Diaz. A Parallel Archi-
tecture for Fast Computation of Elliptic Curve Scalar Mul-
tiplication over GF(2n). In Proc. of 11th Reconfigurable Ar-
chitectures Workshop, RAW’04, pages 26–27, Sta. Fe, USA,
April 2004.

[20] A. Satoh and K. Takano. A Scalable Dual-Field Elliptic
Curve Cryptographic Processor. Transactions on Comput-
ers, 52(4):449–460, April 2003.

[21] Shantz, S. C. From Euclid’s GCD to Montgomery Multipli-
cation to the Great Divide. Technical Report TR-2001-95,
Sun Microsystems Laboratories, 2001.

[22] A. Weimerskirch, D. Stebila, and S. C. Shantz. Generic
gf(2m) arithmetic in software and its application to ecc. In
The Eighth Australasian Conference on Information Security
and Privacy (ACISP 2003), volume 2727 of Lecture Notes in
Computer Science, pages 79–92. Springer, 2003.

[23] R. Zuccherato. Using a pki based upon elliptic curve cryp-
tography. Entrust white paper, 2003. http://www.
entrust.com/resources.


