

“This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms and
constraints invoked by each author's copyright. In most cases, these works may not be
reposted without the explicit permission of the copyright holder."

M. Gavrilova et al. (Eds.): ICCSA 2006, LNCS 3982, pp. 446 – 455, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Design and Implementation of an FPGA-Based
1.452-Gbps Non-pipelined AES Architecture

Ignacio Algredo-Badillo, Claudia Feregrino-Uribe, and René Cumplido

National Institute for Astrophysics, Optics and Electronics,
Luis Enrique Erro #1, CP 72840, Sta. Ma. Tonantzintla, Puebla, México

{algredobadillo, cferegrino, rcumplido}@inaoep.mx
http://ccc.inaoep.mx

Abstract. This work reports a non-pipelined AES (Advanced Encrypted
Standard) FPGA (Field Programmable Gate Array) architecture, with low re-
source requirements. The architecture is designed to work on CBC (Cipher
Block Chaining) mode and achieves a throughput of 1.45 Gbps. This implemen-
tation is a module of a configuration library for a Cryptographic Reconfigurable
Platform (CRP).

1 Introduction

Cryptographic systems in diverse applications, like multimedia, WWW servers, the
Transport Layer Security (TLS) protocol and secure mail protocols such as S/MIME,
have provided a safe way for storing and transmitting information. These systems
offer security based on complex architectures by adding cryptographic algorithms that
may be hash functions, symmetric key algorithms and asymmetric key algorithms [1].
Each one can be used for multiple and different services, such as: authentication,
integrity, data confidentiality, pseudorandom number generator, digital signatures and
key establishment.

Secure communication protocols handle a symmetric key cryptosystem, a hash al-
gorithm, and method for providing digital signatures and key exchange using public
key cryptography [2] and have several operation modes. This work focuses on IPSec
(Internet Protocol Security) due to its growing popularity [3], it operates at the net-
work IP layer of the TCP/IP stack and utilizes CBC mode. It is an algorithm-
independent protocol, securing traffic of whichever network topology. It has a set of
open standards and protocols for creating and maintaining secure communications
over IP networks. For example, IPSec leverages other important standards like IKE
(Internet Key Exchange) protocol, authentication standards (Kerberos, RADIUS, and
X.509 digital certificates), and encryption algorithms (AES and 3DES). Communica-
tion networks, like Gigabit Ethernet require processing speeds of 1 Gbps and it is
expected that also future wireless personal area networks perform at these data rates
[4]. These networks require flexible, high throughput systems which compute crypto-
graphic algorithms that are more efficiently implemented in custom hardware that in
software running on general-purpose processors (GPPs) [5]. Also, the hardware im-
plementations offer more security than software ones because they cannot be as easily
read or modified by an outside attacker [6]. Implementing cryptography in FPGA

 Design and Implementation of an FPGA-Based 1.452-Gbps 447

devices provides a good alternative to custom and semi custom ASICs (Application
Specific Integrated Circuits), which have an expensive and time-consuming fabrica-
tion, and more inflexibility or parameter switching [7], and GPPs and special-purpose
processors, like DSPs (Digital Signal Processors) [8], that offer lower performance.
The advantages of the FPGA reprogrammable devices are especially prominent in
security applications, where new security protocols decouple the choice of crypto-
graphic algorithms from the design of the protocol, and users select the cryptographic
standard to start a secure session.

AES algorithm ensures the compliance with many of the security regulations, in-
cluding IPSec and Suite B of recommended cryptographic algorithms, with keys sizes
of 128 and 256 bits as announced by NSA (National Security Agency) at the 2005
RSA Conference [9].

2 AES Algorithm

The AES algorithm is a symmetric block cipher that can process data blocks of 128
bits, and it uses cipher keys of 128, 192, and 256 bits [10]. This work implements a
hardware architecture of the AES algorithm for ciphering 128-bit data with 128-bit
keys. Key length of 128 bits is selected, because it fits in the current IKE, and has the
benefits of performance. One initial round is performed and ten round functions (see
Fig. 1), where a round function has four transformations (non-linear byte substitution,
constant Galois field multiplication, key addition, and an S-box substitution) to obtain
the cipher text. An important operation is key expansion, which computes a key
schedule or a 128-bits key in each round. The non-linear byte substitution and key
expansion operations require S-box substitution, where one byte is substituted and
determined by the intersection of the row and the column. These substitution values
for the byte xy are defined in [10].

Key Expansion

128-bit
CIPHER

TEXT

128-bit
KEY

128-bit
PLAIN
TEXT

Initial
Round

M
ul

tip
le

xe
r

Byte
Substitution

SubByte

Shift
Rows

ShiftRow

GF(28)
Multiplication
MixColumn

Key Addition
AddRoundkey

M
ul

tip
le

xe
r

Fig. 1. General structure of AES Algorithm

3 Related Work

Recently, several algorithm-specific hardware architectures of AES algorithm have
been reported in the literature, involving commercial and research works, with differ-
ent design techniques, architectures and FPGA resources. Among these are iterative
architectures on Virtex-II, Virtex-4, and a pipelined architecture on Virtex-II.

The commercial implementation in [11] has an iterative architecture, 128-bit data
input, data output and key input buses. The datasheet presents FPGA implementa-
tions, where the “Fast version” has a throughput of 0.58 Gbps. The work in [12] pre-
sents a partitioning architecture without using the BRAMs (Blocks RAM). The

448 I. Algredo-Badillo, C. Feregrino-Uribe, and R. Cumplido

architecture is designed in two parts: 1) implementation of the Key Expansion, which
calculates the round keys, and 2) implementation of the functional rounds to cipher
128-bit data. The implementation results of the second part show a throughput of 0.20
Gbps. In [13] AES implementation synthesis results are reported with three different
key lengths, and the best throughput is 1.19 Gbps with 128-bit data buses. [14] de-
scribes an AES commercial product, which offers diverse operation modes and key
lengths. The architecture uses 4 BRAMs in CBC mode to cipher data; the implemen-
tation needs 44 clock cycles at 93 MHz, performing at 0.27 Gbps.

The next two works are included for comparing their throughputs and FPGA re-
source utilization. The work in [15] reports four AES pipelined architectures, where
two of them use BRAMs. The 7-stage AES architecture shows the highest throughput
of 21.64 Gbps, at the expense of FPGA resources. [16] presents commercial imple-
mentations on the Xilinx Virtex-II FPGA, the main characteristics are a throughput of
about 1.40 Gpbs, using 18 BRAMs and 1,125 slices.

The previous works demonstrate that implementing S-box on internal memory im-
proves the throughput, decreases the used FPGA resources, and reduces the critical
path time. Current architectures with greater throughputs use pipelined structures,
which are mentioned only as a reference.

This work reports an AES architecture that aims to perform above 1 Gbps to meet
the speed requirements of a Cryptographic Reconfigurable Platform that changes its
configuration and functionality to suit the required cryptographic implementation.

4 AES Hardware Architecture and FPGA Implementation

In a communication line or in a transmission channel, the CBC operation mode does
not permit pipelined architectures, because feedback operations are performed after
ciphering a block [17] (see Fig. 2).

The architecture implemented is based on the AES standard algorithm specified in
the Federal Information Processing Standards Publication 197 (FIPS-197) [10] of the
National Institute of Standards and Technology. It performs in CBC mode to meet the
IPSec requirements.

The aim of this work is to implement a fast and simple iterative AES architecture
with low FPGA resource requirements. It was written and simulated in Active-HDL
and implemented in Xilinx ISE 6 for the measurement of hardware parameters such as
logic and clock frequency. The architectures were synthesized, mapped, placed and
routed for an FPGA Xilinx XC2V1000-FG456. This device validates the architecture,
and by no means is for a final product.

AES

IV_x = Initialization Vector x
MBx = Message Block x

CBx = Cipher Block x

MB1

AES

MB2IV_2IV_1

CB1 CB2

AES

CBn

MBnIV_n

Fig. 2. AES algorithm in the CBC operation mode

 Design and Implementation of an FPGA-Based 1.452-Gbps 449

The main modules of the architecture are: 1) AES_CONTROL, which outputs con-
trol signals and organizes the dataflow, 2) AES_GENKEY, which outputs the round
keys, and 3) AES_ROUND, which ciphers the data (see Fig. 3).

The initial round is computed by the X01 gate, and the following ten rounds are
executed by the AES_ROUND module. The round keys are added in AES_ROUND
module and the intermediate cipher data are feedback to the same module until the
final cipher data are obtained. The selection of the initial round data and the interme-
diate cipher data is made by the M01 multiplexer. After several clock cycles, the final
cipher data are addressed from multiplexer output.

AES_ROUND is the main module, it covers the four transformations defined in
[10] (see Fig. 4). This module calculates the ten round functions, whereas the initial
round operation and the key generation are externally operated.

AES_CIPHER

AES_ROUND

ARO

CIP1to10

CI_PLAIN

128

128

128

RST
CLK

128

MUX
XOR

M01

128CI_KEY
128 CIP0

CIP1to10

CDATA
128

SELMUXR
SELMUXC

AES_GENKEY
AES_CONTROL

SELROUND
SELMUXG

‘1’

AO_READY
AO_BUSY

ROUNDKEY

CCTRL

CI_CIPHERDATA
128

12
8

8
Round Key

MUX

Initial
Round

CI_CIPHERDATA

CI_PLAIN

AES_ROUND

SubByte

ShiftRow

MixColumn

AddRound
Key

CI_KEY

Key
expansion

A
E

S
_G

E
N

K
E

Y

MUX

AES_CIPHER

Fig. 3. General architecture of the AES imple-
mentation

Fig. 4. The four transformations of the
AES algorithm are integrated on the
AES_ROUND module of the general
architecture

The general architecture of the basic modular implementation is iterative, and the
S-boxes are implemented using twenty distributed memories. AES_Control module is
a 12-state FSM (Finite State Machine). The state diagram and FSM initial values are
shown in Fig. 5. The START state modifies the value of the SC_BUSY signal. Only in
this state, the signal will have value of logical zero, indicating the system is waiting
for data. SC_BUSY=’1’ in other states indicates the system is busy ciphering. When
IC_STARTCIP=’1’ and the actual state is START, FSM changes to the LOAD state,
which registers the key and input data. In this state, the OC_SELMUXC signal con-
trols the dataflow, both input data and intermediate cipher data (‘1’ for input data and
‘0’ for cipher data), while OC_SELMUXG selects the input key or round keys (‘1’ for
round keys and ‘0’ for input key). Also, the initial round is computed, and the next ten
states compute the ten rounds left. In each of the following clock cycles, from
ROUND1 to ROUND10 states are active, and the OC_ROUND value changes for the
AES_GENKEY module. The ROUND10 state presents the final cipher data in the
CI_CIPHERDATA bus. Only in this state, OC_READY=‘1’ indicates a valid output. If

450 I. Algredo-Badillo, C. Feregrino-Uribe, and R. Cumplido

there are more data to cipher, the IC_STARTCIP signal should be in high level and the
next state is ROUND1, else FSM is set to START state. In the first case, the next plain
data are stored in the ROUND10 state, and they are processed from ROUND1 to
ROUND10 states.

Fig. 5. State diagram of the AES_CONTROL module

If the system ciphers data, and it is maintained in the ROUND0-ROUND10 loop,
its output value will offer 128-bit cipher data every twelve clock cycles for 128-bit
plain data and 128-bit key data. The throughput of the iterative architecture is given
by [18]:

Throughput = Plain_data_block_sice / ((Clock_period)(Clock_cycles)) (1)

AES_GENKEY module is the key-expansion operation, which outputs a 128-bits
key every round (see Fig. 6). S-boxes and XOR gates compute the round keys, the
register stores the CI_KEY input or Round Key bus, and the multiplexer selects these
keys. The S-boxes are implemented in four distributed memories. In the LOAD and
ROUND10 states the key input is stored, and from ROUND1 to ROUND10 states,
round keys are stored. In the ROUND10 state, the key input is stored because it is
used by the ROUND1-ROUND10 loop, when the system ciphers data successively.

The general structure of the AES_ROUND module is shown in the Fig. 7. This
module computes the four transformations defined in [10]. The SubByte transforma-
tion is performed by S-boxes implemented in 16 distributed memories. The ShiftRow
transformation is made by readdressing the BYTESUB bus to the SHIFTROW bus.
This has the effect of cyclically shifting over different number of bytes. The MixCol-
umn transformation operates GF(28) multiplications over SHIFTROW bus, and it is
performed by the MIXCOL module, which outputs the MIXCOLUMN bus. Finally, in
the AddRoundKey transformation, the round key is added by a simple XOR opera-
tion. The multiplexer selects in the first nine rounds the MIXCOLUMN bus, whereas
in the last round it selects the SHIFTROW bus. The multiplexer output is added to the
IKEY bus (round key).

The MIXCOL module computes multiplications and additions over GF(28). In [10]
it is described a matrix multiplication with the fixed polynomial:

a(x) = {3}x3 + {1}x2 + {1}x + {2} (2)

 Design and Implementation of an FPGA-Based 1.452-Gbps 451

SBOX

AES_GENKEY

MUX
SBOX

S00

S01
SBOX

SBOX
S02

S03

TRKEY(23:16)
8

TRKEY(23:16)
8

TRKEY(15:8)
8

TRKEY(31:24)
8

TEMP

TTRANS(7:0)

TTRANS(15:8)

TTRANS(23:16)
REG

TMKEY
X01

R01

X05

M01

TRKEY(127:96)
TRKEY(95:64)
TRKEY(63:32)
TRKEY(31:0)
TTRANS

X04

X03

X02

TRKEY(127:96)
TRKEY(95:64)
TRKEY(63:32)
TTRANS

TRKEY(127:96)
TRKEY(95:64)

TTRANS

TRKEY(127:96)

TTRANS

TOKEY(127:96)

32

TOKEY(95:64)

32

TOKEY(63:32)

32

TOKEY(31:0)

32

T
R

K
E

YCLK
RST
WR
GI_ROUND

GI_KEY

TOKEY

TTRANS

8

8

8

8

8

128

32

12
8

128

128

GO_KEY

Fig. 6. Diagram of the AES_GENKEY module

SBOX

AES_ROUND

MUX
XOR

SBOX
S00

128

S01

SBOX

SBOX
S14

S15

IROUND(127:120)

IROUND(119:112)

IROUND(7:0)
8

IROUND(15:8)
8

BYTESUB(127:120) SHIFTROW(127:120)

BYTESUB(7:0)
8

SHIFTROW(39:32)

BYTESUB(15:8)
8

SHIFTROW(79:72)

BYTESUB(119:112) SHIFTROW(87:80)

MIXCOLSHIFTROW

128
SHIFTROW

128
MIXCOLUMN

128
MIXCOLUMN

IROUND

IKEY
128ISEL

128
IKEY

OMUX128
128

OMIX

M01

X01

MC1

8

8

128

8

8

Fig. 7. Diagram of the AES_ROUND module

The equation computes multiplications {1} and {3}, and additions. The GF(28) ad-
dition is the XOR operation and the GF(28) multiplication is special since it is only
necessary to multiply by some constants [19]. Constant multiplicands permit to im-
plement XOR operations and multiplexers, and these substitute the multiplication
described in [10]. For example, a section of MIXCOL module is shown in Fig. 8,
where a MixColumn transformation is performed for the OMIX(127:120) byte, or

OMIX(127:120) <= {2}*IMIX(127:120) ⊕ {3}*IMIX(119:112) ⊕
 {1}*IMIX(111:104) ⊕ {1}*IMIX(103.96). (3)

The {1}, {2} and {3} constant coefficients in (3) are multiplied in GF(28). In mul-
tiplication by {1}, the result is equal to the non-one factor, so, IMIX(111:104) and
IMIX(103:96) bytes are added by the XOR49 gate.

The multiplication by {2} is a conditional 1-bit left shift implemented by a multi-
plexer. Its selector, IMIX(127), controls the overflow in GF(28). If the value being
multiplied is less than “10000000”, the result is the value itself left-shifted by 1 bit,
IMIX(126:120)&’0’. If the value is greater than or equal to “10000000”, the result is
the value left-shifted by 1 bit added with “00011011”, IMIX(126:120)&’0’ XOR
“00011011”. This prevents overflowing and keeps the product of multiplication in
GF(28).

The multiplication by {3} is reduced to additions and multiplications by {2},
where the last multiplications are conditional 1-bit left-shifts [19]. Multiplication by
{3} can be decomposed as {3} = {2} + {1}. Thus:

452 I. Algredo-Badillo, C. Feregrino-Uribe, and R. Cumplido

{3}* IMIX(119:112) <= {2+1} * IMIX{119:112}
 <= {2} * IMIX(119:112) + {1} * IMIX(119:112) (4)

The multiplication by {3} is implemented by two multiplexers, three XOR gates,
and multiplications by {1} and {2} implemented as mentioned in the above para-
graph.

AES_MIXCOL

IMIX(103:96)

MULT3[1]
MULT2[0]

IMIX(111:104)
8
8

8

8
XOR

OMIX(127:120)

8

MUX

MUX

“00011011”
“00011011”

OX[1](7:0)

OX[1](8)

OX[1](7:0)

OX[1] I1

I2 M
U

LT
2[

1]

XOR

XOR

XOR

M
U

LT
3[

1]

8

8
9

8

8
8

9

9 8

8

8

IMIX(119)

IMIX(118:112)&’0'
8

MIX(118:112)&’0'

MUX
MUX

“00011011”
“00011011”

OX[0](7:0)

OX[0](8)

OX[0](7:0)

OX[0] I1

I2 M
U

LT
2[

0]

XOR

XOR

XOR

M
U

LT
3[

0]

8

8
9

8

8
8

9

9 8

8

8

IMIX(127)

IMIX(126:120)&’0'
8

IMIX(126:120)&’0'

OMIX
128

128

IMIX

I1=I2=
MULT2[1]&’0'

I1=I2=
MULT2[0]&’0'

X49 MUX

XOR

Fig. 8. Diagram of the operation in (3), which is part of the AES_ROUND module

As the IOBs requirements of the general AES architecture (see Fig. 3), exceeds the
IOBs of XC2V1000-FG456 device, input data and key are stored in registers to be
processed later on in parallel (see Fig. 9). So, the final architecture multiplexes the
CI_PLAIN and CI_KEY 128-bit buses, requiring not additional clock cycles, since the
data are stored in the last block processing time. In a given clock cycle, a bus is regis-
tered, and in the next clock cycle, the other bus. By successively ciphering data, the
key and plain data are stored in run time, and each ten clock cycles, an AO_CIP out-
put or cipher data are obtained.

Initially, the twenty S-boxes were implemented in twenty distributed memories,
and the architecture achieved a throughput of 0.92 Gbps, with a clock frequency of
86.94 MHz, 2,335 used slices, 4,327 LUTs, 263 IOBs and 10 clock cycles.

AES architecture is part of the CRP[20], which requires cryptographic implemen-
tations for transmission speeds of 1 Gbps, and due to (1), Plain_data_block_size has
a constant value of 128 bits, whereas Clock_cycles in this design has a value of 10 and
Clock_period of (86.94 MHz)-1. Consequently, a reduction of Clock_cycles implies an
architecture with unrolled rounds, which increases the use of FPGA resources and the
critical path time or decrease the clock frequency. A reduction of critical path time, by
the modification of Clock_period is the more practical option.

AES_COVER

AES_CIPHER
REG

REG

R01

R02
CIP

RO_PLA

RO_KEY

AO_CIP

AO_BUSY
AO_READY

AI_PLA&KEY

AI_RKEY

AI_RPLA128
128

128

128

RST
CLK

128
AI_CIP

Fig. 9. Final general AES architecture

 Design and Implementation of an FPGA-Based 1.452-Gbps 453

The implementation of twenty distributed memories for twenty S-boxes requires
proportional FPGA resources to place and route them, which results in a critical path
time proportional to the FPGA utilized logic. So, modular architecture is redesigned
to use 10 dual-port embedded memories, instead of twenty, decreasing the used
FPGA resources, and thus the critical path time.

5 Implementation Results and Comparisons

The implementation results of the AES architecture are shown in Table 1, and these
are taken from the post-Place & Route reports. Changing the twenty internal memo-
ries by ten dual-port memories decreases the critical path time from 11.50 ns to
8.80 ns, reduces the FPGA resources, and eliminates some intermediate registers. The
implementation results indicate that, in terms of required FPGA resources, the S-box
substitution is the dominant element of the AES implementation.

Table 1. Implementation results of the non-pipelined iterative AES architecture

Period
(ns)

Clock
(MHz)

IOBs
(out of 324)

Slices 4-Input
LUT

Latency
(Clk cycles)

Throughput
(Gbps)

8.80 96.42 263 586 847 10 1.45

These results show less wired and logic FPGA resources, which are 586 slices and
847 LUTs. This leads to a compact architecture with a lower critical path time, a
higher clock frequency (96.42 MHz) and a throughput of 1.45 Gbps.

Different device families will yield different performance results. Important meas-
urements of hardware AES implementations to consider are FPGA utilized resources,
clock frequency, latency and throughput, see Table 2.

Table 2 reports measurements on non-pipelined hardware architectures on Virtex
and Virtex-II FPGAs, suitable for CBC mode implementation. This work reports an
AES architecture with the excellent performance and low resource requirements.

Table 2. Result comparison of the AES implementations

Work /
Device

 FPGA Resources
Logic Memory

Clock
(MHz)

Latency
(Clk cycles)

Throughput
(Gbps)

[12] – XCV200E-6 425 CLBs - 77.80 - 0.20
[14] – XCV250-5 791 slices 4 BRAM 93 44 -
[11] – XCV400e-8 1672 LUT - 50.20 11 0.58
[13] – Virtex-II Pro 2703 LUT 44 BRAM 196 - 1.19
[16] – Virtex-II 1125 slices 18 BRAM - - 1.40
This work XC2V1000 586 slices 10 BRAM 96.42 10 1.45

The general approach used in this work aimed to obtain an iterative architecture
with low hardware resources utilization. The modular design was optimized in a way
that the algorithm functionality was not altered (e.g. eliminating basic modules like

454 I. Algredo-Badillo, C. Feregrino-Uribe, and R. Cumplido

registers or multiplexers). Distributed memories were replaced by dual-port memories
to handle data in parallel and registers were added for data multiplexing and key stor-
age in order to reduce the critical path, resulting in less hardware that in turn results in
a more efficient place & route process and higher throughput.

6 Conclusions

This work reports a hardware architecture of AES algorithm in CBC operation mode.
In terms of area requirements, throughput and hardware efficiency, this architecture
exhibits excellent abilities compared to the most recent AES architectures, imple-
mented in Virtex and Virtex II devices. This work shows a simple design and an effi-
cient architecture that requires minimal logical resources and is suitable for devices
with limited silicon area.

Its performance results and low resource requirements make the architecture suit-
able as a module for the CRP platform, which handles several cryptographic algo-
rithms and is applicable in secure communication systems, where devices or networks
require cryptographic solutions with high flexibility and high throughput.

References

1. P. Kocher, R. Lee, G. McGraw, A. Raghunathan, S. Ravi, Security as a New Dimension in
Embedded System Design, DAC 2004, June 2004.

2. F. Crowe, A. Daly, T. Kerins, W. Marnane, Single-Chip FPGA Implementation of a Cryp-
tographic Co-Processor, Proceedings of IEEE International Conference on Field Pro-
grammable Technology (FPT’04), December 2004.

3. Ixia, IPSec Virtual Private Networks: Conformance and Performance Testing, White-
paper, November 2003.

4. L. Quinn, P. Mehta, A. Sicher, Wireless Communications Technology Landscape, White
Paper, Dell, February 2005.

5. G. Umamaheshwari, A. Shanmugan, “Efficient VLSI Implementation of the Block Cipher
Rijndael Algorithm, Academic Open Internet Journal, Volume 12, 2004. Available at:
http://www.acadjournal.com/.

6. G. Bertoni, J. Guajardo, C. Paar, Architectures for Advanced Cryptographic Systems, Idea
Group Inc, 2004.

7. K. Gaj, P. Chodowiec, Comparison of the Hardware Performance of the AES Candidates
Using Reconfigurable Hardware, Proceedings of the 3rd Advanced Encryption Standard
(AES) Candidate Conference, April 2000.

8. Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, J. Stockwood, Hardware-Software
Co-Design of Embedded Reconfigurable Architectures, ACM, 2000.

9. National Security Agency, Fact Sheet NSA Suite B Cryptography. Available at:
http://www.nsa.gov/ia/industry/crypto_suite_b.cfm

10. Federal Information Processing Standards Publication 197, Announcing the Advanced
Encryption Standard (AES), November 2001.

11. Barco-Silex, AES Encryption and Decryption BA411AES Factsheet, March 2005. Avail-
able at: http://www.barco.com/.

 Design and Implementation of an FPGA-Based 1.452-Gbps 455

12. T. Liu T, C. Tanougast, P. Brunet, Y. Berviller, H. Rabah, S. Weber, An Optimized FPGA
Implementation of an AES Algorithm for Embedded Applications, International Work-
shop on Applied Reconfigurable Computing 2005 (ARC2005), February 2005.

13. J. Lu, J. Lockwood, “IPSec Implementation on Xilinx Virtex-II Pro FPGA and Its Appli-
cation”, Reconfigurables Architectures Workshop (RAW), April 2005.

14. Algotronix Ltd, “AES Core Product Description”, November 2004. Available at:
http://www.algotronix.com/.

15. A. Hodjat, I. Verbauwhede, “A 21.54 Gbits/s Fully Pipelined AES Processor on FPGA”,
IEEE Symposium on Field-Programmable Custom Computing Machines, April, 2004.

16. Helion Technology Limited, “OVERVIEW DATASHEET – Helion cores. Available at:
www.heliontech.com/.

17. A. Menezes, P. V. Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC
Press, 1996.

18. K. Gaj, P. Chodowiec, Fast Implementation and Fair Comparison of the Final Candidates
for Advanced Encryption Standard Using Field Programmable Gate Array, Proceedings in
RSA Security Conference – Cryptographer’s Track, April 2001.

19. J. McCaffrey, You’re your Data Secure with the New Advanced Encryption Standard,
MSDN Magazine, Issue November 2003, Available at: http://msdn.microsoft.com.

20. Ignacio Algredo Badillo, René Cumplido Parra and Claudia Feregrino, “Design and Im-
plementation of a High Performance Cryptographic Reconfigurable Platform”, 2004 XIII
International Congress on Computing, 13-15 Oct, Mexico (In Spanish).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

