A Compression Algorithm for Mining Frequent
Itemsets

Raudel Hernandez Leén' 2, Airel Pérez Sudrez!?, and Claudia Feregrino-Uribe!

! National Institute for Astrophysics, Optics and Electronics, INAOE, MEXICO
{raudel,airel,cferegrino}@ccc.inaocep.mx
2 Advanced Technologies Application Center, CENATAV, CUBA

{rhernandez,asuarez}@cenatav.co.cu

Abstract In this chapter, we propose a new algorithm for mining fre-
quent itemsets. This algorithm is named AMFI (Algorithm for Mining
Frequent Itemsets), it compresses the data while maintains the necessary
semantics for the frequent itemsets mining problem and, for this task, it
is more efficient than other algorithms that use traditional compression
algorithms. The AMFI efficiency is based on a compressed vertical bi-
nary representation of the data and on a very fast support count. AMFI
introduces a novel way to use equivalence classes of itemsets by per-
forming a breadth first search through them and by storing the class
prefix support in compressed arrays. We compared our proposal with an
implementation that uses the PackBits algorithm to compress the data.

Keywords: data mining, frequent patterns, compression algorithms

1 Introduction

Mining association rules in transaction datasets has been demonstrated to be
useful and technically feasible in several application areas, particularly in retail
sales [1, 2, 3, 4], document datasets applications [5], and also in intrusion detec-
tion [6]. Association rule mining is usually divided in two steps. The first one
consists of finding all itemsets appearing on the dataset (or having a support)
above a certain threshold, these itemsets are called frequent itemsets (FI). The
second one consists on extracting association rules from the FI found in the first
step. The FI mining task is very difficult because of its exponential complexity,
for that reason the work developed in this chapter will focus on the first step.

The management and storage of large datasets have always been a problem
to solve in data mining, particularly in FI mining where the representation of
data is decisive to compute the itemset supports.

Conceptually, a dataset is a two-dimensional matrix where the rows repre-
sent the transactions and the columns represent the items. This matrix can be
implemented in the following four different formats [7]:

— Horizontal item-list (HIL): The dataset is represented as a set of rows (trans-
actions) where each row stores an ordered list of items.

— Horizontal item-vector (HIV): This is similar to HIL, except that each row
stores a bit-vector of 1’s and 0’s to represent the presence or absence of each
item.

— Vertical Tid-list (VTL): The dataset is represented as a set of columns
(items) where each column stores an ordered list of transactions ids in which
the item is contained. Note that the VTL format needs exactly the same
space as the HIL format.

— Vertical tid-vector (VTV): This is similar to VTL, except that each column
stores a bit-vector of 1’s and 0’s to represent the presence or absence of the
item in each transaction. Note that the VTV format needs exactly the same
space as the HIV format.

Many algorithms have been proposed using vertical binary representations (VT'V)
in order to improve the process of obtaining FI [7, 8, 9, 10]. The fact that the
presence or absence of an item in a transaction can be stored in a bit and that
thousands of transactions can be present in a single matrix suggests the use of
compression algorithms on the data. To find an efficient algorithm that com-
presses the data while maintaining the necessary semantic for the FI mining
problem is the goal of this work.

We propose an algorithm based on a breadth first search ! (BFS) through
equivalence classes [11] combined with a compressed vertical binary represen-
tation of the dataset. This compressed representation, in conjunction with the
equivalence class processing, produces a very fast support count and it produces
a less expensive representation, specially in large sparse datasets.

In this chapter formal definitions are given and some compression algorithms
including PackBits method are described following with the explanation of AMFI
and the pseudo code of the algorithm. Experimental results are discussed and
finally the conclusions drawn from this work are presented.

2 Preliminaries

Let I = {i1,i2,...,i,} be a set of items. Let D be a set of transactions, where
each transaction T is a set of items, so that T' C I. An itemset X is a subset of
I. The support of an itemset X is the number of transactions in D containing
to X. If the support of an itemset is greater than or equal to a given support
threshold (minSup), the itemset is called a frequent itemset (FI). The size of an
itemset is defined as its cardinality; an itemset containing k items is called a
k-itemset.

For example, in Table 1, if we have a support threshold equal to three, the
FI obtained are: {coke}, {diaper}, {beer} and {diaper, beer}.

In [11], the authors proposed partitioning the itemset space into equivalence
classes. These equivalence classes are defined by the equivalence relation “k-

! In graph theory, BFS is a search algorithm that begins at the root node and explores
all the neighboring nodes. Then for each of those nearest nodes, it explores their
unexplored neighbor nodes, and so on, until it finds the goal.

Table 1: Transactional datasets

id items

1 coke, milk

2 bread, diaper, beer
3 coke, diaper, beer
4 pan, diaper, beer
5 coke, milk, diaper

itemsets sharing its first k — 1 items belong to the same equivalence class ECY”,
therefore all elements of EC), have size k (see Fig.1).

g i igrigrens

| ’w |
I {i} {i} |
| {ii,i {i,, } I
|

NI P A " A (M A
! ligiglgd Giyiged ligigignd figigd |

Figure 1: Equivalence classes

Each equivalence class of level k — 1 generates several equivalence classes at
level k.

Most of the algorithms for finding FI are based on the Apriori algorithm [2].
To achieve an efficient frequent patterns mining, an anti-monotonic property of
frequent itemsets, called the Apriori heuristic, was formulated [2]. The basic in-
tuition of this property is that any subset of a frequent itemset must be frequent.
Apriori is a BFS algorithm, with an HIL organization, that iteratively gener-
ates two kinds of sets: C; and L. The set Ly contains the frequent k-itemsets.
Meanwhile, C}, is the set of candidate k-itemsets, representing a superset of Ly.
This process continues until a null set Lj is generated.

The set Ly is obtained by scanning the dataset and determining the support
for each candidate k-itemset in Cj. The set Cj is generated from Lj_; following
the next procedure.

Cr = {c| Join(c¢, L—1) A Prune(e, Li,—1)} (1)

where:

Join({il, ’ig, . ,ik,h ik}, Lk*l) =
<{i17'~'7ik71}Gkal/\{i17"'7ik}€Lk71 R (2)

Prune(c, Ly—1) =
(Vs[(sCeA|s|=k—1) — s € Li_1]), (3)

The main problem about the computation of F1 is the support counting, that
is, computing the number of times that an itemset appears in the dataset. To
choose a compression algorithm suitable for data compacting and later on to
compute the FI is not an easy task.

3 Compression Algorithms

The compression of a transactional dataset can be performed horizontally or
vertically. Taking into account the characteristics of the problem, horizontal
compaction can be a throwaway due to transactions being defined as sets of
items: the sets do not have repeated elements, for which no redundancy is present
for a compression algorithm be able to work properly. When data are vertically
represented, a transactional identifier list or vector can be obtained per every
item. Then, to compute the support for an itemset under this representation, it
is required to intersect a transactional identifier list from transactions associated
to each item.

Recently there have been in the literature some works about using compres-
sion for frequent itemsets. One of them is [12] that proposes to use a dynamic
clustering method to compress the frequent itemsets approximately. Fzpression
similarity and support similarity are defined according to the requirements of the
frequent itemset compression. Authors mention that with their method user’s
do not need to specify the number of frequent itemsets clusters explicitly and
user’s expectation of compression ratio is incorporated. They claim that their
method is feasible and the compression quality is good. Another work is [13] that
proposes an algorithm for vertical association rule mining that compresses a ver-
tical dataset using bit vectors. Authors claim that their algorithm needs only a
small amount of memory compared to other compression techniques that had
been used by many association rule mining algorithms. Yet another scheme that
uses compression to find the most interesting frequent itemsets is [14] that uses
the principle of the best set of frequent itemsets is that set that compresses the
database best. Rather than compressing the set of frequent items, they compress
the database.

Since the last mid-century, many compression algorithms have been devel-
oped [15, 16, 17, 18, 19]. In all lossless compression implementations, there is a
trade-off between computational resources and the compression ratio. Often, in
both statistical and dictionary-based methods, the best compression ratios are
obtained at expenses of long execution times and high memory requirements.

Statistical compressors are characterized by consuming higher resources than
dictionary based when they are implemented in both software and hardware,
however they can achieve compression ratios near to the source entropy. The
most demanding task in this kind of algorithms is the implementation of the
model to get the statistics of the symbols and to assign the bit string. Perhaps,
the most representative statistical method is the proposed by Huffman [15] in
1952. In this algorithm a tree is built according to the frequency of the symbols.
All symbols are placed at the leaves of the tree. The Huffman method achieves
compression by replacing every symbol by a variable bit string. The bit string
assigned to every symbol is determined by visiting every internal node from the
root up to the leaf corresponding to the symbol. Initially the bit string is the
null string. For every internal node visited, one bit is concatenated to the bit
string, 1 or 0, depending on the current visited node whether it is a right or left
child of its father. Symbols at longer branches will be assigned larger bit strings.

In the dictionary-based methods, the most time-consuming task is searching
for strings in a dictionary, which usually has hundreds of locations. Dictionary-
based algorithms are considered simpler to implement than statistical ones but
the compression ratio that can be achieved is lower. Another kind of compression
algorithms, ad-hoc, that were developed in early days of data compression are
Run Length Encoding-like (RLE) algorithms [20]. RLE takes advantage of the
presence of consecutive identical single symbols often found in data streams. It
replaces long runs of repeated symbols with a special token and the length of the
run. This method is particularly useful for small alphabets and provides better
compression ratios when symbols are correlated with their predecessors.

Selecting a compression method among the existent ones is non-trivial. While
one method may be faster, other may achieve better compression ratio and
yet another may require less computational resources. Furthermore, due to the
nature of mining frequent itemsets, using these algorithms for the transactional
identifier list compression, the semantics required for the intersection are lost,
bringing as a consequence the necessity of decompressing before intersecting.

After a careful analysis of existing compression algorithms, we concluded
that RLE type of algorithms are more suitable for compressing our data. In
[21] several variants of RLE algorithm are described, however, [22] describes a
variant that in our opinion, can adjust better to the type of data managed here
and it may compress with higher compression rates besides allowing intersecting
without requiring decompression.

3.1 PackBits Algorithm

PackBits algorithm is a fast and simple compression scheme for run-length en-
coding of data. A PackBits data stream consists of packets of one byte of header
followed by data. The header is a signed byte; the data can be signed or unsigned.
In the following table, let n be the value of the header byte as a signed
integer.
Note that interpreting 0 as positive or negative makes no difference in the
output. Runs of two bytes adjacent to non-runs are typically written as literal

Table 2: Data stream of PackBits

Header byte Data following the header byte
0 to 127 (1 4 n) literal bytes of data
-1 to -127 One byte of data, repeated (1 — n)
times in the decompressed output
-128 No operation (skip and treat next
byte as a header byte)

data. It should also be noticed that it is impossible, from the PackBits data, to
determine the end of the data stream; i.e., one must know a priori the size of
the uncompressed data before reading a PackBits data stream to know where it
ends.

4 Characteristic of AMFI Algorithm

A new algorithm for FI mining is proposed in this section. The efficiency of this
algorithm is based on a compressed vertical binary representation of the data
and on a very fast support count.

4.1 Storing the Transactions

Let us call filtered transaction to the itemset that is obtained by removing no-
frequent items from a transaction. The size of the filtered transactions is obvi-
ously smaller than the size of the dataset. Based on the anti-monotonic property
of FI [2], all FI of a dataset can be computed even if only filtered transactions
are available.

The set of filtered transactions can be represented as an m x n matrix, where
m is the number of transactions and n is the number of frequent items. We can
denote the presence or absence of an item in each transaction by a binary value
(1 if it is present, 0 otherwise).

If the maximum number of transactions is not greater than the CPU word
size w (32 or 64 bits), the dataset can be stored as a simple set of integers.
However, a dataset is normally much greater than the CPU word size. For this
reason, we propose to use an array of integers to store the presence or not of
each frequent item along the transactions. It will be explained later on how to
extend these integer arrays to a frequent itemset.

Let M be the binary representation of a dataset, with n items and m trans-
actions. Retrieving from M the columns associated to frequent items, we can
represent each item j as an integer array I; where each integer has size w, as
follows:

I = {Wi;,Waj,..., Wy}t g = [m/w] (4)

where each integer of the array can be defined as:

Wi = Z 27" % M((k=1)xwtr).j (5)
r=1

being M; ; the bit value of item j in transaction 7, in case of ¢ > m then M; ; = 0.
This representation of FI allows a fast counting of the itemset support in large
datasets.

4.2 Reordering of Frequent 1-itemsets

As other authors, in AMFI, we have used the heuristic of reordering the frequent
1-itemsets in increasing support order. This will cause a reduction of candidate
sets in the next level. This heuristic was first used in MaxMiner [23], and has
been used in other methods since then [8, 24, 25, 26, 27, 28, 29]. In the case of our
algorithm, reordering frequent 1-itemsets contributes to a faster convergence, as
well as saving memory.

4.3 AMFI Algorithm

AMFI is a BFS algorithm through equivalence classes with a compressed verti-
cal binary representation. This algorithm iteratively generates a list ECy. The
elements of this list represent the equivalence classes of size k and have the
format:

(Prefixg—1, IAp ofiy, - Suffixespogy), (6)

where Prefix;_; is the (k — 1)-itemset that is common to all the itemsets of
the equivalence class, SufﬁxesPreﬁinl is the set of all items j which extend to
Prefix;_1, where j is lexicographically greater than any item in the prefix, and
IAPreﬁXk,l is an array of non null integers that is built with the intersection
(using AN D operation) of the arrays I;, where j belongs to Prefix;_;. The IA
arrays store the accumulated supports of the prefix of each equivalence class
EC. If k is larger then the number of elements of I A is lesser because the
AN D operation generates null integers, and null integers are not stored because
they do not have influence on the support. The procedure for obtaining I' A is as
follows: Let 7 and j be two frequent items,

TAg oy =
{Whii & Wi g, k) [(Wii & Wi ;) # 0,k € [1,q]}, (7)

similarly, let the frequent itemset X and the frequent item j

TAxugy = {(b& Wy, k) |
(b,k) e IAx,(b& Wy ;) #0,k € [1,4]}, (8)

This representation not only reduces the required memory space to store the
integer arrays but also eliminates the Join step described in (2).

In order to compute the support of an itemset X with an integer-array I Ax,
the following expression is used:

Support(IAx) = Z BitCount(b) (9)
(bk)eTAx

where BitCount(b) is a function that calculates the Hamming Weight of b. The
I A cardinality is reduced with the increment of the itemsets size due to the
downward closure property. It allows for improvement of the processes (8) and
(9). The AMFI algorithm pseudo code is shown in Algorithm 1.

Input: Dataset in binary representation
Output: Frequent itemsets

1 Answer = ()
2 L = {frequent 1l-itemsets}
3 forall i € L do

4 ECGenAndCount ({{i}, I;, Suffizes;,), £C2)
5 k=3
6 while ECy_; # 0 do
7 forall ec € ECk_1 do
8 ECGenAndCount (ec, EC%)
9 end
10 Answer = Answer U EC},
11 k=k+1
12 end
13 end

14 return Answer

Algorithm 1: AMFI

In line 2 of algorithm 1, the frequent 1-itemsets are calculated and ordered
in increasing support order. In line 4, the equivalence classes of each frequent
1-itemset are built. From line 6 to 12, each equivalence class of size 2 is pro-
cessed using ECGenAndCount function. The ECGenAndCount function takes
an equivalence class of length k—1 as argument and generates a set of equivalence
classes of length k (see Algorithm 2).

In line 2 of algorithm 2, all the items ¢ that form the suffix of the input equiv-
alence class (EC}_1) are crossed. In line 3 the prefixes Prefix’ of the equivalence
classes of level k are built by adding each suffix 7 to the prefix of ECy_1. In
line 4, the I A array associated to each Prefix’ is calculated by means of AND
operation between the T A of EC%_; and the I; associated to the item i (8). From
lines 6 to 13, the suffix items j of EC}_1, lexicographically greater than 4, are
crossed and the support of the sets Prefix’ U j is calculated.

Input: An equivalence class in (Prefix, IAp oy, Suffixesp,opy) format
Output: The equivalence classes set generated

1 Answer =)
o forall i € Suﬂia:esPreﬁx do

3 Prefix’ = Prefix U {i}
4 AP efix’ = IAPrefixu {i}
/ _
5 Suffixesp oo =0
6 forall (i’ € Suffizes prefiy;) and (¢ >1i) do
b if Support(/IApreﬁmlu {i,}) t/hen
8 Suffixesp .. = Suffixesp o/ @
9 end
10 end
11 if Suﬁcixes'Preﬁx/ # () then
12 Answer = Answer U {(Prefix’, IAp 5./, Suffixesp ¢ /) }
13 end
14 end

15 return Answer

Algorithm 2: ECGenAndCount

4.4 Memory Considerations

As mentioned, a data set can be represented in four ways, horizontally (HIL
and HIV) and vertically (VIL and VTV). Making a decision between VTL and
VTV representations is a non trivial task. Burdick, Calimlim and Gehrke in [8]
analyzed these two vertical formats when they proposed the MAFIA algorithm.
They showed, experimentally, that the memory efficacy of these representations
depends on the density of the dataset. Particularly, on 32 bit machines, the VTL
format is guaranteed to be a more expensive representation in terms of space
if the support of an item (or itemset) is greater than 1/32 or about 3% of the
number of transactions. In the VTL representation, we need an entire word to
represent the presence of an item versus the single bit of the VIV approach.

In the compressed I A array of the CA algorithm, a pair of integers for each
one of the simple (uncompressed) VIV format is required. As the CA algorithm
representation includes pairs of words only for non null integers, the memory
overhead of this representation is higher than the simple VTV if the support
of an item (or itemset) is greater than 1/2. Furthermore, considering a dataset
of m transactions on 32 bit machines and an item (or itemset) with a support
sup, a simple VTV requires m/8 bytes of memory while the CA algorithm, in
its worst case, when the item (or itemset) transactions are sparsely distributed,
requires 8 * min(m * sup, m/32) bytes.

So, we can infer that if the support of an item (or itemset) is less than 1/64
or about 1.5% the CA algorithm has a representation less expensive. Therefore,
we can conclude that the compressed integer array representation is better than

the simple VTV representations in sparse datasets with minSup less than 1.5%
or, in the dense datasets, less than 50%.

5 Experimental Results

Several experiments were carried out where our proposed algorithm, AMFI, was
compared against a version that compresses the data using PackBits. Time con-
sumption and memory requirements were considered as measurements of effi-
ciency.

Experiments were developed with two newsitem datasets and two synthetic
datasets (Table 3).

Table 3: Summary of the main datasets characteristics

Transactions Items Count Avg. Length

El Pais 550 14489 173.1

TDT 8169 55532 133.5
Kosarak 990002 41935 8.1

Webdocs 1704140 5266562 175.98

Some of these datasets are sparse, such as El Pais, and some, very sparse, such
as Webdocs. Newsitems datasets were lemmatized using the Treetagger program
[30], and the stopwords were eliminated.

The Kosarak dataset was provided by Ferenc Bodon to FIMI repository
[31] and contains (anonymized) click-stream data of a Hungarian on-line news
portal. The Webdocs dataset was built from a spidered collection of web html
documents and was donated to FIMI repository by Claudio Lucchese et al. TDT
dataset contains news (newsitems) data collected daily from six news sources in
American English, over a period of six months (January - June, 1998). The EIl
Pais dataset contains 550 news, published at El Pais (Spain) newspaper in June
in 1999.

Our tests were performed on a PC with an Intel Core 2 Duo at 1.86 GHz
CPU and 1 GB DDR2 RAM. The operating system was Windows XP SP2.
We considered CPU+IO time (in seconds) at execution time for all algorithms
included in this paper.

In figures 2, 3, 4 and 5, a comparison of memory consumption by level is
shown, meaning that the comparison is done for frequent 1-itemsets, frequent
2-itemsets and so on until frequent 6-itemset. We plot the values until level 6 in
order to not overload the graphics, but the performance is the same.

As it can be seen from the figures, the AMFI algorithm requires less memory
than the variant of PackBits as the size of the FI increases. In level 1, AMFI
consumes more memory since it stores all the bytes while PackBits compresses
the bytes with equal value (as the datasets are very sparse, see Table 3, many
bytes are equal to 0).

B AMFI [PackBits
60

50

40
30
20

Memory (mb)

1F 2F 3F 4F 5F 6F
El Pais (support 0.2)

Figure 2: Memory consumption (El Pais dataset)

B AMFI O PackBits

70
o)
E 50
=
=}
£
[
= 30

10

1F 2F 3F 4F 5F 6F

TDT (support 0.2)

Figure 3: Memory consumption (TDT dataset)

W AMFI [J PackBits

150
i)

£ 100
2
o
£
[

= 50

0

1 2F 3F 4F 5F 6F

Kosarak (support 0.007)

Figure 4: Memory consumption (Kosarak dataset)

As the levels increase, PackBits requires always to compress a constant
amount of bytes, while AMFI will store only the bytes that are different from
0, which diminish fast due to the intersection operations.

In figures 6, 7, 8 and 9 a comparison of execution time with different supports
is shown. As it can be seen, AMFI algorithm not only requires less memory but
also is more efficient. This is mainly due to the number of blocks different from
0 decreases with increasing levels (the size of the itemsets) and intersecting only

these blocks is faster than iterating two compressed byte flows that intersect all
the blocks.

B AMFI [J PackBits
300

b)

£ 200

Memory (

1F 2F 3F 4F 5F 6F
Webdocs (support 0.15)

Figure 5: Memory consumption (Webdocs dataset)

—=— AMFI —-o—-- PackBits
18
i /F
W v
9] Vi
o 7
= /
o 7
£ 4 7 Z
= ;
! == 4
: J—— /
! 0.05 0.04 0.03 0.02

El Pais (support %)

Figure 6: Time consumption (El Pais dataset)

—=—AMFI —-=-- PackBits
El
5 Famm
- e
g1 v
~ //
gh =
S - /
’J:l
; -—;—./ /.-/
: 0.05 0.04 0.03 0.02
TDT (support %)

Figure 7: Time consumption (TDT dataset)

To show how decreasing the number of nonzero blocks in AMFI algorithm,
we took the two largest datasets and we computed the average value of the
number of elements of the TA array in the equivalence classes from EC5 to
ECy (Table 4). This average value indicates the average number of intersections
needed to compute the support of an FI in each equivalence class. It is important

—=— AMFI —-o—-- PackBits

16 Pammm
4
14 7
4
5 I //'
a0 —=
v ==
g ! ,,4’,
6
4 e
1 p———
0 ! . . .
0.005 0.004 0.003 0.002
Kosarak (support %)

Figure 8: Time consumption (Kosarak dataset)

—=— AMFI —-o-- PackBits
10 7

Time (sec.)

0.2 0.15 0.14 0.13
Webdocs (support %)

Figure 9: Time consumption (Webdocs dataset)

to highlight that the number of intersections is large only in the processing of
EC5 and, the average of zero blocks generated in EC}, is equal to the difference
between the average of intersections needed for processing ECy41 and ECj
respectively.

The values shown in table 4 corroborate the results obtained in the conducted
experiments.

Table 4: Average value of the number of elements of IA from EC5 to ECy

Datasets EFC> EC3 ECy ECs ECg ECy ECs ECy
Kosarak 30938 3703 2981 2420 2114 2029 2000 1980
Webdocs 53255 4208 3927 3221 2415 2212 2183 1813

6

Conclusions

In this chapter we have presented a compressed vertical binary approach for
mining FI. In order to reach a fast support computing, our algorithm uses a
BF'S through equivalence classes storing the class prefix support in compressed
arrays. The experimental results showed that AMFI algorithm achieves better
performance than PackBits as much in consumption of memory as in run time. It
can be concluded that although existing compression methods are good, they are
not always suitable for certain problems due to when compressing the required
semantic is lost.

References

1]

2]

[10]

[11]

[12]

Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets
of items in large databases. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, Washington, D.C. (1993) 207-216
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In Proceed-
ings of the 20¢h International Conference on Very Large Data Bases, VLDB’94,
Santiago de Chile, Chile (1994) 487-499

Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for mining asso-
ciation rules in large databases. In Technical Report GIT-CC-95-04, Institute of
Technology, Atlanta, USA (1995)

Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset counting and
implication rules for market basket data. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Tucson, Arizona, USA (1997)
Feldman, R., Dagan, I.: Kdt-knowledge discovery in texts. In Proceedings of the
First International Conference on Knowledge Discovery (KDD) (1995) 112-117
Silvestri, C., Orlando, S.: Approximate mining of frequent patterns on streams.
Intell. Data Anal., Vol. 11, No. 1 (2007) 49-73

Shenoy, P., Haritsa, J., Sudarshan, S., Bhalotia, G., Bawa, M., Shah, D.: Turbo-
charging vertical mining of large databases. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Dallas, USA (2000)

Burdick, D., Calimlim, M., Gehrke, J.: Mafia: A maximal frequent itemset algo-
rithm for transactional databases. In Proceedings of the International Conference
on Data Engineering (ICDE), Heidelberg, Germany (2001)

Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining using fp-trees.
IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 10 (2005)
1347-1362

Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In Proceedings ACM-SIGMOD International Conference on Management of Data,
New York, NY, USA (2000)

Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast dis-
covery of association rules. In Proceedings of the 3rd International Conference on
KDD and Data Mining, EU (1997)

Yan, H., Sang, Y.: Approximate frequent itemsets compression using dynamic
clustering method. IEEE Conference on Cybernetics and Intelligent Systems
(2008) 1061-1066

[13]

[14]
[15]
[16]
[17]
18]
[19]
[20]
[21]

[22]
23]

[24]
25)
26]
[27)
28]

[29]

[30]

31]

Mafruz Zaman Ashrafi, D.T., Smith, K.: An efficient compression technique for
frequent itemset generation in association rule mining. Advances in Knowledge
Discovery and Data Mining, Lecture Notes in Computer Science, Springer Berlin
/ Heidelberg, Vol. 3518 (2005) 125-135

Arno Siebes, Jilles Vreeken, M.v.1.: Item sets that compress. Proceedings of the
SDM’06 (2006) 393-404

Huffman, D.: A method for the construction of minimum redundancy codes. In
Proceedings of the IRE 40(9) (1952) 1098-1101

Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory IT-23(3) (1977) 337-343

Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory IT-24(5) (1978) 530-536

Fiala, E.R., Greene, D.H.: Data compression with finite windows. Communica-
tions of the ACM 32(4) (1989) 490-505

Phillips, D.: Lzw data compression. The Computer Application Journal Circuit
Cellar Inc., 27 (1992) 36-48

W., G.S.: Run-length encodings. IEEE Transactions on Information Theory, 12
(1966) 399-401

Salomon, D.: Data compression: The complete reference. 3rd Edition, Published
by Springer. ISBN 0-387-40697-2. LCCN QA76.9 D33S25, 899 pages (2004)
http://www.fileformat.info/format /tiff/corion-packbits.htm

Bayardo, R.J.: Efficiently mining long patterns from databases. In ACM SIGMOD
Conf. on Management of Data (1998) 85-93

Agrawal, R., Aggarwal, C., Prasad, V.: Depth first generation of long patterns.
In 7th Int’l Conference on Knowledge Discovery and Data Mining (2000) 108-118
Gouda, K., Zaki, M.J.: Genmax: An efficient algorithm for mining maximal fre-
quent itemsets. Data Mining and Knowledge Discovery, 11 (2005) 1-20

Zaki, M.J., Hsiao, C.J.: Charm: An efficient algorithm for closed itemset mining.
In 2nd STAM International Conference on Data Mining (2002) 457-473

Calders, T., Dexters, N., Goethals, B.: Mining frequent itemsets in a stream.
Proceedings of the IEEE International Conference on Data Mining (2007) 83-92
Calders, T., Dexters, N., Goethals, B.: Mining frequent items in a stream using
flexible windows. Intelligent Data Analysis, Vol. 12, No. 3 (2008)

Kalpana, B., Nadarajan, R.: Incorporating heuristics for efficient search space
pruning in frequent itemset mining strategies. CURRENT SCIENCE 94 (2008)
97-101

Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: In-
ternational Conference on New Methods in Language Processing, (Software in:
www.ims.uni-stuttgart.de/ftp/pub/corpora/tree-taggerl.ps.gz), Manchester, UK
(1994)

FIMI-Frequent Itemset Mining Implementations Repository, (Software developed
by Ferec Bodon, URL: http://fimi.cs.helsinki.fi/src)

