
A Reversible Data Hiding Algorithm for Radiological Medical Images
and its Hardware Implementation

Z. Jezabel Guzmán Zavaleta1, Claudia Feregrino Uribe2,

René Cumplido3

National Institute for Astrophysics, Optics and Electronics, INAOE, MEXICO
{zguzman1, cferegrino2, rcumplido3}@inaoep.mx

Abstract–– In this paper we introduce a reversible data
hiding algorithm for medical images and its hardware
implementation. Using the advantages of some proved
methods and the characteristics of radiological medical
images we obtain a large embedding capacity with
minimum distortion of the original image using an easy
control for recovering the hidden data and the original
image. Moreover, in order to speed up computations, a
FPGA-based hardware implementation is explored. Due to
its simplicity, the proposed architecture can be used as
coprocessor or custom core in reconfigurable
hardware/software platforms.

Key words–– Reversible Data Hiding, Radiological Medical
Images, Hardware Implementation, FPGAs.

I. INTRODUCTION

Data hiding is a form of steganography that embeds

data into digital media for the purpose of identification,
annotation and copyright [1]. Reversibility in data
hiding processes is the characteristic that the method can
recover exactly the original host signal (without any
distortion) upon extraction of the embedded
information. For that reason, reversible (lossless) data
hiding is widely used on sensitive imagery�such as deep
space exploration, military reconnaissance and medical
diagnosis. In medical domain the main objectives of
data hiding are: information protection with application
like integrity control and data hiding for the purpose of
inserting meta-data to render the image more usable [2].

Recently, several reversible data hiding methods
have been proposed; some overviews can be found in [3,
4]. However, not all the methods are suitable for
medical images that contain homogeneous regions,
where the insertion of information produces several
distortions on the embedding host.

In this paper, we propose a new reversible data hiding
technique, suitable for radiological medical images,
using the advantage of some proved methods, which can
embed a significant amount of data while keeping high
visual quality. Also the hardware architecture is
presented as a mean to speed up computations in
embedded reconfigurable platforms that are now
commonly used as an efficient alternative in digital
signal processing applications.

II. REVERSIBLE DATA HIDING METHODS

Different methods are available for reversible data
hiding. The most recent methods that are suitable for
medical images have many advantages but also they
present disadvantages; for example: some of them have a
low distortion of the image but they have a low
embedding capacity, or vice versa; in other cases, they
have a good performance in embedded capacity and low
distortion but they require to save a large amount of data
for the exact recovering. In general, most of the
publications do not show results with medical images.

Based on the published results, we have chosen three
distinctive reversible data hiding algorithms which are
the best performers. We tested those methods with
radiological medical images and we show their
advantages and disadvantages.

A. Lee Algorithm

Lee et al [5] propose a reversible image authentication
technique based on watermarking. Their method is quite
simple and it produces a small image distortion by
utilizing the difference between adjacent pixel values.
The algorithm scans the image, obtaining the difference
between pairs of pixels, the odd-line and the even-line.
Depending on the difference value, it can embed data or
not, that is, if the difference is equal to -1 or 1 then it
embeds a bit, in this case if the bit to be embedded is ‘0’
then the difference value remains equal, otherwise the
difference value changes to -2 or 2; if the difference
value is equal to 0 then it does nothing, otherwise, it
shifts the differences histogram. In order to generate a
watermark they combine the hash of the image with a
binary logo image using the bit-wise XOR operation.
The recovering of the embedded data is performed in the
reverse order as the embedding process.

The advantages of this algorithm are: the easy control
for recovering the original image and the embedded
data; it does not need to save a location map or any other
information; the PSNR (Peak-Signal-to-Noise-Ratio) of
the watermarked image is greater than or equal to 51 dB,
with adequate capacity for addressing many
applications; this algorithm is useful for homogeneous
images. However, authors do not suggest how they
manage underflow and overflow problems that may
exist.

2008 International Conference on Reconfigurable Computing and FPGAs

978-0-7695-3474-9/08 $25.00 © 2008 IEEE

DOI 10.1109/ReConFig.2008.34

444

Authorized licensed use limited to: CINVESTAV IPN. Downloaded on September 9, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

B. Ni Algorithm

Ni et al [6] proposed a lossless data embedding
technique that utilizes the zero or the minimum points of
the histogram of an image and modifies the pixel
grayscale values to embed data into the image. The
complexity of their algorithm is low, and the PSNR
between the original and the marked image is greater
than 48 dB.

Ni’s method first makes the histogram of the image
and then checks where the histogram has a zero value,
which is called a zero point (Z), and then it founds a
peak point (P), the maximum value of the histogram.
Equation 1 summarizes the embedding process.

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=>+
=<−+

><>+
<><−

=

otherwisejiI
PjiIPZifbjiI

PjiIPZifbjiI
PjiIZjiIPZifjiI
PjiIZjiIPZifjiI

jiI S

),(
),(&),(

),(&1),(
),(&),(&1),(
),(&),(&1),(

),(

Where, I(i,j) is the original image of size MxN pixels;

Z is the zero point; P is the peak point and b is the bit to
be embed ‘1’ or ‘0’ and IS is the stego image.

The detection algorithm needs the Z and P values
used. First, the image is scanned then it finds the Z and
P values and shifts back the histogram. At the same time
the algorithm has to extract the embedded bits.

With the aim of obtaining a large embedding capacity
Ni’s method can use more pairs of Z and P points for
each block. Also Fallahpour et al [7] propose to divide
the image into n-blocks and run the algorithm over each
block, and also using k-pairs of Z and P points.

The main advantages of Ni’s method combined with
[7] are: the simplicity of the embedding process and the
hidden data extraction and the method utilizes an easy
control for the exact recovery saving a few control bits.
However the main disadvantage is that the method has
been exploited and is difficult improves its performance.

C. Thodi Algorithm

Thodi et al [8] proposed a reversible watermarking
algorithm for digital images. It embeds information into
prediction errors of adjacent pixels using a MED
Predictor (Medium Edge Predictor), see equation (2).
Consider a pixel with value x and its context; the pixel
to its right, bottom and bottom right, a, b and c
respectively, then the value predicted and its prediction
error is given by (3).

⎪
⎩

⎪
⎨

⎧

−+
≥
≤

=
otherwisecba

bacifba
bacifba

x p),max(),min(
),min(),max(

pe xxp −=

The value of the prediction error pe and the pixel
intensity x determine which locations can be embedded
by prediction error expansion. In that manner the method
organizes the locations in different sets:
• The set E contains all locations that can be used for

embedding a bit i; that is
{ }TpLpxxE ee <∧−≤+≤= 20:

• The set Ne are all locations than can not be
expandable; that is

{ }TpxN ee >= :

• The set Ue is the union of E and Ne, that is
{ }1110 −<+<−−∨−<+<= LpxTLTpxU eee

• And the set U contains all locations that can not be
change.

Where T is the threshold and L is the representative pixel
intensities. The sets U and Ue both need flag bits for
being recognized; because of this the algorithm reserves
some locations for embedding those extra bits.
Thus the insertion of a bit i into the referred pixel x is
performed by error expansion using (4) obtaining the
modified pixel value x~ .

ipxpxx
thenippif

eep

ee

++=+=
+=

~~
2~

The embedding algorithm proceeds as follows:
1. Preprocess the image to separate the reserve region

R from the region S, that is, the rest of the image;
region R is used for the extra bits and region S for
embedding the bit stream. Save the LSB of every
pixel on region R (RLSB)

2. Form the bitstream B by combining a payload Py,
an end-of-payload indicator, EOP, and RLSB as
B = Py U EOP U RLSB

3. For every pixel in region S (without the last row and
column), obtain the pe, and then select the set that it
belongs to, E, Ne or U = S – E – Ne

• If it belongs to E then drop a bit of the
beginning of B and embed it into x. If also it
belongs to Ue append a flag bit ‘1’ at the
beginning of the bitstream B

• If it belongs to Ne then shift right the x value by
T positions when pe≥0 or shift left the x value
by T-1 when pe<0; in that way the decoder will
can distinguish the embedded locations. If also
it belongs to Ue append a flag bit ‘1’ at the
beginning of the bitstream B

• Else (it belongs to U) append a flag bit ‘0’ at
the beginning of the bitstream B

If some bits remain in B then embed those bits in the
LSB’s of R.

At the decoder side the watermarked image has to be
scanned in reverse order than the embedding process.

Because the decoder extracts the bit embedded and
restores the image, it is important to restore the original
pixel intensity value at the current location before
proceeding to the next location.

The advantage of this algorithm is that it has a great
embedding capacity with minimum distortion of the

(1)

(2)

 (3)

(4)

445

Authorized licensed use limited to: CINVESTAV IPN. Downloaded on September 9, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

image. However, the disadvantages are the necessity of
storing control flag bits, and the preprocessing
performed when reserving a region for extra bits, that
increases the execution time of the algorithm for large
images.

Other quite similar methods are Tian’s algorithm [9]
and Kallel’s improved of Tian’s method [10] that uses
difference expansion for embedding. The main
disadvantage of those methods is the large location map
that has to be saved for the lossless recovering. Thodi et
al [11], made a comparison between his own method
versus Tian’s method obtaining similar results. The
advantage of Thodi’s method over their own improved
Tian’s method is the use of flag bits to recover the
image versus a large location map.

III. PROPOSED METHOD

We propose to use the main advantages of the
examined methods and the characteristics of
radiological medical images, with the aim of obtaining a
large embedding capacity with minimum distortion of
the image. Also we use an easy control for the exact
recovering of the original image.

Thodi algorithm scans the image and selects the best
locations for the embedding process, generates less
distortion using prediction error expansion; the
challenge is to do it without ambiguity at the recovering
process and without saving control bits, i.e. when the
method separate the locations in sets, the intersection of
these sets is non empty, for that reason the method
inserts control bits in order to select the set that the
location belongs to. In medical images the pixel
intensity values are commonly homogeneous; with that
premise, we select the location with the minor difference
between adjacent pixels as Lee algorithm. In that
manner we embed data only at locations with prediction
error values equal to 1 or -1. In the hiding process the
pixel values are changed, with the bit insertion or with
the shifts, this may cause underflow or overflow in
pixels with values on the limits of the gray scale. To
avoid underflow or overflow problems, we suggest the
use of a pre-processing step based on Ni histogram
shifting.

In the pre-processing step the image histogram is
obtained and the zero points on the histogram
boundaries (Zf and ZL) are found then a zero map is
made. This process is explained in the next subsections.
Once we eliminate underflow and overflow problems,
we embed the bitstream B into the image.

A. Underflow and Overflow Problem

The proposed method utilizes prediction error expansion
to embed data, and for managing any problem of
underflow/overflow we stretch the histogram of the
image. The stretching is made by removing any pixel
value that, after some modification, can cause underflow

or overflow as follows:
1. For a grayscale image I of M x N pixels, obtain the

histogram
2. Find the first and the last zero points (Zf and ZL) on

the histogram (see Ni method). Form the Zero Map
(see next subsection).

3. Make the stretching. With every pixel of the image,
• If I(i,j)< Zf then shift to the right that is, I(i,j)+1
• If I(i,j)> ZL then shift to the left that is, I(i,j)-1
• Otherwise do nothing

4. Form the bitstream appending the Zero Map (ZM),
the payload (Py) to be embedded and an end of
payload flag (EOP): EOPPyZMB ∪∪= .

B. The Zero Map

The zero map, ZM, is needed for the lossless recovery
process. We append the zero-map at the beginning of the
bitstream to be hidden. In case the histogram does not
have zero values then we take the minor value as a zero
point at each boundary. The first two bits of the map are
used to identify zero points, the next two represent the
bit depth of the image and the next bits are used for the
zero point values (Zf and ZL). When the zero point is the
minor value different from zero then we save the values
of the zero points (Kf / KL) and its location inside the
image (Kf/KL x M x N) guarantying the lossless
recovering. The ZM is showed in figure 1.

Figure 1: The Zero Map

C. Embedding Process

This is the process to embed a bitstream B into an
Image I, obtaining the modified image IS with the same
dimensions as the original. The last row and the last
column of the image must not be used for embedding
purposes.

1. Eliminate the underflow/overflow problem in the
image (explained before)

2. In a determined order (left to right and up to
bottom), scan the image I(i,j) where i= 0 to M-1 and
j=0 to N-2 and with every pixel do:
o If i is equal to M-1 or if j is equal to N-1 then

IS(i,j)= I(i,j)
o Else, obtain the prediction error value pe of I(i,j)

and its context showed in (3),
• If pe= 1 then embed a bit b from the bitstream B,

that is IS(i,j)= I(i,j) + b
• If pe= -1 then embed a bit b from the bitstream B,

that is IS(i,j)= I(i,j) – b

446

Authorized licensed use limited to: CINVESTAV IPN. Downloaded on September 9, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

• If pe≥ 2 then make a right shift, that is
IS(i,j)= I(i,j) + 1

• If pe≤ -2 then make a left shift, that is
IS(i,j)= I(i,j) - 1

• Otherwise IS(i,j)= I(i,j)

D. Extraction and recovery process

The exact recovery process is performed in inverse
order than the embedding process, i.e. if the embedding
process was in left to right and up to bottom order then
the inverse process is going to be bottom to up and right
to left order. It obtains the original image I(i,j) from
IS(i,j) following the next steps:

1. Scan the image in reverse order and with every
pixel of IS(i,j) (where i= M-2 to 0 and j=N-2 to 0)
do:
a. Obtain the prediction error value pe of IS(i,j) and

its context showed in (3),
• If pe= 1 or pe= -1 then the embedded bit b

was ‘0’, append a ‘0’ at the beginning of the
recovered bitstream BR and I(i,j)= IS(i,j)

• If pe= -2 then the embedded bit b was ‘1’,
append a ‘1’ at the beginning of the
recovered bitstream BR and I(i,j)= IS(i,j)+1

• If pe= 2 then embedded bit b was ‘1’, append
a ‘1’ at the beginning of the recovered
bitstream BR and I(i,j)= IS(i,j)-1

• If pe> 2 then make a left shift, that is I(i,j)=
IS(i,j) - 1

• If pe< -2 then make a right shift, that is I(i,j)=
IS(i,j) + 1

• Otherwise I(i,j)= IS(i,j)

After recovering the embedded bitstream, decode the

zero map from the beginning of BR, see figure 1. Once
the Zf and ZL values are obtained, if it is necessary the
location map, stretch back the histogram of the image I
to recover the original image.

E. Other Improvements

We can use the specific characteristics of the
radiological medical images to obtain higher embedding
capacity. The characteristic are: pixel intensities
regularly homogeneous; the image perimeter commonly
black, the region of interest for the physician is the
center of the image and any alteration of the image
perimeter would not alter the medical diagnostic. Thus
we propose to use the slight modification of using black
2x2 regions of the image to hide data; i.e. if the context
of a referred pixel is a black region and if the referred
pixel is also black then we embed a bit on that pixel,
else we shift its value to the right. This simple change
may increase significantly the embedding capacity on
this kind of images. If higher hiding capacity is required,
we can use a second embedding process to hide data
into the estego image.

IV. ALGORITHM EVALUATION

Even though the published hiding methods show

interesting results, not all of them provide results on
medical images, so we analyze their performance on
some radiological images and we compare the results
against our method. We use the PSNR and the hiding
capacity metrics. The PSNR reflects the average error
produced on the stego image. We use some medical gray
scale images (see figure 2) in DICOM format [12] and
we hide the standard text Alice, from the Canterbury
corpus [13], as a bitstream into each image, with a total
of 149 KB.

(a) (b)

Figure 2 (a) Image1: MR-MONO2-12-an2.dcm 256x256x12; (b)
Image 2: MR-MONO2-12-shoulder.dcm 1024x1024x12

In the tables 1 and 2 we show the obtained results for

different images, the labels represent the different
methods tested:
Lee: represents the results for the Lee method
Ni: using the Ni improved method with 4 blocks
Thodi: using the Thodi method with threshold
parameter of 3
Lee+Sh: are the results with the Lee algorithm plus shift
histogram eliminating underflow and overflow problems
P1: the proposed algorithm
P2: P1 and hiding data in black regions
P3: P2 with 2 embedding layers, i.e. we insert the data
into the original image, and then we insert data again
into the embedded image.

The methods were programmed with Matlab 7.4
R2007a to obtain the comparisons between them. In the
tables, we show the hiding capacity measured in bits and
the control bits required for every method, the difference
between them gives the real hiding capacity. The rows of
underflow and overflow show the number of pixels with
these problems. Also we measure the execution time in
every method measuring only the hiding execution
process. The PSNR is given by (5); values over 36 dB
are acceptable in terms of degradation, which means no
significant degradation is observed by the human eye
[14].

∑∑
= =

−=

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

m

i

n

j
EO jiIjiI

mn
MSE

BitsMaxValue

MSE
MaxValuePSNR

1 1

2

2

2

10

)),(),((1
)1(

)(log10

Where MaxValue is the maximum representative
value; MSE is the Mean Squared Error, IO is the original
image and IE is the estego image.

(5)

447

Authorized licensed use limited to: CINVESTAV IPN. Downloaded on September 9, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

As it can be seen in tables 1 and 2, the Thodi method
shows a good performance in terms of hiding capacity
without visible distortions on the medical image. One
disadvantage is the increased execution time on big
images because the processing time required to find the
hiding locations. Other disadvantage is the great number
of bits that it needs to save inside the image for the exact
recovery, control bits, diminishing the real hiding
capacity.

Lee method has an easy way to hide data and recover
the original image, the disadvantage is the poor hiding
capacity compared with the other methods, as we can
see in the tables. The P1 algorithm requires a few
control bits for the exact recovery; however it eliminates
the underflow and overflow problems that Lee method
shows, with a slight more distortion.

With the P2 algorithm we obtained better results than
the Lee method but with the P3 we can reach and exceed
the other methods results. With P4 we show that we can
increase even more the real hiding capacity without
visible distortions on the image, also without underflow
or overflow problems and recovering the same original
image.

V. HARDWARE IMPLEMENTATION

In this section, the architecture of the proposed method
is elaborated. We first provide high level description of
the encoder, followed by its architectural details.

Figure 2 presents the block diagram of the
architecture. The AGU block generates the access
addresses to the memory to obtain the pixel values for
the hiding process block. The AGU block also generates
the next address for the payload memory, obtaining the
hiding bit for every location depending on the
embed_flag. The embed_flag indicates if there was a
hidden bit or not.

When the entire locality is obtained, i.e. the referred
pixel x and its context a, b, c; the next block processes
those pixels and it obtains the modified pixel value, and
also the embedded flag.

A. Hiding Process Block

The input data to the Hiding process are the referred
pixel, its context and the bit to be hidden, in case that
that bit is required. The Check_Context0 block verifies
if the referred pixel and its context is a black region or
not, then it generates a hiding_flag that indicates every
possible situation. The prediction error block, evaluates
the input values and it obtains the prediction error value.

The control signals block only summarizes the
comparators used for the selection of the operation to
carry out, that is, if the pixel value is going to be
modified with the bit to be hidden or if the pixel value
requires a left or right shifting. The output values are the
modified pixel value x_new and the embed_flag.

The extraction and recovery design is similar to the
hiding process, obtaining the original value for the pixel
and the hidden bit.

The hardware design was modeled using VHDL and
the synthesis using Xilinx ISE 9.2i tools targeting Xilinx
Spartan 3E technology with xc3s500e-5-fg320 target
device. Table 3 presents the summary of the synthesis
results.
TABLE 3: SUMMARY OF THE SYNTHESIS REPORT OF THE HIDING

PROCESS UNIT
Clk Period (ns) 18.913
Cells Usage (BELS) 467
Slices 151
Slice FFs 81
LUTs 239

The implementation test was made with Simulink/

Matlab using the hardware-in-the-loop technique. The
test step consists in processing the same images into the
software and hardware implementations. We compare
the two obtained results for each image and in all cases
the modified image was the same.

With the aim of comparing the hiding process
execution time in both software and hardware
implementations; we programmed the proposed method
in C language and VHDL.

The execution time results from the images presented
before show that the time performance is better in the
hardware implementation approximately 10 times. For
example, for image 1 the execution time for the
hardware and software implementations is 0.00123 and
0.017317 respectively. These results can be easily
extrapolated to other images as the execution time only
depends of the image size.

VI. CONCLUSION

We proposed a new reversible method based on other
proved techniques. We reached and exceed the
performance of the others tested methods, giving an easy
way to hide a large payload without visible distortions,
with high levels of PSNR values, and with a simple
solution to the underflow and overflow problem.

TABLE 2: IMAGE2 RESULTS

TABLE 1: IMAGE1 RESULTS

448

Authorized licensed use limited to: CINVESTAV IPN. Downloaded on September 9, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

Figure 4 Block Diagram of the Hiding Process

As a preliminary result, a hardware implementation

has been done, showing the plausibility of using the
algorithm in embedded medical systems. The hardware
implementation presented improves the performance of
the proposed method compared with the software
implementation. The hardware implementation is over
10 times faster than the software programmed in C
language. These results are obtained from the basic
design of the architecture results using the test images.

The hardware implementation is suitable to be used as
a coprocessor due to its rather simple control and data
exchange mechanism and its ability to provide parallel
processing.

 In one field of growth, more work has to be done in
order to define an efficient hardware architecture to
fulfill additional constrains such power consumption
and mobility.

ACKNOWLEDGMENTS

The first author thanks the support given by the

CONACyT, Consejo Nacional de Ciencia y Tecnología,
for the support given by the scholarship No. 216817.

REFERENCES

[1] Information Hiding: First International Workshop, R. J. Anderson,
Editor, Lecture Notes in Computer Science 1174, Isaac Newton
Institute, Cambridge, England, Springer-Verlag May 1996.
[2] G. Coatrieux, L. Lecornu, B. Sankur, C. Roux, A review of Image
watermarking applications in healthcare, EMBC06, New York, USA,
Sept. 2006.
[3] Awranjeb M. An Overview of Reversible Data Hiding.
International Conference on Computer and Information Technology
(ICCIT) Dec 19-21,2003. Jahangirnagar University. Bangladesh, pp
75-79.
[4] Y. Hu, B. Jeon, Z. Lin, H.Yang. Analysis and Comparison of
Typical Reversible Watermarking Methods. Y.Q. Shi and B. Jeon
(Eds.): IWDW 2006, LNCS 4283, 2006.c Springer-Verlag Berlin
Heidelberg, pp. 333–347.
[5] Lee S-K, Suh Y-H, Ho Y-S. Reversible Image Authentication
Based on Watermarking. IEEE International Conference on
Multimedia & Expo (ICME) 2006, Canada, pp 1321-1324.
[6] Ni Z., Shi Y., Ansari N., and Su W., “Reversible data hiding,”
Proc. ISCAS 2003, vol. 2, pp. 912–915.
[7] Fallahpour M, Sedaaghi M. “High Capacity lossless data hiding
based on histogram modification”. IEICE Electronic Express, Vol. 4,
No. 7, April 10, 2007, pp. 205-210.
[8] Thodi D.M. and Rodriguez J. J., “Prediction-error-based reversible
watermarking,” in Proc. IEEE Conf. Image Processing, Oct. 2004, pp.
1549–1552.
[9] Tian, J.: Reversible data embedding using a difference expansion.
IEEE Trans. On Circuits and Systems for Video Technology. Vol. 13,
No. 8, Aug. 2003, pp. 890-896.
[10] Kallel I., Bouhlel M.S, Lapayre J.C. Improved Tian's Method for
Medical Image Reversible Watermarking GVIP Journal, Volume 7,
Issue2, August 2007
[11] Thodi DM, Rodriguez J. Expansion Embedding Techniques for
Reversible Watermarking. IEEE Transactions on Image Processing.
Vol 16, No 3, March 2007
[12] S. Barré: Medical Image Samples:
http://barre.nom.fr/medical/samples/
and MATLAB Central File Exchange:
http://www.mathworks.ch/matlabcentral/fileexchange/loadFile.do?obj
ectId=2762&objectType=FILE
[13] The Canterbury Corpus: http://corpus.canterbury.ac.nz/
[14] Xuanwen Luo, Qiang Cheng, Joseph Tan, “A Lossless Data
Embedding Scheme For Medical in Application of e- Diagnosis,”
Proceedings of the 25th Annual International Conference of the IEEE
EMBS Cancun, Mexico. September 17-21, 2003

Check_
Context0

Prediction

Error

Control
signals

+/-

+/-

0

1

bit

x

a

b

c

1
Embed_Flag

x_new

Hiding_flag

Pe

 nBits

 nBits

 nBits

 nBits

 nBits

Figure 3 Block Diagram of the Proposed Method

MEM

Original
Image

MEM

Modified
Image

AGU

Addr Address
Enable Enable

R W

CLK
RESET

HIDING
PROCESS

LOGIC

 x
 a
 b
 c

 x

bit

MEM
Payload

Data

Embed _Flag

 nBits nBits

nBits

nBits

nBits

 nBits

Data
nBits

Addr
Data
Enable
R

449

Authorized licensed use limited to: CINVESTAV IPN. Downloaded on September 9, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

