
Computers and Electrical Engineering 35 (2009) 54–58
Contents lists available at ScienceDirect

Computers and Electrical Engineering

journal homepage: www.elsevier .com/ locate /compeleceng
An area/performance trade-off analysis of a GF(2m) multiplier architecture
for elliptic curve cryptography

Miguel Morales-Sandoval, Claudia Feregrino-Uribe, René Cumplido *, Ignacio Algredo-Badillo
Computer Science Department, National Institute for Astrophysics, Optics and Electronics, Luis Enrique Erro No. 1, Tonantzintla, Pue. 72840, Mexico
a r t i c l e i n f o

Article history:
Received 24 January 2007
Received in revised form 26 November 2007
Accepted 27 May 2008
Available online 31 August 2008
0045-7906/$ - see front matter � 2008 Elsevier Ltd
doi:10.1016/j.compeleceng.2008.05.008

* Corresponding author. Tel.: +52 222 2663100; f
E-mail address: rcumplido@inaoep.mx (R. Cump
a b s t r a c t

A hardware architecture for GF(2m) multiplication and its evaluation in a hardware archi-
tecture for elliptic curve scalar multiplication is presented. The architecture is a parameter-
izable digit-serial implementation for any field order m. Area/performance trade-off results
of the hardware implementation of the multiplier in an FPGA are presented and discussed.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Finite fields like the binary GF(2m) and the prime GF(p) have been used successfully in error correction codes and cryp-
tographic algorithms. In elliptic curve cryptography (ECC), the overall performance of cryptographic ECC schemes is hardly
determined by arithmetic in GF(2m), being inversion and multiplication the most time consuming operations. According to
the literature, arithmetic in GF(2m) binary fields using polynomial basis leads to efficient hardware implementations of ECC.
Some works related to hardware implementation of ECC have reported parameterizable GF(2m) arithmetic units to compute
the most time consuming operation in elliptic curve cryptography, the scalar multiplication. Those architectures are based
on a diversity of multiplication algorithms, for example: Massey Omura multipliers [1], linear feedback shift registers mul-
tipliers [2], Karatsuba [3,4], and digit-serial multipliers [5]. Other works have studied and implemented GF(2m) multipliers
using polynomial basis like [8,9]. Others have used different algorithms, like the Montgomery multiplication [10,11].
Although, from the architectural point of view, it is well known that the arithmetic unit has a big impact in the timing
and area of hardware for scalar multiplication, it is not clear whether the architecture performance is due to the parallelism
in the multipliers, the number of multipliers, or the kind of multipliers used. This technical communication presents the
hardware architecture of a GF(2m) digit-serial multiplier and evaluates the area/performance trade off, considering various
digit sizes d and finite field orders m.
2. GF(2m) multiplication architecture

Multiplication in GF(2m) in polynomial basis is the operation A(x) � B(x) mod F(x), that can be computed using a variety of
proposed algorithms in the literature. On the one hand, serial or bit-serial algorithms, consider each individual bit of the
operand B(x) which implies a latency for multiplication of m clock cycles. On the other hand, digit-serial multipliers consider
a group of d bits of operand B(x) at time and perform the multiplication in m/d cycles. However, it is not clear which is the
. All rights reserved.

ax: +52 222 2663152.
lido).

mailto:rcumplido@inaoep.mx
http://www.sciencedirect.com/science/journal/00457906
http://www.elsevier.com/locate/compeleceng

M. Morales-Sandoval et al. / Computers and Electrical Engineering 35 (2009) 54–58 55
best size of d for this kind of multiplier to achieve an appropriate performance that meets the constraints for a specific appli-
cation. Varying the size of the digit allows to explore the cost in area and performance improvements from a serial imple-
mentation up to a parallel multiplication architecture. At each iteration, the operand A(x) is multiplied by a group of d bits of
operand B(x) and the result is reduced modulo F(x). The result is added accumulatively to the result of the next iteration,
considering the following d bits of B(x) until all B(x)0 bits are processed. The reduction in the operation latency comes with
an increment in the complexity at each step of the multiplication. For our implementation, we consider the digit serial Algo-
rithm 1 [6], the same algorithm used for the work reported in [5], and show the different area/time results when the digit
size is varied. This will help designers to select suitable parameters when implementing architectures for high level appli-
cations like cryptographic algorithms or error correction code algorithms.

Algorithm 1. Digit-serial multiplication: multiplication in GF(2m)
Require: A(x), B(x) in GF(2m), F(x) the m + 1 grade irreducible polynomial
Ensure: C(x) = A(x) * B (x) mod F(x)

1: C(x) Bs�1 (x)A(x) mod F(x)
2: for k from s � 2 down to 0 do
C(x) xd C(x)
C(x) C(x) + Bk(x)A(x) mod F(x)

end for

Being B(x) an element in GF(2m) using polynomial basis, this is viewed as the polynomial bm�1xm�1 + bm�2xm�2 + � � � +
b1x + b0. For a positive digit number d < m, the polynomial B(x) can be grouped so that it can be expressed as

B(x) = x(s�1)dBs�1(x) + x(s�2)dBs�2(x) + � � � + xdB1(x) + B0(x), where s = dd/me and each word Bi(x) is defined as follows:
BiðxÞ ¼

Pd�1

j¼0
bidþjxj if 0 6 i < s� 1;

Pðm%dÞ�1

j¼0
bidþjxj if i ¼ s� 1:

8>>>><
>>>>:
If xd is factored from the grouped representation of B(x), the resulting expression is
BðxÞ ¼ xdðxdð� � � ðxdðxdBs�1ðxÞ þ Bs�2ðxÞÞ þ � � �Þ þ B1Þ þ B0Þ:
This last representation of operand B(x) is used in Algorithm 1 to compute the field multiplication. That is, A(x)B(x) mod
F(x) = xd(xd(� � �(xd(xdBs�1(x)A(x) + Bs�2(x)A(x)) +� � �)+ B1A(x)) + B0A(x)) mod F(x). At each iteration, the accumulator C(x) is mul-
tiplied by xd and the result is added to the multiplication of A(x) by each word Bi (x) of B(x). The partial result C(x) is reduced
modulo F(x).
CðxÞ ¼ Bs�1ðxÞAðxÞ mod FðxÞ Initialization
CðxÞ ¼ xdCðxÞ mod FðxÞ ¼ xdBs�1ðxÞAðxÞ mod FðxÞ Iteration s� 2
CðxÞ ¼ xdBs�1ðxÞAðxÞ þ Bs�2ðxÞAðxÞ mod FðxÞ
CðxÞ ¼ xdCðxÞ mod FðxÞ ¼ xdðxdBs�1ðxÞAðxÞ þ Bs�2ðxÞAðxÞÞ mod FðxÞ Iteration s� 3
CðxÞ ¼ xdðxdBs�1ðxÞAðxÞ þ Bs�2ðxÞAðxÞÞ þ Bs�3ðxÞAðxÞ mod FðxÞ
� � � � � �
The proposed architecture for Algorithm 1 is shown In the left side of Fig. 1. A finite state machine controls the data flow
executing the loop in Algorithm 1. At each iteration, a new digit of d bits from B(x) is processed so the operation is performed
in dd/me cycles. The operations xdC(x) and Bi(x)A(x) are computed using parallel combinatorial multipliers, that multiplies a
d � 1 grade polynomial with a m � 1 grade polynomial. Being U(x) a d � 1 grade polynomial ud�1 xd�1 + ud�2xd�2 + . . . +
u1x + u0, and A(x) a m � 1 grade polynomial, the parallel multiplication is
UðxÞAðxÞ mod FðxÞ ¼ ud�1xd�1AðxÞ mod FðxÞ
þ ud�2xd�2AðxÞ mod FðxÞ
þ � � �
þ u1xAðxÞ mod FðxÞ
þ u0AðxÞ mod FðxÞ:
The operation xA(x) mod F(x) is a shift to the left operation of A(x) together a reduction of F(x). Thus, the value xiA(x) mod F(x)
is the shifted and reduced version of xi�1A(x) mod F(x). So each value xiA(x) mod F(x) can be generated sequentially starting
with x0A(x). Finally, each xiA(x) mod F(x) value is added depending on the bit value of ui. These operations are executed by the
parallel multiplier shown in the right side of Fig. 1.

C(x) = A(x) · B(x) mod F(x)

A(x)

B(x)

B(x)-register

0
1

m

d

m

d m - d

Shift Digit

m

F(x)

m

m

m

m

m

00

A(x) U(x) mod F(x)

S&R S&R S&R S&R

XOR

u0
u

d-2

0 00

· · ·

A(x)

U(x)

m

d

m

m

m
S&R = A(x)x mod F(x)

u
d-1u1

m m m m

GF(2) digit multiplier
architecture

Parallel Combinatorial
multiplier

m

Combinatorial
Multiplier

Combinatorial
Multiplier

C(x)-register

u
2

Q2(x)Q1(x)

Fig. 1. Hardware architecture for digit serial finite field multiplication.

56 M. Morales-Sandoval et al. / Computers and Electrical Engineering 35 (2009) 54–58
The operation xdC(x) mod F(x) is computed in two steps. Using the polynomial representation of C(x),
xdCðxÞ mod FðxÞ ¼ xdðcm�1xm�1 þ cm�2xm�2 þ � � � þ cm�dxm�d þ cm�d�1xm�d�1 þ � � � þ c1xþ c0Þ mod FðxÞ
¼ xdðcm�1xm�1 þ cm�2xm�2 þ � � � þ cm�dxm�dÞ mod FðxÞ þ xdðcm�d�1xm�d�1 þ � � � þ c1xþ c0Þ mod FðxÞ
¼ ðcm�1xmþd-1 þ cm�2xmþd�2 þ � � � þ cm�dxmÞ mod FðxÞ þ ðcm�d�1xm�1 þ � � � þ c1xdþ1 þ c0xdÞ mod FðxÞ
¼ Q 1ðxÞ mod FðxÞ þ Q 2ðxÞ mod FðxÞ:
Q2(x) is a m � 1 grade polynomial, corresponding to the m � d least significant bits of C(x) shifted d positions to the left. Q2(x)
does not need to be reduced.

By factoring xm from Q1(x), it is obtained Q1(x) = xm(cm�1xd�1 + cm�2xd�2 + � � � + cm�d). In this case, being F(x) a m + 1 trino-
mial or pentanomial of the form F(x) = xm + g(x), where g(x) is a polynomial with grade g�m, the equivalence xm � g(x) can
be used. In this case, g(x) corresponds to all bits of F(x) except the m-bit. Thus, Q1(x) mod F(x) = g(x) (cm�1xd�1 + cm�2xd�2 +� � �+
cm�d). That is, the operation is a multiplication of g(x) of grade g, and a polynomial of grade d, corresponding to the most
significant d bits of C(x). The resulting polynomial is of grade g + d. In all the cases the polynomial F(x) used in the tests
for the finite fields m 2 {163,233,283,409,571}, and digits {1,4,8,16,32}, the value g + d�m, so no reduction is necessary.
The polynomial g(x) is expanded to a m � 1 grade polynomial so Q1(x) mod F(x) be computed using the parallel combinatorial
multiplier. All these computations are performed by the modules in the architecture for the multipliers, which includes the
parallel multipliers, a shift to the left module of d-bits, two registers and a 3m-input xor gate.

3. Implementation and results

The architecture was designed in VHDL, simulated and validated using Active-HDL and a test program in C. The architec-
ture is parametrizable in the filed order for any m value. The average system throughput of the architecture was obtained by
synthesizing it to several finite field orders for the reconfigurable device xc2v2000 FPGA, using Xilinx’s tools. The multiplier
was implemented for the field orders m = 163, 233, 283, 409 and 571 recommended by NIST [7] for elliptic curve cryptog-
raphy, and for the field m = 277 recommended by IPSec. Due the large number of I/O pins in the architecture, the GF(2m) mul-
tiplier was implemented together an I/O interface. This is a finite state machine that gets the input parameters A(x) and B(x)
as 32-bit words and once the operation is computed, it delivers the results in several 32-bit words. The results presented in
figures include the I/O interface.

We also investigated the performance of the multiplier considering the processing time. Fig. 2 shows the processing time
for specific finite fields and digit sizes and Fig. 3 shows the area resources required for each one of these finite fields and digit
sizes. From these figures, it can be observed that the bigger the digit, the better the performance, but the higher area require-
ments. Latency of the multiplier is mainly reduced by the size of the digit. From Fig. 2, it is seen that the difference in timing
between the digit size 16 and 32 bits is not significant, thus the extra cost in terms of area for digit sizes greater that 32 bits is
not justified.

150 200 250 300 350 400 450 500 550 600
—0.1

0.2

0.5

0.8

1.1

1.4

1.7

2

2.3

2.6

m (field order)

Ti
m

e
(u

s)

digit = 1
digit = 4
digit = 8
digit = 16
digit = 32

Fig. 2. Time (us) to compute GF(2m) multiplication using different parallelism grade and finite field orders.

150 200 250 300 350 400 450 500 550 600
0

2000

4000

6000

8000

10000

12000

m (field order)

A
re

a
(S

lic
es

)

digit = 1
digit = 4
digit = 8
digit = 16
digit = 32

Fig. 3. Area (slices) resources for different parallelism grade and finite field orders.

M. Morales-Sandoval et al. / Computers and Electrical Engineering 35 (2009) 54–58 57
The application constraints will guide the selection of the best implementation parameters. As an example of an appli-
cation, consider a reconfigurable architecture for scalar multiplication in elliptic curve cryptography that manages several
finite field orders, but only assigns fixed space for the field multiplier. For each specific finite field order, there is a digit size
that maximizes the performance of the multiplier for a fixed area. For example, with 40 K gates the best performer is a 4-
digit field multiplier for the field m = 571. In this area, we could also implement a 8-digit or a 16-digit multiplier for the fields
m = 409 and m = 277, respectively, and so on.

It is worth to mention that the results presented in this technical communication were obtained from place and route
optimized for speed and without keeping the hierarchical structure of the design. Finally, Table 1 shows a comparison of
the area results and performance achieved in this work against the results presented in [8] for several kinds of parallel mul-
tipliers, using the field m = 233 and the same technology, a virtex2 FPGA xc2v6000-4. In this comparison, the I/O interface
was not used. The results show that the digit serial solution requires less area, 10 times lower for d = 32 compared to the
parallel implementation of the classical multiplier at the cost of six more clock cycles. In all the cases, the digit-serial mul-
tiplier has greater frequency which implies this module can be integrated to other designs working at high frequencies.

The multiplier using d = 1 achieves better timing (269 MHz, 0.60us) compared with the bit-serial implementation in [9]
(42 MHz, 7.4 us) for the finite field m = 163. Other works have implemented finite field multipliers and used them in elliptic
curve coprocessors or processors [1–5] but the results for the standalone multiplier are not available. Others have imple-
mented the multiplier for the GF(p) finite field so a direct comparison is not possible [10,11].

Table 1
Area and time comparison results

Ref. Multiplier LUT/FF Slices Gate count Clock period (ns) Frequency (MHz)

[8] Classical (estmd.) 37,296/37,552 – 528,427 13.00 77
[8] HybridKaratsuba 11,746/13,941 – 182,007 11.07 90.3
[8] MasseyOmura 36,857/8,543 – 289,489 15.91 62.8
[8] SunarKoc 45,435/41,942 – 608,149 10.73 93.2
This work (d = 1) 484/477 246 6731 4.26 234.8
This work (d = 4) 1188/634 766 12,905 4.82 207.2
This work (d = 8) 2115/710 1384 18,394 5.32 187.7
This work (d = 16) 4004/889 2436 31,139 6.19 161.5
This work (d = 32) 7110/1349 4457 53,647 6.59 151.6

58 M. Morales-Sandoval et al. / Computers and Electrical Engineering 35 (2009) 54–58
4. Conclusions

An area/performance trade off analysis for a digit-serial GF(2m) finite field multiplication was presented. The size of the
digit to use in an application of the proposed multiplier architecture will be guided by the area assigned to the multiplier.
Also, the required processing time and which other digits can be used to maximize the performance for other field order
using greater digits should be taken into account.

Acknowledgments

First author thanks the National Council for Science and Technology from Mexico (CONACyT) for financial support
through the scholarship number 171577.

References

[1] Ernest M, Klupsch S, Hauck O, Huss SA. Rapid prototyping for hardware accelerated elliptic curve public key cryptosystems. In: Proceedings of 12th
IEEE workshop on rapid system prototyping, RSP’2001, Monterey, CA; June 2001, p. 24–31.

[2] Bednara M, Daldrup M, Gathen J, Shokrollahi J, Teich J. Reconfigurable implementation of elliptic curve crypto algorithms. In: IPDPS’02: Proceedings of
the 16th international parallel and distributed processing symposium. Washington, DC, USA: IEEE Computer Society; 2002. p. 284–91.

[3] Ernest M, Jung M, Madlener F, Huss S, Blümel R. A reconfigurable system on chip implementation for elliptic curve cryptographyover GF(2m). In:
Proceedings of the 4th international workshop on cryptographic hardware and embedded systems – CHES’2002. Lecture notes in computer science,
vol. 2523. Redwood Shores, CA: Springer; 2002. p. 381–99.

[4] Saquib N, Rodriguez F, Diaz A. A parallel architecture for fast computation of elliptic curve scalar multiplication over GF(2m). In: Proceedings of 11th
reconfigurable architectures workshop, RAW’04, Sta. Fe, USA; April 2004. p. 26–7.

[5] Lutz J, Hasan A. High performance FPGA based elliptic curve cryptographic co-processor. ITCC’04: international conference on information technology:
coding and computing, vol. 2. IEEE Society Press; 2004. p. 486–92.

[6] Lutz Jonathan. High performance elliptic curve cryptographic co-processor. Master’s thesis, University of Waterloo; 2003.
[7] NIST. Recommended elliptic curves for federal government use. <http://csrc.nist.gov/csrc/fedstandards.html>; 1999.
[8] Grabbe C, Bednara M, Teich J, von zur Gathen J, Shokrollahi J. FPGA designs of parallel high performance GF(2233) multipliers. In: Proceedings of IEEE

ISCAS’03, vol. II; 2003. p. 268–71.
[9] Kitsos P, Theodoridis G, Koufopavlou O. An efficient reconfigurable multiplier architecture for galois field GF(2m). Microelectron J 2003;34(10).

[10] Savas� E, Tenca AF, Koç ÇK. A scalable and unified multiplier architecture for finite fields GF(p) and GF(2m). Cryptographic hardware and embedded
systems, LNCS no. 1965; August 2000. p. 281–96.

[11] Tenca AF, Koc Cetin K. A scalable architecture for modular multiplication based on Montgomery’s algorithm. IEEE Trans Comput 2003;52(9):1215–21.

http://csrc.nist.gov/csrc/fedstandards.html

	An Area/Performance Trade-Off Analysis area/performance trade-off analysis of a GF(2m) Multiplier Architecture multiplier architecture for Elliptic Curve Cryptographyelliptic curve cryptography
	Introduction
	GF(2m) Multiplication multiplication architecture
	Implementation and results
	Conclusions
	AcknowledgementAcknowledgments
	References

