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Abstract. This work reports a non-pipelined AES (Advanced Encrypted  
Standard) FPGA (Field Programmable Gate Array) architecture, with low re-
source requirements. The architecture is designed to work on CBC (Cipher 
Block Chaining) mode and achieves a throughput of 1.45 Gbps. This implemen-
tation is a module of a configuration library for a Cryptographic Reconfigurable 
Platform (CRP). 

1   Introduction 

Cryptographic systems in diverse applications, like multimedia, WWW servers, the 
Transport Layer Security (TLS) protocol and secure mail protocols such as S/MIME, 
have provided a safe way for storing and transmitting information. These systems 
offer security based on complex architectures by adding cryptographic algorithms that 
may be hash functions, symmetric key algorithms and asymmetric key algorithms [1]. 
Each one can be used for multiple and different services, such as: authentication, 
integrity, data confidentiality, pseudorandom number generator, digital signatures and 
key establishment.  

Secure communication protocols handle a symmetric key cryptosystem, a hash al-
gorithm, and method for providing digital signatures and key exchange using public 
key cryptography [2] and have several operation modes. This work focuses on IPSec 
(Internet Protocol Security) due to its growing popularity [3], it operates at the net-
work IP layer of the TCP/IP stack and utilizes CBC mode. It is an algorithm-
independent protocol, securing traffic of whichever network topology. It has a set of 
open standards and protocols for creating and maintaining secure communications 
over IP networks. For example, IPSec leverages other important standards like IKE 
(Internet Key Exchange) protocol, authentication standards (Kerberos, RADIUS, and 
X.509 digital certificates), and encryption algorithms (AES and 3DES). Communica-
tion networks, like Gigabit Ethernet require processing speeds of 1 Gbps and it is 
expected that also future wireless personal area networks perform at these data rates 
[4]. These networks require flexible, high throughput systems which compute crypto-
graphic algorithms that are more efficiently implemented in custom hardware that in 
software running on general-purpose processors (GPPs) [5]. Also, the hardware im-
plementations offer more security than software ones because they cannot be as easily 
read or modified by an outside attacker [6]. Implementing cryptography in FPGA 
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devices provides a good alternative to custom and semi custom ASICs (Application 
Specific Integrated Circuits), which have an expensive and time-consuming fabrica-
tion, and more inflexibility or parameter switching [7], and GPPs and special-purpose 
processors, like DSPs (Digital Signal Processors) [8], that offer lower performance. 
The advantages of the FPGA reprogrammable devices are especially prominent in 
security applications, where new security protocols decouple the choice of crypto-
graphic algorithms from the design of the protocol, and users select the cryptographic 
standard to start a secure session.  

AES algorithm ensures the compliance with many of the security regulations, in-
cluding IPSec and Suite B of recommended cryptographic algorithms, with keys sizes 
of 128 and 256 bits as announced by NSA (National Security Agency) at the 2005 
RSA Conference [9]. 

2   AES Algorithm 

The AES algorithm is a symmetric block cipher that can process data blocks of 128 
bits, and it uses cipher keys of 128, 192, and 256 bits [10]. This work implements a 
hardware architecture of the AES algorithm for ciphering 128-bit data with 128-bit 
keys. Key length of 128 bits is selected, because it fits in the current IKE, and has the 
benefits of performance.  One initial round is performed and ten round functions (see 
Fig. 1), where a round function has four transformations (non-linear byte substitution, 
constant Galois field multiplication, key addition, and an S-box substitution) to obtain 
the cipher text. An important operation is key expansion, which computes a key 
schedule or a 128-bits key in each round. The non-linear byte substitution and key 
expansion operations require S-box substitution, where one byte is substituted and 
determined by the intersection of the row and the column. These substitution values 
for the byte xy are defined in [10]. 
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Fig. 1. General structure of AES Algorithm 

3   Related Work 

Recently, several algorithm-specific hardware architectures of AES algorithm have 
been reported in the literature, involving commercial and research works, with differ-
ent design techniques, architectures and FPGA resources. Among these are iterative 
architectures on Virtex-II, Virtex-4, and a pipelined architecture on Virtex-II.  

The commercial implementation in [11] has an iterative architecture, 128-bit data 
input, data output and key input buses. The datasheet presents FPGA implementa-
tions, where the “Fast version” has a throughput of 0.58 Gbps. The work in [12] pre-
sents a partitioning architecture without using the BRAMs (Blocks RAM). The  
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architecture is designed in two parts: 1) implementation of the Key Expansion, which 
calculates the round keys, and 2) implementation of the functional rounds to cipher 
128-bit data. The implementation results of the second part show a throughput of 0.20 
Gbps. In [13] AES implementation synthesis results are reported with three different 
key lengths, and the best throughput is 1.19 Gbps with 128-bit data buses. [14] de-
scribes an AES commercial product, which offers diverse operation modes and key 
lengths. The architecture uses 4 BRAMs in CBC mode to cipher data; the implemen-
tation needs 44 clock cycles at 93 MHz, performing at 0.27 Gbps. 

The next two works are included for comparing their throughputs and FPGA re-
source utilization. The work in [15] reports four AES pipelined architectures, where 
two of them use BRAMs. The 7-stage AES architecture shows the highest throughput 
of 21.64 Gbps, at the expense of FPGA resources. [16] presents commercial imple-
mentations on the Xilinx Virtex-II FPGA, the main characteristics are a throughput of  
about 1.40 Gpbs, using 18 BRAMs and 1,125 slices.  

The previous works demonstrate that implementing S-box on internal memory im-
proves the throughput, decreases the used FPGA resources, and reduces the critical 
path time. Current architectures with greater throughputs use pipelined structures, 
which are mentioned only as a reference. 

This work reports an AES architecture that aims to perform above 1 Gbps to meet 
the speed requirements of a Cryptographic Reconfigurable Platform that changes its 
configuration and functionality to suit the required cryptographic implementation.  

4   AES Hardware Architecture and FPGA Implementation 

In a communication line or in a transmission channel, the CBC operation mode does 
not permit pipelined architectures, because feedback operations are performed after 
ciphering a block [17] (see Fig. 2).  

The architecture implemented is based on the AES standard algorithm specified in 
the Federal Information Processing Standards Publication 197 (FIPS-197) [10] of the 
National Institute of Standards and Technology. It performs in CBC mode to meet the 
IPSec requirements. 

The aim of this work is to implement a fast and simple iterative AES architecture 
with low FPGA resource requirements. It was written and simulated in Active-HDL 
and implemented in Xilinx ISE 6 for the measurement of hardware parameters such as 
logic and clock frequency. The architectures were synthesized, mapped, placed and 
routed for an FPGA Xilinx XC2V1000-FG456. This device validates the architecture, 
and by no means is for a final product.  
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Fig. 2. AES algorithm in the CBC operation mode 
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The main modules of the architecture are: 1) AES_CONTROL, which outputs con-
trol signals and organizes the dataflow, 2) AES_GENKEY, which outputs the round 
keys, and 3) AES_ROUND, which ciphers the data (see Fig. 3).  

The initial round is computed by the X01 gate, and the following ten rounds are 
executed by the AES_ROUND module. The round keys are added in AES_ROUND 
module and the intermediate cipher data are feedback to the same module until the 
final cipher data are obtained. The selection of the initial round data and the interme-
diate cipher data is made by the M01 multiplexer. After several clock cycles, the final 
cipher data are addressed from multiplexer output. 

AES_ROUND is the main module, it covers the four transformations defined in 
[10] (see Fig. 4). This module calculates the ten round functions, whereas the initial 
round operation and the key generation are externally operated. 
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Fig. 3. General architecture of the AES imple-
mentation 

Fig. 4. The four transformations of the 
AES algorithm are integrated on the 
AES_ROUND module of the general  
architecture  

The general architecture of the basic modular implementation is iterative, and the 
S-boxes are implemented using twenty distributed memories. AES_Control module is 
a 12-state FSM (Finite State Machine). The state diagram and FSM initial values are 
shown in Fig. 5. The START state modifies the value of the SC_BUSY signal. Only in 
this state, the signal will have value of logical zero, indicating the system is waiting 
for data. SC_BUSY=’1’ in other states indicates the system is busy ciphering. When 
IC_STARTCIP=’1’ and the actual state is START, FSM changes to the LOAD state, 
which registers the key and input data. In this state, the OC_SELMUXC signal con-
trols the dataflow, both input data and intermediate cipher data (‘1’ for input data and 
‘0’ for cipher data), while OC_SELMUXG selects the input key or round keys (‘1’ for 
round keys and ‘0’ for input key). Also, the initial round is computed, and the next ten 
states compute the ten rounds left. In each of the following clock cycles, from 
ROUND1 to ROUND10 states are active, and the OC_ROUND value changes for the 
AES_GENKEY module. The ROUND10 state presents the final cipher data in the 
CI_CIPHERDATA bus. Only in this state, OC_READY=‘1’ indicates a valid output. If 
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there are more data to cipher, the IC_STARTCIP signal should be in high level and the 
next state is ROUND1, else FSM is set to START state. In the first case, the next plain 
data are stored in the ROUND10 state, and they are processed from ROUND1 to 
ROUND10 states. 

 

Fig. 5. State diagram of the AES_CONTROL module 

If the system ciphers data, and it is maintained in the ROUND0-ROUND10 loop, 
its output value will offer 128-bit cipher data every twelve clock cycles for 128-bit 
plain data and 128-bit key data. The throughput of the iterative architecture is given 
by [18]: 

Throughput = Plain_data_block_sice / ((Clock_period)(Clock_cycles))     (1) 

AES_GENKEY module is the key-expansion operation, which outputs a 128-bits 
key every round (see Fig. 6). S-boxes and XOR gates compute the round keys, the 
register stores the CI_KEY input or Round Key bus, and the multiplexer selects these 
keys. The S-boxes are implemented in four distributed memories. In the LOAD and 
ROUND10 states the key input is stored, and from ROUND1 to ROUND10 states, 
round keys are stored. In the ROUND10 state, the key input is stored because it is 
used by the ROUND1-ROUND10 loop, when the system ciphers data successively.  

The general structure of the AES_ROUND module is shown in the Fig. 7. This 
module computes the four transformations defined in [10]. The SubByte transforma-
tion is performed by S-boxes implemented in 16 distributed memories. The ShiftRow 
transformation is made by readdressing the BYTESUB bus to the SHIFTROW bus. 
This has the effect of cyclically shifting over different number of bytes. The MixCol-
umn transformation operates GF(28) multiplications over SHIFTROW bus, and it is 
performed by the MIXCOL module, which outputs the MIXCOLUMN bus. Finally, in 
the AddRoundKey transformation, the round key is added by a simple XOR opera-
tion. The multiplexer selects in the first nine rounds the MIXCOLUMN bus, whereas 
in the last round it selects the SHIFTROW bus. The multiplexer output is added to the 
IKEY bus (round key). 

The MIXCOL module computes multiplications and additions over GF(28).  In [10] 
it is described a matrix multiplication with the fixed polynomial:  

a(x) = {3}x3 + {1}x2 + {1}x + {2} (2) 
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Fig. 6. Diagram of the AES_GENKEY module 
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Fig. 7. Diagram of the AES_ROUND module 

The equation computes multiplications {1} and {3}, and additions. The GF(28) ad-
dition is the XOR operation and the GF(28) multiplication is special since it is only 
necessary to multiply by some constants [19]. Constant multiplicands permit to im-
plement XOR operations and multiplexers, and these substitute the multiplication 
described in [10]. For example, a section of MIXCOL module is shown in Fig. 8, 
where a MixColumn transformation is performed for the OMIX(127:120) byte, or 

OMIX(127:120) <= {2}*IMIX(127:120) ⊕ {3}*IMIX(119:112) ⊕ 
                     {1}*IMIX(111:104) ⊕ {1}*IMIX(103.96).  (3) 

The {1}, {2} and {3} constant coefficients in (3) are multiplied in GF(28).  In mul-
tiplication by {1}, the result is equal to the non-one factor, so, IMIX(111:104) and 
IMIX(103:96) bytes are added by the XOR49 gate.  

The multiplication by {2} is a conditional 1-bit left shift implemented by a multi-
plexer. Its selector, IMIX(127), controls the overflow in GF(28). If the value being 
multiplied is less than “10000000”, the result is the value itself left-shifted by 1 bit, 
IMIX(126:120)&’0’. If the value is greater than or equal to “10000000”, the result is 
the value left-shifted by 1 bit added with “00011011”, IMIX(126:120)&’0’ XOR 
“00011011”. This prevents overflowing and keeps the product of multiplication in 
GF(28).  

The multiplication by {3} is reduced to additions and multiplications by {2}, 
where the last multiplications are conditional 1-bit left-shifts [19]. Multiplication by 
{3} can be decomposed as {3} = {2} + {1}. Thus:  
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{3}* IMIX(119:112) <=  {2+1} * IMIX{119:112} 
                                <= {2} * IMIX(119:112) + {1} * IMIX(119:112) (4) 

The multiplication by {3} is implemented by two multiplexers, three XOR gates, 
and multiplications by {1} and {2} implemented as mentioned in the above para-
graph. 
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Fig. 8. Diagram of the operation in (3), which is part of the AES_ROUND module 

As the IOBs requirements of the general AES architecture (see Fig. 3), exceeds the 
IOBs of XC2V1000-FG456 device, input data and key are stored in registers to be 
processed later on in parallel (see Fig. 9). So, the final architecture multiplexes the 
CI_PLAIN and CI_KEY 128-bit buses, requiring not additional clock cycles, since the 
data are stored in the last block processing time.  In a given clock cycle, a bus is regis-
tered, and in the next clock cycle, the other bus. By successively ciphering data, the 
key and plain data are stored in run time, and each ten clock cycles, an AO_CIP out-
put or cipher data are obtained.  

Initially, the twenty S-boxes were implemented in twenty distributed memories, 
and the architecture achieved a throughput of 0.92 Gbps, with a clock frequency of 
86.94 MHz, 2,335 used slices, 4,327 LUTs, 263 IOBs and 10 clock cycles. 

AES architecture is part of the CRP[20], which requires cryptographic implemen-
tations for transmission speeds  of 1 Gbps, and due to (1), Plain_data_block_size has 
a constant value of 128 bits, whereas Clock_cycles in this design has a value of 10 and 
Clock_period of (86.94 MHz)-1. Consequently, a reduction of Clock_cycles implies an 
architecture with unrolled rounds, which increases the use of FPGA resources and the 
critical path time or decrease the clock frequency. A reduction of critical path time, by 
the modification of Clock_period is the more practical option.  

AES_COVER

AES_CIPHER
REG

REG

R01

R02
CIP

RO_PLA

RO_KEY

AO_CIP

AO_BUSY
AO_READY

AI_PLA&KEY

AI_RKEY

AI_RPLA128
128

128

128

RST
CLK

128
AI_CIP

 

Fig. 9. Final general AES architecture 
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The implementation of twenty distributed memories for twenty S-boxes requires 
proportional FPGA resources to place and route them, which results in a critical path 
time proportional to the FPGA utilized logic. So, modular architecture is redesigned 
to use 10 dual-port embedded memories, instead of twenty, decreasing the used 
FPGA resources, and thus the critical path time.  

5   Implementation Results and Comparisons 

The implementation results of the AES architecture are shown in Table 1, and these 
are taken from the post-Place & Route reports. Changing the twenty internal memo-
ries by ten dual-port memories decreases the critical path time from 11.50 ns to  
8.80 ns, reduces the FPGA resources, and eliminates some intermediate registers. The 
implementation results indicate that, in terms of required FPGA resources, the S-box 
substitution is the dominant element of the AES implementation. 

Table 1. Implementation results of the non-pipelined iterative AES architecture 

Period 
(ns) 

Clock 
(MHz) 

IOBs  
(out of 324) 

Slices 4-Input 
LUT 

Latency 
(Clk cycles)

Throughput 
(Gbps) 

8.80 96.42 263  586 847 10 1.45 

These results show less wired and logic FPGA resources, which are 586 slices and 
847 LUTs. This leads to a compact architecture with a lower critical path time, a 
higher clock frequency (96.42 MHz) and a throughput of 1.45 Gbps.  

Different device families will yield different performance results. Important meas-
urements of hardware AES implementations to consider are FPGA utilized resources, 
clock frequency, latency and throughput, see Table 2.  

Table 2 reports measurements on non-pipelined hardware architectures on Virtex 
and Virtex-II FPGAs, suitable for CBC mode implementation. This work reports an 
AES architecture with the excellent performance and low resource requirements.  

Table 2. Result comparison of the AES implementations 

Work /  
Device 

     FPGA Resources 
Logic          Memory 

Clock 
(MHz) 

Latency 
(Clk cycles) 

Throughput 
(Gbps) 

[12] – XCV200E-6 425 CLBs -  77.80 - 0.20 
[14] – XCV250-5 791 slices 4 BRAM 93 44 - 
[11] – XCV400e-8 1672 LUT - 50.20 11 0.58 
[13] – Virtex-II Pro 2703 LUT 44 BRAM 196 - 1.19 
[16] – Virtex-II 1125 slices 18 BRAM -  - 1.40 
This work XC2V1000 586 slices 10 BRAM 96.42 10 1.45 

The general approach used in this work aimed to obtain an iterative architecture 
with low hardware resources utilization. The modular design was optimized in a way 
that the algorithm functionality was not altered (e.g. eliminating basic modules like 
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registers or multiplexers). Distributed memories were replaced by dual-port memories 
to handle data in parallel and registers were added for data multiplexing and key stor-
age in order to reduce the critical path, resulting in less hardware that in turn results in 
a more efficient place & route process and higher throughput. 

6   Conclusions 

This work reports a hardware architecture of AES algorithm in CBC operation mode. 
In terms of area requirements, throughput and hardware efficiency, this architecture 
exhibits excellent abilities compared to the most recent AES architectures, imple-
mented in Virtex and Virtex II devices. This work shows a simple design and an effi-
cient architecture that requires minimal logical resources and is suitable for devices 
with limited silicon area.  

Its performance results and low resource requirements make the architecture suit-
able as a module for the CRP platform, which handles several cryptographic algo-
rithms and is applicable in secure communication systems, where devices or networks 
require cryptographic solutions with high flexibility and high throughput. 
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