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the implementations of elliptic curve point addition, and (ii) increasing the resistance to side
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resources while keeping high performance compared to implementations using projective

coordinates, which are usually considered faster than the a±ne coordinates.
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1. Introduction

Elliptic curve cryptography (ECC) is a kind of public key cryptography founded on

the mathematical properties of elliptic curves.1,2 An elliptic curve over a ¯eld K is

the set of points P ¼ ðx; yÞ 2 K �K satisfying a non-singular Weierstrass equation

Eq. (1):

EðKÞ : y2 þ a1xyþ a3y ¼ x3 þ a2x
2 þ a4xþ a6 : ð1Þ

The set EðKÞ together with the point O forms an additive abelian group

S ¼ ðEðKÞ [O;þÞ. The security of elliptic curve cryptography is based on the dif-

¯culty to solve the discrete logarithm problem de¯ned on S.

The \þ" operation in the group S for elliptic curve point addition is de¯ned for

two di®erent operations: addition ECC-Add to sum two distinct points P, Q 2 EðKÞ
and doubling ECC-Dbl to sum a point P 2 EðKÞ to itself. Each of these operations is

de¯ned in terms of ¯eld operations in K such as inversions, multiplications, squarings

and additions. The de¯nition of each operation, ECC-Add and ECC-Dbl, varies

accordingly to the coordinate system used to represent the points of the elliptic curve

EðKÞ. ECC-Add and ECC-Dbl operations obey to geometrical interpretations to

ensure the closure property of S.

The scalar multiplication dP is the result of adding the point P 2 EðKÞ to itself

d� 1 times, that is, dP ¼ P þ P þ P þ � � � þ P|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}d�1 sums
:

The scalar d is in the range [1;n� 1], where n is the order of P, that is the smallest

n such that nP ¼ O. The scalar multiplication is the most time consuming operation

in cryptographic schemes based on elliptic curves such as digital signatures and bulk

encryption. In these schemes, a scalar d is the private key while the public key is the

elliptic curve point dP, for a known point P. The main objective for breaking the

system is to ¯nd the scalar d given the points dP and P, that is, the main objective is

to solve the elliptic curve discrete logarithm problem.

Being dP the most time consuming operation in ECC, most of the related work

on elliptic curve cryptography is proposed for e±cient implementations of this

operation in hardware.3�10 However, the hardware implementation of dP should be

not only e±cient but resistant to side channel attacks.11 In these attacks extra source

information such as timing, power consumption, electromagnetic leaks or even sound

can be exploited to break the system.

The traditional method for computing dP is the binary method. It parses every bit

value of scalar d and executes at each iteration one ECC-Dbl operation followed by

one ECC-Add only if the current bit value of d is \1". The direct hardware imp-

lementation of this dP method is vulnerable to side channel attacks, such as the SPA

(Simple Power Analysis). In SPA, the attacker measures the power produced by the

hardware executing the operation dP and tries to reveal the private key from those

traces. An SPA attack for the hardware implementation of the binary method for dP

is possible because ECC-Add and ECC-Dbl are di®erent and they will produce
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di®erent power traces. Due the operations ECC-Add and ECC-Dbl are strongly

related to the d's bits, the security of the system could be compromised.

One approach for preventing SPA attacks is to rewrite the addition formulas

ECC-Add and ECC-Dbl so that a single formula can be used for both kinds of point

sums, indi®erently.12 This approach has been considered in the literature for

Weierstrass curves using a±ne,13,14 projective coordinates,3 and for special forms of

the elliptic curve.15

This work presents a single formula for point addition in Weierstrass elliptic

curves using a±ne coordinates and its hardware implementation in an FPGA, well

suited for hardware implementations of scalar multiplication dP with resistance to

side channel attacks.

The new formulation is derived from an analysis when both ECC-Add and

ECC-Dbl are implemented in hardware, di®erent to the uni¯ed formula proposed

by Brier et al.,13,14 where the formulation is derived from a mathematical approach

using the geometrical interpretation of operations ECC-Add and ECC-Dbl. The

new formulation presented in this work has the property of being a single formula

with ¯xed and well de¯ned operations for performing both ECC-Add and ECC-Dbl

operation. This regularity in the new formulation matches very well with the

assumptions previously mentioned of having an indistinguishable formulation for

point addition in order to prevent SPA attacks in hardware implementations of

scalar multiplication.

The next section describes the new formulations for point addition and the ad-

vantages of using a±ne instead of projective representation.

2. A New Single Formula for Point Addition

A software or hardware implementation of the scalar multiplication implies choosing

the algorithms to perform ¯nite ¯eld arithmetic, selecting the coordinate system to

represent the elliptic curve points and selecting the algorithm to compute dP. Most of

the works reported in the literature argue that López-Dahab coordinates, a kind of

projective coordinates, are the best way to represent the elliptic curve points.6,8,10

This argument is based on the fact that ¯eld inversion is a very time consuming

operation, requiring for its computation the same time required to compute six or

more ¯eld multiplications. However, for small area implementations, a±ne coordi-

nates are better preferred because they require less ¯eld operations and also less

intermediate registers during the computations, which could result in higher per-

formance and lower hardware requirements.

Addition and doubling operations are very similar in a±ne representation for

elliptic curves de¯ned on binary ¯elds GF(2m). An elliptic curve de¯ned on GF(2m)

is the set of points satisfying the equation Eq. (2):

EðGF ð2mÞÞ : y2 þ xy ¼ x3 þ ax2 þ b : ð2Þ
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Given the points P ¼ ðxP ; yP Þ and Q ¼ ðxQ; yQÞ, the operations ECC-Add

(P ;QÞ ¼ ðxADD; yADDÞ and ECC-Dbl(P Þ ¼ ðxDBL; yDBLÞ are shown from Eqs. (3)

to (8):16

�1 ¼
yQ þ yP
xQ þ xP

; ð3Þ

xADD ¼ � 2
1 þ �1 þ xQ þ xP þ a ; ð4Þ

yADD ¼ �1ðxP þ xADDÞ þ xADD þ yP ; ð5Þ
�2 ¼ xP þ yP

xP

; ð6Þ

xDBL ¼ �2
2 þ �2 þ a ; ð7Þ

yDBL ¼ xP
2 þ �2xDBL þ xDBL : ð8Þ

The Eq. (8) can be rewritten using Eq. (6). So, Eq. (8) becomes Eq. (9):

yDBL ¼ �2ðxP þ xDBLÞ þ xDBL þ yP : ð9Þ

Both ECC-Add and ECC-Dbl operations require to perform one division, one

multiplication and one squaring. The ECC-Add operation requires to perform nine

additions and the ECC-Dbl requires six. Although both kinds of elliptic curve point

addition use almost the same number of operations, the way in which each one is

de¯ned is di®erent. This implies a dedicated module when scalar multiplication is

implemented in hardware. These di®erent modules have di®erent power traces that

could be used in side channel attacks.

The single formula for operations ECC-Add and ECC-Dbl in a±ne coordinates

aims: (i) to reduce hardware resources for implementing the addition operation in

elliptic curves, used for performing scalar multiplications, and (ii) to increase the

resistance of the dP hardware implementation to side channel attacks. The main idea

behind the proposed formula is to unify the ECC-Add and the ECC-Dbl operations

by multiplexing data according to the operation being performed. Such multiplexing

is implemented by introducing the operation s0 � x, which is the bitwise AND

operation of bit s0 with each bit-value of x.

By introducing the s0 � x operation in the original formulas for point addition and

applying boolean reductions, the new formulas to perform an ECC-Add operation if

s0 ¼ \1" or an ECC-Dbl operation if s0 ¼ \0", is the operation ðX;Y Þ ¼
POINT ADDITIONðP ;Q; s0Þ, where X and Y are de¯ned as in Eqs. (11) and (12):

� ¼ s0 � yQ þ yP
s0 � xQ þ xP

; ð10Þ

X ¼ ð�þ s0 � xP Þ2 þ �þ s0 � xQ þ xP þ a ; ð11Þ
Y ¼ ð�þ s0 � xP ÞðxP þXÞ þX þ yP : ð12Þ
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The new formulation POINT ADDITION for both ECC-Add and ECC-Dbl

requires the following ¯eld operations: ten additions, one division, one multiplication

and one squaring. That is, the new formula requires one more addition in the case of

the ECC-Add operation and four additions in the case of the ECC-Dbl. Field

additions in GF(2m) are trivial operations implemented as XOR operations so this

di®erence has not a serious impact in the timing to compute any of the two elliptic

curve point additions. Instead of having two distinct hardware modules for each

ECC elliptic curve point addition operation, a single hardware module is provided

thus resulting in smaller area requirements.

Table 1 compares the complexity in terms of ¯eld operations of the proposed

formulation and the formulation previously studied by Brier et al.13,14

The new formulation POINT ADDITION uses less ¯eld operations, which results

in faster execution time. Division and multiplication are the critical ¯eld operations

in ¯nite ¯elds. In GF(2m), typical latencies for these operations are 2m� 1 and m,

respectively. This means that the proposed formulation in this work is about 2.6

times faster that the formulation reported in the literature.13,14

2.1. Implementation of POINT ADDITION formulation

The GF(2m) ¯eld operations used in elliptic curve point addition are well suited to be

implemented in hardware using polynomial basis. Let fðxÞ ¼ xm þPm�1
i¼0 fix

i

(where fi 2 f0; 1g) be an irreducible polynomial of degree m over GF(2). The

polynomial fðxÞ is called the reduction polynomial. For each reduction polynomial

there exists a polynomial basis representation. In such a representation, each element

of GF(2m) corresponds to a binary polynomial of degree less thanm. That is, for each

e 2 GF(2m) there exist m numbers ei 2 f0; 1g such that

e ¼ em�1x
m�1 þ � � � þ e1xþ e0 :

The element e 2GF(2m) is usually denoted by the bit string ðe0; e1; . . . ; em�1Þ of

length m. Arithmetic in GFð2mÞ using polynomial basis is arithmetic of polynomials

modulo F ðxÞ.
Figure 1 shows the data °ow for the point addition module. Since ¯eld addition is

an XOR operation and squaring can be implemented using combinatorial logic, the

whole latency for point addition is the latency of a ¯eld division plus the one of a ¯eld

multiplication. In Fig. 1, the combinatorial operations like AND and XOR are

Table 1. Complexity of proposed single formulation against related work.

Field operation POINT ADDITION Uni¯ed formula in Refs. 13 and 14

Division 1 1

Multiplication 1 4

Squaring 1 3

Additions 10 13
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represented as black boxes of two or three m-bit inputs. The black boxes are well

mapped to LUTs (Look Up Table), which are elements in FPGAs that implement

any Boolean function of up to 4-inputs.

A dP co-processor was implemented for evaluating the POINT ADDITION

operation. It implements the add and double method resistant to SPA attacks

proposed by Coron.17 This method parses each bit of the scalar d ¼ ð1; sk�2; . . . ; s0Þ2
and performs an ECC-Dbl operation followed by an ECC-Add operation. The co-

processor computes dP after (k � ECC Addþ ðk� 1Þ � ECC Dbl) operations. Being L

the latency in clock cycles of the POINT ADDITION module, the co-processor

delivers the ¯nal value dP in Lð2k� 1Þ clock cycles.

3. Results

The dP co-processor using the POINT ADDITIONmodule was implemented in a V4

Xilinx's FPGA device for validation and performance analysis. The GF(2m)

s0

Div

Sqr

Mul

Lut 32  3in XOR

Lut31

Lut3
1

Lut3
1

xP

yP

xQ

yQ

s0

Lut 32  3in XOR

Lut21   2in XOR

xP

xP

s
0
y

Q
+y

P
s

0
x

Q
+x

P

Div+s
0
x

P

-

Y

X

Fig. 1. Point addition diagram block.
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arithmetic modules direct division, serial multiplication, and combinatorial squarer

used in the POINT ADDITION module were previously reported by Morales-

Sandoval et al.:18 direct division, serial multiplication, and combinatorial squarer.

The latency of the POINT ADDITION module is mainly determined by the latency

of the divider (2m� 1 clock cycles) and the latency of the multiplier (m clock cycles),

resulting in L ¼ 3m� 1. So, the whole latency of the co-processor for computing dP

using binary ¯elds, a±ne representation and the Coron's binary method is

ð3m� 1Þð2k� 1Þ.
Area and performance results for all the modules of the hardware dP co-processor

are shown in Tables 2 and 3. Table 4 shows the time to compute dP using the new

single formula and compares those results against related work.

Table 2. Synthesis results for the GF(2m) arithmetic units optimized by speed and area.

Security level 113 131 163

Optimization Speed Area Speed Area Speed Area

Dividera Slices 730 459 848 529 1044 654

Freq. (MHz) 156 96 152 92 151 90

Multiplierb Slices 193 129 231 149 286 183
Freq. (MHz) 298 276 291 270 283 260

Squarerc Slices 32 32 75 75 95 95

aDirect division, latency of 2m� 1 clock cycles.
bSerial multiplication, latency of m clock cycles.
cCombinatorial squaring, latency of one clock cycle.

Table 3. Synthesis results for the Point addition module optimized by speed and area.

Security level 113 131 163

Optimization Speed Area Speed Area Speed Area

Slices 1462 1174 1948 1590 2418 1966
Freq. (MHz) 165.20 124.22 152.06 101.94 151.70 96.47

Table 4. Devices used, area consumption and execution time of dP

implementations in GF(2mÞ (synthesis optimized for speed).

Ref. m Device Area Freq. Time (ms)

3 179 XCV800 10,626 slices 52 MHz 2.47
4 113 AT94K40 Amtel 38.4 Kgates 12 MHz 10.9

5 163 XCV2000E 19,000 slices 66.4 MHz 0.14

7 160 XCV800 150 Kgates 47 MHz 3.81

9 163 V2Pro 4,749 slices — 0.49
This work 113 XC4VFX12 2,405 slices 100 MHz 0.52

This work 131 XC4VFX12 2,871 slices 100 MHz 0.69

This work 163 XC4VFX12 3,528 slices 100 MHz 1.07
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The timing to compute dP in this work using a single hardware module for point

addition in a±ne coordinates is better than other works that have used projective

coordinates, like in Ernst et al. (10.9 ms for m ¼ 113),4 Mentens et al. (3.8 ms for

m ¼ 160),7 or Batina et al. (2.47 ms for m ¼ 179).3 The use of projective coordinates

supposes a better performance because inversions are avoided in each point addition

operation at the cost of more multiplications. Other works using projective coordi-

nates perform dP faster than the implementation presented in this article but they

use higher area resources. For example, Sakiyama et al.9 uses 4,749 slices from a

Virtex2 Pro FPGA and performs dP in the ¯eld GF ð2163Þ in 0.49ms. In the work of

Gura et al.,5 the area required is 19,000 slices from a Virtex2 FPGA while the dP

operation in the ¯eld GF ð2163Þ is computed in 0.14ms. The area used in Ref. 5 is six

times bigger that the area used by the co-processor proposed, and the one used in

Ref. 3 is three times bigger. In addition, the hardware implementation of the binary

method for computing scalar multiplications dP using the single formula for point

addition will be more resistant to side channel attacks.

4. Concluding Remarks

A new formula for ECC-Add and ECC-Dbl operation in elliptic curve cryptography

using a±ne representation and its hardware implementation was presented. This

new formulation performs as well as those using projective representation. The

proposed uni¯ed formula reduces hardware while keeping the complexity of oper-

ations ECC-Add and ECC-Dbl as in its original form, which is mainly determined by

the computational cost of one ¯eld division and one ¯eld multiplication. The whole

latency of the point addition operation could be reduced by using better performing

GF(2m) arithmetic modules. This work provided an single formula for ECC point

addition that makes the ECC-Add and ECC-Dbl operations indistinguishable, which

could increase the security of the hardware implementation of dP against side

channel attacks.
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