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Abstract 

Constant False Alarm Rate (CFAR) algorithms are used in digital signal processing 

applications to extract targets from background in noisy environments. Some examples 

of applications are target detection in radar environments, image processing, medical 

engineering, power quality analysis, features detection in satellite images, Pseudo-Noise 

(PN) code detectors, among others. This paper presents a versatile hardware architecture 

that implements six variants of the CFAR algorithm based on linear and non-linear 

operations for radar applications. Since some implemented CFAR algorithms require 

sorting the input samples, a linear sorter based on a First In First Out (FIFO) schema is 

used. The proposed architecture, known as CFAR processor, can be used as a 

specialized module or co-processor for Software Defined Radar (SDR) applications. 

The results of implementing the CFAR processor on a Field Programmable Gate Array 

(FPGA) are presented and discussed. 
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1 Introduction 

The problem of detecting target signals in background noise of unknown statistics is a 

common one in sensor systems such as radars and sonars. In radar applications, this 

noise usually comes from thermal noise (receiver’s noise), clutter, pulse jamming or 

other undesired echo received at the antenna. Adaptive digital signal processing 

techniques are often used to remove noise and to enhance the detectability of targets in 

many situations. It is important for radar  processing systems to operate in non-

stationary background noise environments with a predetermined constant level of 

performance, i.e., in signal processing terms; the objective is to maintain a constant 

false alarm rate. A solution to overcome the problem of noise added to the target signal 

is to use the constant false alarm rate (CFAR) algorithm, which sets a threshold 

adaptively, based on local information of total noise power. The threshold set by the 

CFAR algorithm is obtained on a sample by sample basis, using estimated noise power 

by processing a group of samples surrounding the sample under investigation [1] and 

[2]. 

 

Several variants of the CFAR algorithm have been proposed in the radar literature to 

deal with different problems present in radar applications. These techniques require 

linear operations (such as getting the maximum, minimum, or average of a set of values) 

or nonlinear operations like sorting a set of values and selecting one on a specific 

position before performing a linear operation. These different techniques have been 

developed in order to increase the target detection probability under several 

environment conditions, especially to deal with two of them: regions of clutter 
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transitions and multiple target situations. The first situation occurs when the total 

received noise power within a single reference window changes abruptly, leading to 

excessive false alarm or target masking. The second situation is encountered when there 

are two or more closely spaced targets in the reference cells, leading the CFAR 

processor to report only the strongest of the targets, i.e., there is a target masking [2]. 

 

Although theoretical aspects of detection in radar systems, including the CFAR 

algorithm, are very advanced [1][2][6], and analog implementations have been used in 

radar systems for a several years, recent technology developments have made it 

practical to explore digital implementations of CFAR and other algorithms to support 

the SDR paradigm. SDR systems can be implemented using digital systems to 

accommodate various radar sensors for different detection conditions. This means that 

they can be designed with the capability for being configured at run time by means of 

selecting an appropriate operation mode according to current environment conditions 

[10] [11].  

 

Real-time performance of radar detection algorithms as required by modern radar 

systems can be achieved by state-of-the-art general purpose processors or digital signal 

processors (DSPs) optimized to deal with high computational load and high input/output 

data rates. As an alternative, these requirements can be met by specialized custom 

architectures that exploit the parallelism on the algorithm employed [12].  For practical 

SDR applications all processing blocks, including CFAR, must support several 

processing modes and operate with a high computational load in real-time. This work 
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presents a versatile custom hardware architecture that supports six variants of the CFAR 

algorithm and is suitable for SDR applications. The proposed CFAR hardware 

architecture, or CFAR processor, can be used as a specialized processing module or co-

processor in the receiver’s processing chain of a SDR system. The supported processors 

differ in the method they use to obtain the adaptive threshold from the reference 

window. Three of the implemented processors are based on linear operations while the 

other three are based on nonlinear operations that in turn are based on rank order 

statistics. This rank order operation means sorting and then selecting a k-th value from a 

set of values, which adds computational complexity to the CFAR processors. Because 

of this, a linear insertion sorter schema is used to keep the data sorted and then to 

perform the desired operation. 

 

2 Detection Overview 

A radar transmitter generates an electromagnetic signal that is broadcast to the 

environment by an antenna. A portion of the energy of this broadcast signal is reflected 

by targets. This reflected energy is received by the same antenna and sent to the 

receptor. At the receptor this energy is digitalized to produce raw data that is then 

processed to obtain the desired target information. Figure 1 shows a radar receiver 

processing chain and the position of the CFAR processor.  

 

Figure 1. Traditional signal processing radar chain. 

 



 5 

The radar detection of echo signals from targets is performed by establishing a threshold 

at the output of the receiver. If the receiver output is greater than the established 

threshold, it is declared a target presence; otherwise it is declared a target absence i.e., 

only noise is present. This noise presence can be caused by weather conditions (clutter), 

thermal noise from radar devices, pulse jamming or interference. 

 

If the fixed threshold level is set properly, the receiver output would not exceed the 

threshold if only noise is present, but the receiver output would exceed this threshold if 

along with noise, a target is present. If the threshold level were fixed too low, noise 

alone might exceed it, situation called false alarm. If the threshold is fixed too high, 

only strong target echoes would be able to exceed it and weak target echoes might be 

not detected, a situation called missed detection. In early radars, this threshold level was 

set based on the radar operator judgment. In figure 2 there is an example of the output of 

a radar receiver as a function of time, which is called range profile. The fixed threshold 

line is represented by the horizontal dashed line and the adaptive threshold is 

represented by the dashed-dotted line. For this example, suppose that a signal has four 

segments A, B, C and D. The signal segments A and B are targets plus noise and C and 

D are noise alone. The signal segment A is detected correctly by this fixed threshold, 

while B is not strong enough to be detected and therefore it is missed. The noise from 

signal segment B is weak because of the negative noise that was added to the original 

signal strength. Signals segments C and D are false alarms, and they are increased 

because of the presence of positive noise. B could be detected if the fixed threshold was 

lower, but this might increase the false alarms.  The selection of a proper fixed threshold 
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is a compromise that depends upon how important it is to avoid the mistake of failing to 

declare a target presence (missed detection) or falsely indicating the presence of a target 

when none exists (false alarm) [1]. On the other hand, with an adaptive threshold, the 

signal segments A and B, which exceed the threshold level, can be detected correctly, 

while C and D are assumed to be noise because they do not exceed the threshold. 

 

Figure 2. Example of a radar receiver range profile with fixed  

and adaptive threshold. 

 

In order to maintain the false alarm rate at a constant value, the threshold has to be 

varied adaptively. This is achieved when the CFAR processor automatically raises the 

threshold level, thus avoiding overload of the automatic detection system. A constant 

false alarm rate is achieved at the expense of a lower detection probability of desired 

targets. Also, CFAR produces false echoes when there is nonuniform clutter, suppresses 

nearby targets and decreases the range resolution. The detection probability and false 

alarm probability are specified by the system requirements.  

 

3 CFAR and OS-CFAR processors 

The need for CFAR processors was recognized when the early automatic detection and 

tracking systems were installed as add-ons to existing radar with not moving target 

indicators (MTI) or relatively poor MTI that did not have a good clutter rejection. 

CFAR is needed for maintaining operation for automatic detection and tracking 

systems. If CFAR were not used in radar, it would cause an excessive number of false 
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alarms, due to noise or clutter, degrading the automatic detection and tracking system 

performance. 

3.1 Algorithms description 

Several algorithms have been proposed for building CFAR processors. The most 

commonly used CFAR processors are the cell averaging (CA-CFAR) processor 

proposed in [7], the greatest of (GO-CFAR) processor proposed in [8], the smallest of 

(SO-CFAR) processor proposed in [9], the generalized order statistics cell averaging 

(GOSCA-CFAR), generalized order statistics greatest of (GOSGO-CFAR), and 

generalized order statistics smallest of (GOSSO-CFAR) processors proposed in [5]. 

Figure 3 shows a general block diagram of a generic CFAR processor.  

 

Figure 3. Generic CFAR processor. 

 

This processor consists of a reference window with 2n cells that surround the cell under 

test. Each cell stores an input sample and such values are right shifted when a new 

sample arrives. Some m guard cells are incorporated in order to avoid interference 

problems in the noise estimation. The spacing between reference cells is equal to the 

radar range resolution (usually the pulse width). The reference cells are used to compute 

the Z statistic and, depending on the technique, this operation can be linear or nonlinear. 

The Z statistic and a scaling factor  are used to obtain the threshold. This scaling factor 

depends on the estimation method applied and the false alarm required according to the 

application. It is also related to the noise distribution in the radar environment. The 

resulting product Z is used as the threshold value that is compared with the cell under 
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test (CUT), to determine whether the CUT is declared a target. The target detection 

problem can be modeled by the following hypothesis testing problem: 

 

H1 : y = d+g       

                                                                                                                                           (1) 

H0 : y = g 

 
 where H1 and H0 are the target present and target absent hypothesis, respectively; d 

represents the target signal and g the environmental noise component. The decision 

criterion is represented by: 

                        H1,  CUT                                 

                           e(y) =                                                    (2) 

              H1,    CUT  
 

If the values of the CUT exceed the Z statistic, then a target presence is declared, i.e. the 

CFAR processor outputs 1 if a target is present, otherwise it outputs 0: 

 

                        1,  CUT                                 

                           e(y) =                                                    (3) 

              0,     CUT  
 

The method to obtain the Z statistic from the reference window might be based on linear 

or nonlinear operations. The most common linear processors are the CA-CFAR, GO-

CFAR and SO-CFAR. These processors calculate the arithmetic mean of the amplitude 

contained in the Y1 lagging cells and Y2 leading cells from the CUT. The CA processor 

estimates the arithmetic mean, the GO and SO take the major and minor values of Y1 
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and Y2, respectively. Equation 4 summarizes these three linear operations for the Z 

statistic. 

                                                                    ½ (Y1+ Y2)                        

                                  e(y) =      max (Y1, Y2)                                (4) 

                                                  min (Y1, Y2)   

 

Among the nonlinear processors are the OSCA-CFAR, OSGO-CFAR and OSSO-CFAR 

[4]; and their generalized form called GOSCA-CFAR, GOSGO-CFAR and GOSSO-

CFAR processors [5]. These order statistics processors need to perform a rank-order 

operation over the leading and lagging reference cells, i.e., sort the reference cells 

values and then select the k-th sorted value. The rank-order parameter k can be 

deliberately selected among the sorted values.  The GOSCA-CFAR, GOSGO-CFAR 

and GOSSO-CFAR processors, perform the selection of the k-th (Y(1)) and i-th (Y(2)) 

sorted value from the leading and lagging cells, respectively. Once these two values 

have been selected, the Z statistic is calculated in a similar way to the linear processors 

as shown in the following equation: 

 

                                                                    ½ (Y(1)+ Y(2))                                 

                                   e(y) =     max (Y(1), Y(2))                            (5) 

                                                  min (Y(1), Y(2))   
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The difference between these generalized processors and OSCA-CFAR, OSGO-CFAR 

and OSSO-CFAR processors is that the last ones only perform the selection of the k-th 

sorted value from both the leading and lagging cells. Therefore, OSCA-CFAR, OSGO-

CFAR and OSSO-CFAR can be considered a special case of their generalized 

counterpart when k = i. 

 

3.2 Features of CFAR algorithms 

CA-CFAR processor performs better than other CFAR processors, in terms of detection 

probability, when operating in a homogeneous background when reference cells contain 

independent and identically distributed observations governed by an exponential 

distribution.  However, the CA-CFAR detection performance degrades in multiple 

target situations and regions of power transitions. Both situations result in an excessive 

number of false alarms i.e. an inferior behavior in nonhomogeneous situations [2]. GO-

CFAR and SO-CFAR processors came up in order to solve these problems. GO-CFAR 

maintains a constant false alarm rate at clutter edge and regions of power transitions; 

meanwhile, SO-CFAR resolves the primary target in multiple target situations when all 

the interferers are located in either the leading or lagging cells. However, GO-CFAR 

detection performance in multiple target situations is poor and SO-CFAR has undesired 

effects when interfering targets are located in both halves of the reference cells [2].  

 

To improve the detection performance on these situations, order statistics techniques 

(OS-CFAR) were proposed in [3] reporting better overall performance results. In [4], 

two modified OS-CFAR processors that require less processing time than the OS-CFAR 
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processor were proposed. The GOSCA-CFAR, GOSGO-CFAR and GOSSO-CFAR 

processors are presented in [5].  These processors achieve better detection performance 

in the presence or in the absence of interference. The generalized processors are more 

robust than the processors proposed in [3] and [4] because of the selection of the k-th 

and i-th rank-order sample and, because they require half of the time for sorting 

compared with OS-CFAR. Among these generalized processors, GOSCA-CFAR 

processor obtains the best detection performance in both homogeneous background and 

multiple target situations. The GOSGO-CFAR has the same performance as the OS-

CFAR, and provides good transition clutter protection. If the number of interfering 

targets in the reference cells is equal to the greatest interfering targets allowed, the 

performances of these generalized processors is better than the OS-CFAR processor.  

 

Each one of the explained processors has advantages and drawbacks, and may be 

optimal under particular environment conditions.  The detection performance is altered 

by varying the number of references cells, guard cells, the CFAR processor, the k-th 

rank-order sample, and the false alarm required; represented by the scaling factor  [2]. 

In order to give robustness to the target detection process in radar systems, a specialized 

architecture that supports several of these processors and allows changing their 

operating parameters such as: CFAR algorithms, scaling factor  and the k-th and i-th 

rank-order sample would be highly beneficial  The following subsection reviews some 

related works found in the literature. 

 

3.3 CFAR processors review 
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In radar related literature; there are few reported hardware architecture implementations 

of CFAR processors. An architecture for CA-CFAR, GO-CFAR and SO-CFAR 

processors is presented in [12]. This architecture implements the average computations 

with two accumulating processing elements (APE) and a configurable threshold 

processing element (CTPE). These APEs compute the sum of their corresponding 

reference cells (lagging and leading) and the CTPE computes the threshold operation 

(cell-averaging, greatest of and smallest of). This architecture uses 12 bits for data, 32 

reference cells, 8 guard cells and the internal temporal data of 18 bits precision in the 

accumulator for the worst case, and its operating frequency is 120 MHz on a XC2V250 

Virtex II FPGA device. In [13], authors presented an FPGA-based implementation of a 

matched filter with an OS-CFAR processor, focused on the adaptive pseudo noise (PN) 

code acquisition. In this work, the OS-CFAR processor uses the bubble sorting 

algorithm to find the k-th biggest sample in the reference cell. This OS-CFAR processor 

uses 16 bits for data, 16 reference cells and none guard cell. The resulting architecture is 

implemented on a XCV400E Virtex E FPGA device with a maximum clock frequency 

of 205 MHz. A specialized architecture of a CA-CFAR processor is presented in [14]. 

This architecture is implemented on a XC9600 FPGA device and it was tested with 8 bit 

for each of the 16 reference cells. Its implementation consists of a storage circuit, 17 8-

bit shift registers, two accumulator circuits, eight 8-bit adders, a multiplier circuit and 

one 8-bit comparator. Area results and frequency operation are not reported. 

 

A systolic architecture for CFAR processors was presented in [15]. In this work, authors 

proposed a systolic array capable of supporting two OS-CFAR processors: CMLD 
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(Censored Mean Level Detector) and MXCMLD (Max Censored Mean Level Detector) 

CFAR processor. The first processor censors the largest reference samples sorted and 

then adds the remaining samples; meanwhile the second one gets the maximum of the 

sum of the remaining samples from the lagging and leading cells, after being censored. 

A modified OS-CFAR systolic architecture is presented in [16]. This architecture 

requires fewer PEs, interconnections, and gates, and reaches twice the throughput when 

compared against the architecture in [15]. In [16], authors also proposed a systolic 

architecture for the OSGO-CFAR and OSSO-CFAR processor by slightly modifying 

the OS-CFAR systolic architecture.  The throughput of this architecture is the same as 

the original proposed OS-CFAR. In [17], a parallel systolic architecture for a CFAR 

processor with adaptive post-detection integration (API) is presented. The CFAR 

processor for this architecture was developed, analyzed and synthesized in a systolic 

architecture in order to detect targets in presence of pulse jamming. This architecture 

has a linear structure, specially designed for real-time implementation. It uses four 

sequential blocks that perform the operations of sorting, censoring, integration and 

comparison. These four blocks are constructed by five processing elements, which 

perform different logical operations. 

 

A patented system called ES-CFAR (Expert System) is presented in [18]. This system 

senses the clutter environment and by means of a set of rules along with a voting 

scheme, selects the most appropriate CFAR processor(s) to produce detection decisions 

that will outperform a single processor. This expert system is based on five separate 

CFAR processors: CA-CFAR, GO-CFAR, SO-CFAR, OS-CFAR and TM-CFAR 
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(Trimmed Mean). The ES-CFAR system is based on the use of knowledge-based signal 

processing algorithms [19]. 

 

4 Proposed CFAR Processor Architecture 

The proposed architecture uses a linear sorter that performs the rank-ordering operation 

needed in the order statistic processor. Since keeping the values sorted does not affect 

the averaging process needed in the linear processor, the use of a linear sorter is 

possible. The architecture is parameterizable in terms of the number of reference and 

guard cells, and arithmetic precision.  

 

4.1 Linear Insertion Sorter 

The linear sorter used in this architecture implements the insert sort algorithm presented 

in [20]. It consists of an array of identical processing elements (PE) which are called 

Sorting Basic Cell (SBC). In order to fulfill the FIFO sorting functionality, the SBCs 

must be interconnected in a simple linear structure, called sorting array. This array is 

shown in figure 4, where Rn represented the n-th SBC inside the sorting array and D is 

the incoming value. 

 

Figure 4. Sorting array. 

 

This SBC array sorts the values as they are introduced into the sorting array, discarding 

the oldest value, while maintaining the values sorted in a single clock cycle i.e. in a 
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FIFO fashion. The SBC has a register with synchronous load to store the value (Xi), a 

counter with synchronous reset and load to store the life period of the value (CNTi), a 

comparator, four 2-input-1-output multiplexers and control logic (figure 5).  

 

Figure 5. Architecture of the SBC. 

 

The SBC control logic consists of four Boolean equations, which control the register, 

the counter and the multiplexers: 

                                  load = (pi cnti+1) + expiredi                         (6) 

                                                          LR = pi  load                                              (7) 

                         reset = load  [(pi-1 pi) + (pi pi+1)]                  (8)         

                                        cnti = cnti+1 + expiredi                                 (9) 

where pi is the comparator output. The signals pi+1 and pi-1 correspond to the right and 

left SBC neighbors respectively and cnti+1 is the flag coming from the SBC immediately 

to the right. This signal helps to detect if the life period value of one SBC to the right 

has expired. The signal expiredi indicates when the life period value has expired inside 

of one SBC and only one of the expiredi signals in the sorting array is activated in a 

clock cycle. In order to perform the insert sort algorithm correctly, the left most pi+1 

signal’s value is always 1 and the right most pi-1 signal’s value is 0. This can be viewed 

as the left most value having the largest value while the right most has the smallest one. 

To ensure proper behavior, all Ri registers must be initialized to zero, while life counter 
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values CNT must be initialized according to CNTi = i, i.e. its position within the sorting 

array. This linear insertion sorter architecture is fully described in [21]. 

 

4.2 CFAR Processor Architecture 

The proposed CFAR processor architecture, figure 6, has two SBC’s sorting arrays for 

2n reference cells, 2m+1 shift registers for the guard cells and CUT, which is at the 

middle of these registers. Also, the architecture has two n-input-1-output multiplexers 

that perform the rank operation for the lagging and leading sorting arrays. Given that the 

reference cells values are ordered, the k-th and i-th value can be selected by the control 

signals Sel-k and Sel-i respectively. The result of this selection is the Y(1) and Y(2) values 

needed in the nonlinear operations shown in equation 5. Considering that the function 

performed by each of the 2n SBC. The number of arithmetic operations performed by 

the architecture per clock cycle is 2n+7. This number is obtained considering that each 

SBC performs a comparison operation (2n) and each accumulator performs one add and 

one subtract operation (2+2). The other three operations are: 1) one ALU operation, 2) 

the product αZ and, 3) the threshold comparison to obtain e(y). 

 

 

Figure 6. CFAR Processor hardware architecture. 

 

For the linear operations presented in equation 4, it is required to add all values stored in 

the leading and lagging sorting arrays for computing the average. In order to perform 

this operation, it is not necessary to add all values each time that one value from the 
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sorting array is inserted and deleted. Once a value is inserted and other one deleted, the 

preceding result can be used to compute the next result without adding all values. Only 

by adding and subtracting the newest and oldest values respectively, the next result is 

obtained. This whole operation can be performed by the PE Accumulator, which 

computes the average of Y1 and Y2 values on each sorting array. The PE Accumulator, 

figure 7, consists of an adder, which receives the incoming value, a subtracter, 

connected to one of the multiplexers which select the oldest value stored in the sorting 

array, a register to store the accumulated value and a left shifter that performs the 

division needed to compute the average Yn value. Because of the left shifter, the number 

of reference cells must be a power of two. This does not restrict the usability of this 

architecture as the number of reference cells used in practical applications is usually a 

power of two [1]. 

 

Figure 7. Processing element accumulator. 

 

The oldest value stored in the sorting array is obtained by a n-1 multiplexer whose 

control line value is generated by a priority decoder. The input of this decoder is a data 

bus formed by the expiredn signals coming from the SBC in the sorting array and the 

output bus is SelOldest (Select Oldest), as shown in figure 8. The expired signal 

indicates when the life period value has expired in only one SBC’s, i.e., the oldest value 

that must be subtracted and passed to the shift registers. 
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Figure 8. Priority decoder and its connection with the sorting array. 

 

Two 2-1 multiplexers perform the selection between Y1 and Y(1) from the lagging 

window and Y2 and Y(2) from the leading window. The selection is performed by the one 

bit signal SelOp (Select Operation). An ALU-like module provides the three modalities 

for computing the Z statistic: the average, the maximum and the minimum of the rank-

order or the accumulated value. The desired modality is chosen using the control signal 

SelDet (Select Detector) established either manually by the user or by an automatic 

control expert system. A multiplier scales up the Z statistic with the scaling factor α and 

a comparator decides whether a target is present or absent as indicated by equation 3. 

 

The control signals, SelDet and SelOp can be grouped into a data bus in order to 

perform the selection among the six detectors with their corresponding operations with 

only a data bus. The arithmetic precision of scaling factor α can be modified in off-line 

work. 

 

In this architecture, at each clock cycle, values flow from the lagging sorting array to 

the shift registers and to the leading sorting array. In order to begin the target detection 

processing, a reset signal must be applied to the SBC in order to initialize the counters 

inside of the SBCs and PE Accumulators. Once the data begins to flow, 2n+2m+1 clock 

cycles are required for having all the values stored in the sorting arrays and in the shift 

registers. After this latency time, the architecture produces a valid output each clock 

cycle, allowing the continuous operation of the target detection process. 
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5 Results and Discussion 

The architecture was developed for a commercial X-band non-coherent radar. The radar 

performs a 360 degrees scan in 2.5 seconds (24 rotations per minute). Incoming raw 

data from the receiver are sampled to produce a set of 4096x4096 samples per scan that 

are processed in a stream fashion to generate the radar image. For the purpose of 

validation, the proposed architecture was modeled using the VHDL Hardware 

Description Language and synthesized with Xilinx ISE 9.1 targeted for a XtremeDSP 

Development Kit, that includes a Xilinx’s Virtex-4 XC4VSX35 FPGA device. It is 

important to emphasize that the architecture was implemented in an FPGA device for 

the purpose of validation. This allowed us to obtain simulation and performance results 

in order to show that this compact custom architecture is able to support several variants 

of the CFAR algorithm while maintaining high performance for demanding radar 

applications. As no FPGA exclusive resources or features were used to design the 

architecture, it can be implemented as a custom architecture or used as a coprocessor 

attached to a general purpose processor. 
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5.1 Area and Performance Results 

The architecture was synthesized for several configurations in terms of the number of 

reference and guard cells. For throughput comparison with the architecture presented in 

[12] that reports a throughput of 840 MOPS, the proposed architecture was synthesized 

for a Virtex II FPGA device. The throughput achieved using 32 reference and 4 guard 

cells is 7,526 MOPS which is nine times better than the throughput reported in [12] 

using the same number of cells. In order to show results for a more up to date device, 

the proposed architecture was also synthesized for a Xilinx’s Virtex-4 XC4VSX35 

FPGA device using different number of reference cells. Table 1 summarizes the results 

in terms of FPGA hardware resources utilization including four guard cells at each side 

of the CUT. Table 1 also shows the throughput measured in millions of operations per 

second (MOPS) and the required processing time for the radar data set of 4096x4096 

samples.  All these four configurations use 12-bit to represent input data. The third row 

presents the results obtained for the most common configuration for radar applications 

[1]. Using 32 reference cells, the proposed architecture requires 84 milliseconds to 

process a radar data set of 4096x4096 samples, which is 30x times faster than the 

required theoretical processing time of 2.5 seconds needed for this application 

parameters; thus this module can be potentially used in radars with much higher 

resolution or CFAR processor with larger n and m values, i.e., the amount of reference 

and guard cells. In fact, with a greater configuration of the CFAR detector of 12-bits of 

data, 64 reference cells and 8 guard cells, the architecture has a maximum operation 
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frequency of 165 MHz, requiring 99 milliseconds to process the same data amount. This 

configuration is 25x times faster than the theoretical required processing time. 

 

Table 1. Resources utilization for a Xilinx’s Virtex-4 XC4VSX35 

FPGA device 
 

The throughput in Table 1 was calculated considering that the architecture performs    

2n+7 arithmetic operations per clock cycle as described in subsection 4.2. Considering 

the design with 32 reference cells at the maximum operation frequency, this architecture 

achieves a throughput of 14,058 (MOPS). This is the result of the sorting schema used 

to support the rank-order operation, since each SBC used for storing the values in a 

sorted way requires two operations and the number of SBC used is proportional to the 

number of reference cells used. 

 

For performance comparison, consider the results presented in [12], where a CA-CFAR 

processor was implemented on a TMS320C6203 DSP device. The processing time 

obtained for this DSP implementation was 420 milliseconds to process a sample data set 

of the same size. It is important to mention that the implementation in [12] does not 

perform the sorting operation.  

 

A fair comparison with other reported CFAR processors in terms of area and 

performance is not feasible because they do not perform the same functionality as the 

proposed architecture. However, in order to give an idea of the required hardware 

resources, Table 2 shows a comparison of the proposed CFAR hardware processor 

against other works in terms of the number of hardware elements they require. In this 
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table p refers to the amount of cells in a reference window, i.e., the sum of reference 

cells (2n), guard cells (2m) and CUT,  p = 2n+2m+1. The clock cycles refer to the 

latency required to process the data and the delay elements refer to hardware elements 

that are needed to store data. The architectures described in [15], [16] and [17] are based 

on systolic designs. In [17], the architecture implements a two dimension CFAR 

processor (p rows and q columns). For the purpose of generating Table 2 it was assumed 

that q = 1. 

 

Table 2. Comparison with others CFAR Processor architectures. 

 

The architectures in [15] and [16] implement the OS-CFAR, OSGO-CFAR and OSSO-

CFAR processors. In [17], a censored technique over the sorted samples is used and 

then the uncensored samples are added. The architecture presented in [12] implements 

the CA-CFAR, GO-CFAR and SO-CFAR processors in a specialized architecture. Even 

though the proposed architecture implements a sorter functionality, it has the same 

latency than the architecture in [12]
 
which implements three of the six processors that 

the proposed architectures does. Also, both architectures use the same amount of adders 

and multiplicators. Due to the proposed CFAR architecture performs a sorting 

functionality it uses more comparators than [12], which does not perform this 

functionality. Among the other three systolic architectures, the proposed CFAR 

architecture uses the least number of comparators, delay elements and adders, but it uses 

more multiplexors. However, when compared with the systolic architectures presented 
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in [15] and [16] the proposed solution implements the OSGO-CFAR and OSSO-CFAR 

processors with only a slightly higher amount of hardware elements. 

 

5.2 Architecture Validation 

To validate the results of the proposed CFAR processor, the six selected variants of the 

CFAR algorithm were modeled in software using C language. Input data, i.e. range 

profiles, were obtained from real radar scans. Each radar scan consists of several range 

profiles. Figure 9 shows a range profile example with 500 samples. Both software and 

hardware models were fed by the radar data and their corresponding outputs were 

compared, i.e. when the CFAR hardware architecture performs an erroneous detection 

or miss detection.  

 

 

Figure 9. Radar receiver range profile example. 
 

 

For these tests a typical CFAR configuration  was used, i.e. 12-bits for data, 32 

reference cells and 8 guard cells and the k-th and i-th rank-order samples = 12. 

According to [2] a value of 0.75n has the best detection performance, where n is the size 

of the lagging and leading windows. The value used for the scaling factor was α = 0.95. 

However, an exact fixed point representation for the scaling factor is not suitable for the 

CFAR hardware detector. Therefore, a scaling factor of α = 0.9501953125 was used in 

the proposed architecture. This approximation is very close to the value of 0.95 which 

was used for the software implementation. 
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Figure 10 shows the resulting threshold calculated by the linear CFAR detectors 

implemented in software (figure 10a) (C language) and hardware (figure 10b), using as 

input the radar receiver range profile shown in figure 9. At first glance, there are not 

significant differences among the threshold calculated by the different implementations. 

However, there are small differences between the thresholds calculated in software and 

hardware. The differences at each sample between software implementation and the 

proposed CFAR hardware architecture are shown in figure 10c. Note that the x-axis 

scale, indicating the difference between the software implementation and the CFAR 

hardware architecture, is in mV meanwhile the thresholds calculated for both 

implementations are in V. This difference is caused by an error in the scaling factor 

fixed point representation and the average computing need on the linear detectors.  A 

similar figure can be viewed in figure 11, where resulting thresholds calculated by the 

nonlinear CFAR detectors implemented in software (figure 11a), hardware (figure 11b) 

and its corresponding differences (figure 11c). Results show that the error in the 

calculated threshold is in the order of 10
-3

 which is not significant considering that these 

algorithms are based on probability of detection [1]. 

  

Figure 10. Radar receiver range profile and thresholds calculated by 

the linear CFAR processor implemented in (a) software and (b) 

hardware. The differences among each one of the CFAR detectors 

implementations in shown in (c). 

 

Figure 11. Radar receiver range profile and thresholds calculated by 

the nonlinear CFAR detector implemented in (a) software and (b) 
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hardware. The differences among each one of the CFAR detectors 

implementations in shown in (c). 
 

 

Figure 12 illustrates how a threshold calculated by the proposed CFAR hardware 

architecture varies when switching between different CFAR algorithms. This feature is 

needed in a SDR system which needs to change its parameters in run time execution.  

For clarity purposes, figure 12 only shows the thresholds without the radar echoes as 

shown in previous figures. Each line style represents a different detector. Figure 12a 

shows the threshold calculated during 500 samples, from sample 1 until sample 500. 

Note that the first 250 samples are calculated by OSGO-CFAR algorithm (crossed line) 

and the 250 remaining samples are calculated by GO-CFAR algorithm (pointed line).   

 

 

  

Figure 12. Thresholds obtained by switching between CFAR 

algorithms. 
 

Figure 12b illustrates the threshold obtained in two runs of the simulation. The first run 

corresponds to the one shown in Figure 12a, i.e. using OSGO-CFAR for the first 250 

samples (crossed line) and then GO-CFAR (pointed line).  For the second run only GO-

CFAR was used. For the first 250 samples the run using GO-CFAR (pointed line) 

differs from that using OSGO-CFAR (crossed line). Note after sample 250, both runs 

are identical. This shows how a switch between algorithms can be done in a single clock 

cycle without a transition phase. This is possible because the architecture always 

calculates the values needed to obtain the threshold for all variants of the CFAR 
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algorithm, and switching algorithms implies only to select the appropriate values to 

obtain the next threshold value.  

 

 

6 Conclusions 

CFAR processors are used in signal processing applications to extract target signals 

from noisy background. For radar applications, a number of CFAR algorithms have 

been proposed for several environment conditions. This paper describes a versatile 

processing architecture that allows switching among six CFAR algorithms and 

operating parameters in a single clock cycle in order to provide robustness to the target 

detection process. This work has shown that it is feasible to implement a single 

architecture to support several variants of the CFAR algorithm while achieving the data 

rates and algorithmic performance required by demanding radar applications. This work 

has also shown that modern FPGAs devices are well suited to efficiently implement the 

target detection process of conventional and software defined radar systems. 
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Ref. Cells 

Amount 

Slices 

Count 

LUTs 

Count 

FF 

Count 

Speed 

(MHz) 

Throughput 

(MOPS) 

Processing 

Time (mS) 

8 315 266 581 256 5,888 64 

16 602 423 1,147 218 8,502 77 

32 1,364 690 2,637 198 14,058 84 

64 2,790 1,260 5,430 165 22,275 99 

Table 1. Resources utilization for a Xilinx’s Virtex-4 XC4VSX35 FPGA 

device 
 

Table



 

Number of 

CFAR Processor Hardware Complexity 

Hwang 

[15] 

Han 

[16] 

Behar 

[17] 

Torres 

[12] 

Proposed 

Architecture 

Comparators 2p+1 2p+1 3(p
2
+p+4)/2 2 2n+2 

Multiplexors 2p+1 2p+1 p
2
+p+2 1 8n+7 

Delay Elements 8p+5 5p+7 2p
2
+2p+1 p 4n+2m+3 

3-input Adders 0 p-1 0 0 0 

2-input Adders 2p 2 p+2 3 3 

Multiplicator 1 1 1 1 1 

Clock Cycles 2p+3 p+3 2p+2 p p 

Table 2. Comparison with others CFAR Processor architectures. 
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