
A Highly Parallel Algorithm for Frequent
Itemset Mining

Alejandro Mesa1,2, Claudia Feregrino-Uribe2, René Cumplido2, and José
Hernández-Palancar1

1 Advanced Technologies Application Center, CENATAV. La Habana, Cuba.
{amesa, jpalancar}@cenatav.co.cu

2 National Institute for Astrophysics, Optics and Electronics, INAOE. Puebla,
México. {amesa, cferegrino, rcumplido}@inaoep.mx

Abstract. Mining frequent itemsets in large databases is a widely used
technique in Data Mining. Several sequential and parallel algorithms
have been developed, although, when dealing with high data volumes,
the execution of those algorithms takes more time and resources than
expected. Because of this, finding alternatives to speed up the execution
time of those algorithms is an active topic of research. Previous attempts
of acceleration using custom architectures have been limited because of
the nature of the algorithms that have been conceived sequentially and
do not exploit the intrinsic parallelism that the hardware provides. The
innovation in this paper is a highly parallel algorithm that utilizes a ver-
tical bit vector (VBV) data layout and its feasibility for making support
counting. Our results show that for dense databases a custom architec-
ture for this algorithm can perform faster than the fastest architecture
reported in previous works by one order of magnitude.

1 Introduction

Nowadays, many data mining techniques have emerged to extract useful knowl-
edge from large amounts of data. Finding correlations between items, specifically
frequent itemsets, is a widely used technic in data mining. The algorithms that
have been developed in this area require powerful computational resources and a
lot of time to solve the combinatorial explosion of itemsets that can be found in
a dataset. The high computational resources required to process large databases
can render the implementation of this kind of algorithms impractical. This is
mainly due to the presence of thousands of different items or the use of a very
low threshold of support (minsup3).

Attempts to accelerate the execution of algorithms for mining frequent item-
sets have been reported. The most common practice in this area is the use of
parallel algorithms such as CD [1], DD [1], CDD [1], IDD [5], HD [5], Eclat [12]
and ParCBMine [7]. However, all these efforts have not reported good execution

3 Is the minimum number of times in a database an itemset must occur to be consid-
ered as frequent.

times given a reasonable amount of resources for some practical applications.
Recently, hardware architectures have been used in order to speed up the execu-
tion time of those algorithms. These architectures were presented in [2,3,9–11],
and improved the execution time of software implementations by some orders of
magnitude.

Previously proposed parallel algorithms used a coarse granularity parallelism.
Generally a partition of the database is made in order to process in a parallel
fashion each block of data. In this paper an algorithm that exploits the inherent
task parallelism of hardware implementation and the feasibility to perform bit-
wise operations is proposed. A hardware architecture for mining frequent item-
sets is developed to test the efficiency of the proposed algorithm.

The remainder of this paper is organized as follows. Section 2 describes re-
lated work. Section 3 discusses the proposed algorithm. Section 4 describes the
systolic tree architecture that supports the algorithm. The results are discussed
in Section 5 and Section 6 presents the conclusions.

2 Related work

Algorithms that use data parallelism deal with load balancing, costs of com-
munication and synchronization. These are problems not commonly present in
algorithms that exploit task parallelism. This is because in this type of algo-
rithms the efficiency is based on the high speed that can be achieved by a simple
task executed in a multiprocess environment. Therefore, normally the data are
accessed sequentially. Currently, hardware architectures for three frequent item-
sets mining algorithms (Apriori, DHP and FP-Growth) have been proposed in
the literature [2, 3, 10,11], where sequential algorithms are used.

A systolic array architecture for the Apriori algorithm was proposed in [2]
and [3]. A systolic array is an array of processing units that processes data in
a pipelined fashion. This algorithm generates potentially frequent itemset (can-
didates itemsets) following a heuristic approach. Then, it prunes the candidates
known to be infrequent, and finally it counts the support of the remaining item-
sets. This is done for each size of itemset until there is no frequent itemset left.
In the proposed architectures, each item of the candidate set and the database
are injected to the systolic array. In every unit of the array, the subset operation
and the candidate generation is performed in a pipelined fashion. The entire
database has to be injected several times through the array. In [2], the hard-
ware approach provides a minimum of a 4× time performance advantage over
the fastest software implementation running on a single computer. In [3], an
enhancement to the architecture is explored, introducing a bitmaped CAM for
parallel counting the support of several itemsets at once, achieving a 24× time
performance speedup.

In [11] the authors use as a starting point the architecture proposed in [3]
to implement the DHP algorithm [8]. This introduces two blocks at the end of
the systolic array to collect useful information about transactions and candidate

itemsets to perform a trimming operation over them and to reduce the amount
of data that the architecture has to process.

In [10] a systolic tree architecture has been proposed to implement the FP-
Growth algorithm [6]. This algorithm uses a compact representation of the data
in an FP-Tree data structure. To construct the FP-Tree, two passes through the
database are required and the remaining processing is made through this data
structure. This tree architecture consists of an array of processing elements,
arranged in a multidimensional tree to implement the FP-Tree. With this archi-
tecture a reduction of data workload is achieved.

All presented works in this section use a horizontal items-list data layout.
This representation requires a number of bits per item to identify them (usually
32). Also, all architectures implement algorithms that have been conceived for
software environments and do not take full advantage of the hardware intrinsic
parallelism.

3 The proposed algorithm

Conceptually, a dataset can be defined as a two-dimensional matrix, where the
columns represent the elements of the dataset and the rows represent the trans-
actions. A transaction is a set of one or more items obtained from the domain in
which the data is collected. Considering a lexicographical order over the items
they can be grouped by equivalence classes. The equivalence class (E(X)) of an
itemset X is given by:

E(X) = {Y |Prefixk−1(Y) = X ∧ |Y | = k} (1)

The proposed algorithm is based on a search over the solution space through
the equivalence class, considering a lexicographical order over the items. This
is a two-dimensional search, both breadth and depth is performed concurrently.
Using the search through the equivalence class allows us to exploit a character-
istic of VBV data layout. With this type of representation, the support of an
itemset can be defined as the number of active bits of the vector that represents
it (X). This vector X represents the co-occurrence of items in the database and
can be obtained as a consecutive bitwise and operation between all the vectors
that represent each item of the itemset(see equation 2).

X = {a, b, c, . . . , n}
Xn = a and b and c and . . . and n (2)

The process to obtain X can be done by steps. First, an and operation
can be performed between the first two vectors (a and b) and then the results
are accumulated. This accumulated value can be used to perform another and
operation with the third vector to obtain X for X = {a, b, c}. To obtain Xn this
must be done for all the items in X. This procedure is shown in Algorithm 1.

Defining the search space as a tree (Figure 1 shows a 5 items search space) in
which each node represents an item of the database, an itemset is determined by

the shortest path between two nodes of the tree. Using the procedure previously
described, the vector Xn of an itemset can be obtained recursively as Xn =
Xn−1 and n, being Xn−1 the accumulated value in the parent node. Once Xn−1

is calculated, it can be used to obtain all the accumulated vectors on each child
node. With this process, each node provides partial results for each one of the
itemsets that includes it in the path of the tree.

a

b

c

d

e

e

d

e

e

c

d

e

e

d

e

e

ab

abd

abce

ac

aceabe

ad ae

Search spaceArchitecture structure

association

Fig. 1. Structure for processing 5 item solution tree.

In this algorithm there is no candidate generation, but the search space is
explored until reaching a node for which the support is zero. This process is
sustained by the downward closure property, which establishes that the support
of any itemset is greater than or equal to the support of any of its supersets.
Because of this, if this node does not have active ones in the accumulated vector,
the nodes in the lower subtree will not receive any contribution in the support
value from that vector.

The lexicographical order of the items is established according to their fre-
quency, ordering first the ones with the smallest values. This order causes the
value of the support of itemsets to decrease rapidly when descending through
the tree architecture.

Managing large databases with VBV data layout can be expensive because
the size of Xn is determined by the number of transactions of the database.
To solve this, a horizontal partition of the database is made. Each section is
processed independently, as shown in Algorithm 2, and each node accumulates
the itemsets section support. Every time a node calculates a partial support, it is

added to the accumulated support of the itemset. When the database processing
finishes, each node has the global support of all the itemsets that it calculated.

A structure of processing elements is needed to implement the algorithm.
This structure interchanges data as described in Algorithm 2. Two modes of
data injection and one for data extraction are needed to achieve the task of
frequent itemsets mining: “Data In”, “Support Threshold” and “Data Flush”.
In the first mode (Process Data()) all data vectors are fed into the structure by
the root element to process the itemsets. The second mode (Process Minsup())
injects the support threshold so the processing elements can determine which
itemset is frequent and which is not. For the data extraction Get Data(), all the
elements of the structure flush the frequent itemsets through their parent and
the data exits the structure through the root element.

To implement the algorithm we use a binary tree structure of processing
elements (PE). Figure 1 shows a five-item solution tree processing structure. The
structure is a systolic tree and it was chosen because this type of construction
allows to exponentially increase the concurrent operations at each processing
step. For this, the number of concurrent operations can be calculated as 1 +∑cc

i=0 2i, being cc the number of processing steps that have elapsed since the
process started.

Each node of the systolic tree (narq) is associated to a node of the solution
tree (nsol). This narq determines an itemset (ISn) and it is formed with the path
from the tree root to nsol . The narq calculates the support of the supersets of
ISn. Those supersets are the ones that are determined by all the nodes in the
path from the root to a leaf, following the node that is most to the left of the
solution tree.

A PE has a connection from its parent and it is connected to a lower PE
(PEu, with an upper entry) and to a right PE (PEl , with a left entry). In general,
the amount of PEs a structure has, can be calculated as follows:

STn = 1 + PEun−1 + PEln−1, for n ≥ 2,

with PEun and PEln:

PEu2 = 0, PEl1 = 0,
PEu3 = 1, PEl2 = 1,
PEun = 1 + PEln−2 + PEun−1 PEln = 1 + PEln−1 + PEun−1

3.1 Processing Elements

The itemsets that a PE calculates are determined by the data vectors that the
parent feeds to it. This must be in such a way that the first vector to reach each
PE is the Xn of the prefix of the equivalence class that the ISn belongs to. Each
PE calculates the support of the vector that receives from the parent, it accu-
mulates the bitwise and operation in a local memory and propagates the data
vector that it receives from the parent or the accumulated value correspondingly.
To achieve this, the behavior of the two types of PEs is defined. In “Data In”

mode, the main difference between PEl (described in Algorithm 3) and PEu
(described in Algorithm 4) is that PEu does not accumulate the result of the
bitwise and operation of the second data vector that it receives. This operation
provides the down PE the prefix with the equivalence class of its ISn.

3.2 Feedback Strategy

As the number of PEs of the tree is directly dependent on the number of frequent
items that exist in the database, it is impractical to create this structure for
databases with many frequent items. To solve this problem a structure for n
items can be designed and taking into account the recursive definition of trees
we could calculate the itemsets stepwise, see Figure 2. In the first step all the
itemsets that can be calculated with this structure are obtained. Since it is
known which level of the solution tree is processed for a given structure (Figure
2 shows it as the architecture processing border), data are injected back into this
structure except that this time the first vector will not be the first item, but the
prefix of the equivalence class of the itemset that is determined by the border
tree node that was not processed.

In Figure 2, an example of a six-items search space is shown. The dotted line
subtrees are examples of subtrees with different parents that have to be processed
with the feedback strategy. In the example, to process the first subtree to the
left, the first vector that has to be injected to the architecture is the vector that
represents the itemset X = {a, b, c}.

This feedback is repeated for each solution tree node that is in the border
of the nodes that were not processed. As each of these nodes defines a solution
subtree (all the subtrees that are below the processing border in Figure 2),
this structure is compatible with the entire tree and consequently can process a
solution tree of any size. This process is defined recursively for the entire solution

a

b

c

d

e

e

d

e

e

c

d

e

e

d e

6 items search space

f

f f

f f

f

f

f

f

f f

f e

f

f f

f
3 items architecture

processing border

Fig. 2. Feedback strategy.

tree and as a result, we obtain a partition of the tree and each subtree of the
partition represents a solution tree of n items.

4 Architecture structure

The proposed architecture has three modes of operation: “Data In”, “Support
Threshold” and “Data Flush”. In the “Data In” mode, all Xn of each section of
the database are injected. When the entire database is injected, the architecture
enters in the “Support Threshold” mode and the support threshold value is
provided and propagated through the systolic tree. Once a node receives the
support threshold value, all the PEs change to “Data Flush” mode and the
results are extracted from the architecture.

In this architecture, the amount of clock cycles for the entire process can be
divided into two general stages: Data In (CC data) and Data Flush (CCflush).
The CC data is mainly defined by the number of frequent items in the database to
specific support threshold (nf), the number of transactions of the database (T)
and the size of the data vector that is chosen (bw). The data vector defines the
number of sections (S) in the partition of the database. CC data can be calculated
as follows:

CCdata = S ∗ (nf + 1) + 1, where S = dT/bwe
For the data flush stage, CCflush is mainly defined by the number of PEs

that have frequent itemsets and the number of empty PEs in the path up to
the next PE with useful data. In this strategy, once the data are extracted from
a PE , data must be extracted from the PEl , since there is no information to
determine if they will have frequent itemsets or not. In the case of the PEu
in the lower subtree, if there are no frequent itemsets in the current PE , then
no frequent itemsets will be found in the lower subtree. This is because all the
itemsets calculated in the subtree will have as a prefix the first itemset of the
current PE , and if this is not frequent, then no superset of it will be frequent.

The number of PE with and without useful data, and the position in the
systolic tree that they occupy, only depends on the nature of the data and the

support threshold. In the worst case, all the PEs will have frequent itemsets and
CCflush could be calculated as STn + |FI set|.

4.1 Flush strategy

To obtain the data from the architecture, each PE enters in “Data Flush” oper-
ation mode. All PE have a connection to the parent so all the frequent itemsets
can be flushed up (Parent out). In this strategy each node of the systolic tree
flushes the frequent itemsets stored in local memory, then it serves as a gateway
to data from the lower PE (Down in) and when it ends, it serves as a gateway
to the data of the right PE (Right in).

Extracting the data through the root node of the systolic tree allows to take
advantage of the characteristics of the itemsets. These characteristics permit to
define heuristics to prune subtrees in the flush strategy and therefore shortens
the amount of data that is necessary to flush from the architecture. Because of
this, less time is needed to complete the task.

5 Implementation results

The proposed architecture was modeled using VHDL and it was verified in sim-
ulation with ModelSim SE 6.5 simulation tool. Once the architecture was vali-
dated, it was synthesized using ISE 9.2i. The target device was set to a Xilinx
Virtex-4 XC4VFX140 with package FF1517 and −10 speed grade.

For the experiments, three datasets from [4] were used: Chess, Accidents and
Retail. As explained in Section 4, the size of the architecture increases ruled by
the number of frequent items that it is capable of processing, so the size of the
device being used will highly affect the time it will take to finish the task. For the
experiments we used a 32 bits data vector and the biggest architecture that fits
the device was a structure to process 11 items with 264 PE s. This architecture

0.1

1

10

100

1000

16 17 18 19 20

T
im

e
 (

m
s)

Number of unique frequent items.

Chess

FP-Growth ArchitectureProposed Architecture

0.01

0.1

1

10

6 7 8 9 10 11 12

T
im

e
 (

m
s)

Nunber of unique frequent items.

Retail

1

10

100

1000

10000

16 17 18 19 20 21 22 23

T
im

e
 (

m
s)

Number of unique frequent items.

Accidents

Fig. 3. Mining time comparison.

consumes 74.6% of the LUTs (94,248 out of 126,336) and 18, 6% of the flip-flops
(23,496 out of 126,336) available in the device.

Since the architecture is completely decentralized, there are no global connec-
tions and thus the maximum operating frequency is not affected by the number
of PEs of the architecture. The maximum frequency obtained for this architec-
ture was 137 MHz. The proposed algorithm is sensitive to the number of frequent
items more than the support threshold, so to show the behavior more precisely
the experiments were carried out based on this variable.

In Figure 3 we compare the mining time of the architecture against the best
time of the FP-Growth architecture presented in [9]. This Figure shows that
the greatest improvement in execution time was for the Chess database, where
more than one order of magnitude was obtained. In the other two databases
it is shown how the execution time of the proposed architecture grows slower
than the FP-Growth architecture when increasing the number of frequent items.
Moreover, when increasing the ratio between the number of obtained frequent
itemsets and the size of the database, the percentage of CC data decreases. In
the case of Accidents and Retail databases CC data is 99% and 97% of total time
correspondingly and for Chess database the percentage is between 62% and 68%.
This is because the execution time of the “Data in” mode depends only on the
amount of frequent items and the number of transactions that the databases
have and the remaining time will depend on the number of frequent itemsets
obtained.

This behavior shows a feature of the algorithm and its scalability. The archi-
tecture performs better when the density of the processed database increases and
generally performs better when the number of frequent itemsets obtained also
increases. This feature (better performance at higher density) has a great impor-
tance if it is considered that the denser the databases the more difficult to obtain
frequent itemsets and the higher the number of frequent itemsets obtained.

For sparse databases and high supports (low number of frequent items), this
task can be solved without the necessity of appealing to hardware acceleration
in most cases. This need is more evident when dealing with large databases with
low threshold of support or high density, or both. Because of this, this feature
is desirable in the algorithms for obtaining frequent itemsets.

6 Conclusion

In this paper we proposed a parallel algorithm that is specially designed for
environments which allow a high number of concurrent processes. This charac-
teristic best suits a hardware environment and allows to use a task parallelism
with fine granularity. Furthermore, a hardware architecture to validate the algo-
rithm was developed. The experiments show that our approach outperforms the
FP-Growth architecture presented in [10] by one order of magnitude when pro-
cessing dense databases, and the mining time grows slower than the FP-Growth
architecture mining time when processing sparse matrices.

References

1. R. Agrawal and J.C. Shafer. Parallel mining of association rules design, implemen-
tation and experience. Technical Report RJ10004, IBM Research Report, February
1996.

2. Z. K. Baker and V. K. Prasanna. Efficient Hardware Data Mining with the Apriori
Algorithm on FPGAs. In Proc. of the 13th Annual IEEE Symposium on Field
Programmable Custom Computing Machines 2005 (FCCM ’05), pages 3–12, 2005.

3. Z. K. Baker and V. K. Prasanna. An Architecture for Efficient Hardware Data
Mining using Reconfigurable Computing System. In Proc. of the 14th Annual IEEE
Symposium on Field Programmable Custom Computing Machines 2006 (FCCM
’06), pages 67–75, 2006.

4. B. Goethals. Frequent itemset mining dataset repository.
http://fimi.cs.helsinki.fi/data/.

5. E.H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association
rules. In Proc. of the ACM SIGMOD Conference, pages 277–288, 1997.

6. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In 2000 ACM SIGMOD Intl. Conf. on Management of Data, pages 1–12. ACM
Press, 2000.

7. J.H. Palancar, O.F. Tormo, J.F. Cárdenas, and R.H. León. Distributed and shared
memory algorithm for parallel mining of association rules. In MLDM ’07: Pro-
ceedings of the 5th Intl. Conf. on Machine Learning and Data Mining in Pattern
Recognition, volume 4571 of LNAI, pages 349–363, 2007.

8. J. Park, M. Chen, and P. Yu. An effective hash based algorithm for mining asso-
ciation rules. In Michael J. Carey and Donovan A. Schneider, editors, SIGMOD
Conference, pages 175–186. ACM Press, 1995.

9. S. Sun, M. Steffen, and J. Zambreno. A reconfigurable platform for frequent pat-
tern mining. In RECONFIG ’08: Proc. of the 2008 Intl. Conf. on Reconfigurable
Computing and FPGAs, pages 55–60. IEEE Computer Society, 2008.

10. S. Sun and J. Zambreno. Mining association rules with systolic trees. In Proc.
of the Intl. Conf. on Field-Programmable Logic and its Applications (FPL), pages
143–148. IEEE, 2008.

11. Y. Wen, J. Huang, and M. Chen. Hardware-enhanced association rule mining with
hashing and pipelining. IEEE Trans. on Knowl. and Data Eng., 20(6):784–795,
2008.

12. M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast
discovery of association rules. In Proc. of the 3rd Intl. Conf. on KDD and Data
Mining (KDD97), pages 283–286, 1997.

