Herramientas Teóricas y Manipulación

Dr. Alejandro Gutiérrez–Giles Dr. José Martínez Carranza

alejandro.giles@inaoep.mx, carranza@inaoep.mx

ccc.inaoep.mx/~carranza/introb.html

Sistemas coordenados

- Sistemas coordenados:
 - ortonormales
 - dextrógiros

Rotaciones en 2D

La matriz

$${}^{0}\boldsymbol{R}_{1}(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$
(1)

es conocida como **matriz de rotación**, del sistema $o_1 x_1 y_1$ con respecto al sistema $o_0 x_0 y_0$ en función del ángulo θ .

 El operador para realizar esta operación es el producto punto, que en el espacio Cartesiano está dado por

$$\boldsymbol{a} \cdot \boldsymbol{b} = \|\boldsymbol{a}\| \|\boldsymbol{b}\| \cos(\angle \mathrm{ab}), \qquad (2)$$

donde $\angle ab$ es el ángulo entre los vectores $a \ge b$.

Rotaciones en 3D

Una matriz de rotación en 2D se puede escribir como

$${}^{0}\boldsymbol{R}_{1} = \begin{bmatrix} \boldsymbol{x}_{1} \cdot \boldsymbol{x}_{0} & \boldsymbol{y}_{1} \cdot \boldsymbol{x}_{0} \\ \boldsymbol{x}_{1} \cdot \boldsymbol{y}_{0} & \boldsymbol{y}_{1} \cdot \boldsymbol{y}_{0} \end{bmatrix}.$$
(3)

Se puede generalizar el resultado anterior para el espacio Cartesiano en 3D como

$${}^{0}\boldsymbol{R}_{1} = \begin{bmatrix} \boldsymbol{x}_{1} \cdot \boldsymbol{x}_{0} & \boldsymbol{y}_{1} \cdot \boldsymbol{x}_{0} & \boldsymbol{z}_{1} \cdot \boldsymbol{x}_{0} \\ \boldsymbol{x}_{1} \cdot \boldsymbol{y}_{0} & \boldsymbol{y}_{1} \cdot \boldsymbol{y}_{0} & \boldsymbol{z}_{1} \cdot \boldsymbol{y}_{0} \\ \boldsymbol{x}_{1} \cdot \boldsymbol{z}_{0} & \boldsymbol{y}_{1} \cdot \boldsymbol{z}_{0} & \boldsymbol{z}_{1} \cdot \boldsymbol{z}_{0} \end{bmatrix} .$$
(4)

• Nótese que cada columna corresponde a las componentes de cada vector unitario del sistema $o_1 x_1 y_1 z_1$ con respecto al sistema $o_0 x_0 y_0 z_0$ y viceversa, cada renglón de esta matriz representa las componentes de los vectores del sistema $o_0 x_0 y_0 z_0$ con respecto al sistema $o_1 x_1 y_1 z_1$.

Matrices de rotación básicas

• Rotación básica sobre el eje x.

(5)

Matrices de rotación básicas

Matrices de rotación básicas

(7)

Propiedades de las Rotaciones

- El conjunto de las matrices de rotación forma el Grupo
 Especial Ortonormal de orden 3 y se denota como
 SO(3).
- Un elemento de este grupo $\mathbf{R} \in \mathbf{SO}(3)$ cumple con las siguiente propiedades:
 - Es cerrado con respecto a la multiplicación matricial.
 - Se cumple que det(R) = 1, para la representación de sistemas coordenados dextrógiros¹.
 - Su matriz inversa es igual a su transpuesta, i.e.

$$\boldsymbol{R}^{-1} = \boldsymbol{R}^{\mathrm{T}} \,. \tag{8}$$

¹Si se permite representar también sistemas levógiros, entonces $det(\mathbf{R}) \pm 1$ y se conoce simplemente como Grupo Ortonormal de orden 3.

Propiedades de las Rotaciones

Lo anterior implica que

$$\boldsymbol{R}\boldsymbol{R}^{\mathrm{T}} = \boldsymbol{R}^{\mathrm{T}}\boldsymbol{R} = \boldsymbol{I}.$$
 (9)

- Si una matriz de rotación relaciona dos sistemas coordenados, como ^a $R_{\rm b}$, entonces sus columnas representan a los vectores que forman el sistema coordenado $o_{\rm b}x_{\rm b}y_{\rm b}z_{\rm b}$ con respecto al sistema $o_{\rm a}x_{\rm a}y_{\rm a}z_{\rm a}$.
- De la misma forma, los renglones de ^a $R_{\rm b}$ representan los vectores que definen al sistema $o_{\rm a}x_{\rm a}y_{\rm a}z_{\rm a}$ con respecto al sistema $o_{\rm b}x_{\rm b}y_{\rm b}z_{\rm b}$.

Propiedades de las Rotaciones

Las propiedades anteriores implican que:

Sus columnas (renglones) tienen norma unitaria.

- Sus columnas (renglones) son mutuamente ortogonales, i.e. su producto punto siempre es cero.
- Reglas de composición: una rotación sobre el sistema actual postmultiplica la ecuación, mientras que una rotación sobre el sistema fijo premultiplica la ecuación.

Parametrización de rotaciones

- Proposición [ángulos de Euler]: Cualquier matriz de rotación arbitraria $R \in SO(3)$ se puede obtener como una composición de tres rotaciones básicas, mientras no se realicen dos rotaciones consecutivas sobre el mismo eje.
- Las más utilizadas en robótica son las últimas dos, i.e. ZYX que se conoce como Roll-Pitch-Yaw y ZYZ que se conoce como ángulos de Euler.

El problema se puede enunciar como sigue: dada una matriz $\mathbf{R} \in SO(3)$, cuyos componentes son

$$\boldsymbol{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix},$$
(10)

encontrar los ángulos $\phi,\,\theta$ y $\psi,$ tales que

$$\boldsymbol{R} = \boldsymbol{R}_{\mathrm{z},\phi} \boldsymbol{R}_{\mathrm{y},\theta} \boldsymbol{R}_{\mathrm{z},\psi} \,. \tag{11}$$

Desarrollando el lado derecho se tiene

$$\begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} . \end{bmatrix}$$
(12)

 $c_{\theta} = \cos(\theta), \, s_{\theta} = \sin(\theta).$

- Igualando (10) y (12) se obtienen 9 ecuaciones algebraicas no lineales con tres incógnitas (ϕ , θ y ψ).
- En este curso se utilizará únicamente la función atan2(y, x) que calcula el ángulo correspondiente al cuadrante en el que se encuentra el vector de posición con coordenadas (x, y).
- La función atan2(y, x) está definido para casi todo el plano Cartesiano, con excepción del punto (0, 0).
- La ecuación más sencilla de resolver es la del elemento r_{33} , i.e. $c_{\theta} = r_{33}$. Utilizando la función atan2 y la conocida identidad trigonométrica $\sin^2(x) + \cos^2(x) = 1$, se obtiene la solución para θ

$$\theta = \operatorname{atan2}(\pm\sqrt{1 - r_{33}^2}, r_{33}).$$
 (13)

1 En el caso $r_{33} \neq \pm 1$ se tiene $s_{\theta} \neq 0$ y se pueden utilizar los elementos r_{13} , r_{23} , r_{31} y r_{32} para obtener ϕ y ψ . En este caso existen dos soluciones, dependiendo del signo que se elija en (13), que a su vez es el signo de θ .

1.1 Si se elige $\theta > 0$

$$\phi = \operatorname{atan2}(r_{23}, r_{13}) \tag{14}$$

$$\psi = \operatorname{atan2}(r_{32}, -r_{31}). \tag{15}$$

1.2 Si se elige $\theta < 0$

$$\phi = \operatorname{atan2}(-r_{23}, -r_{13}) \tag{16}$$

$$\psi = \operatorname{atan2}(-r_{32}, r_{31}). \tag{17}$$

- 2 En el caso $r_{33} = \pm 1$ se tiene un caso singular, ya que $s_{\theta} = 0$ y no se pueden utilizar los elementos r_{13} , r_{23} , r_{31} y r_{32} para obtener ϕ y ψ . De nuevo se consideran dos casos.
 - 2.1 Si $r_{33} = 1$, entonces $c_{\theta} = 1$ y sustituyendo en (12) se tiene

$$c_{\phi}c_{\psi} - s_{\phi}s_{\psi} = r_{11} \tag{18}$$

$$s_{\phi}c_{\psi} + c_{\phi}s_{\psi} = r_{21}$$
. (19)

Utilizando las identidades

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$
$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

se tiene

$$\cos(\phi + \psi) = r_{11} \tag{20}$$

$$\sin(\phi + \psi) = r_{21}$$
. (21)

Por lo tanto, existen soluciones infinitas y sólo se puede determinar la suma, i.e.

$$\phi + \psi = \operatorname{atan2}(r_{21}, r_{11}).$$
(22)

2.2 Por último, si $r_{33} = -1$, entonces $c_{\theta} = -1$, sustituyendo en (12) y utilizando las identidades anteriores, se tiene

$$-\cos(\phi - \psi) = r_{11} \tag{23}$$

$$-\sin(\phi - \psi) = r_{21}$$
, (24)

por lo que sólo se puede determinar la resta

$$\phi - \psi = \operatorname{atan2}(-r_{21}, -r_{11}).$$
(25)

Nota: una práctica común tanto en el caso 2.1 como en el 2.2 es elegir uno de los ángulos ϕ o ψ igual a cero y entonces el otro queda automáticamente determinado.

Roll-Pitch-Yaw

$$\boldsymbol{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \boldsymbol{R}_{z,\psi} \boldsymbol{R}_{y,\theta} \boldsymbol{R}_{x,\phi} \,.$$
(26)

1 Si $r_{31} \neq \pm 1$

$$\theta = \operatorname{atan2}\left(-r31, \pm \sqrt{r_{32}^2 + r_{33}^2}\right).$$
 (27)

1.1 Si se elige $-\pi/2 < \theta < \pi/2$ $\phi = \operatorname{atan2}(r_{21}, r_{11})$ (28) $\psi = \operatorname{atan2}(r_{32}, r_{33}).$ (29)

1.2~ Si se elige $\pi/2 < \theta < 3\pi/2$

$$\phi = \operatorname{atan2}(-r_{21}, -r_{11}) \tag{30}$$

$$\psi = \operatorname{atan2}(-r_{32}, -r_{33}). \tag{31}$$

Eje-Ángulo

Dado un vector $\boldsymbol{r} = \begin{bmatrix} r_x & r_y & r_z \end{bmatrix}^{\mathrm{T}}$ y un ángulo θ , se puede obtener

$$\boldsymbol{R}(\theta, \boldsymbol{r}) = \begin{bmatrix} r_x^2 (1 - c_\theta) + c_\theta & r_x r_y (1 - c_\theta) - r_z s_\theta & r_x r_z (1 - c_\theta) + r_y s_\theta \\ r_x r_y (1 - c_\theta) + r_z s_\theta & r_y^2 (1 - c_\theta) + c_\theta & r_y r_z (1 - c_\theta) - r_x s_\theta \\ r_x r_z (1 - c_\theta) - r_y s_\theta & r_y r_z (1 - c_\theta) + r_x s_\theta & r_z^2 (1 - c_\theta) + c_\theta \end{bmatrix}$$
(32)

Se cumple la propiedad

$$\boldsymbol{R}(-\theta,-\boldsymbol{r}) = \boldsymbol{R}(\theta,\boldsymbol{r}). \tag{33}$$

Eje-Ángulo

Problema inverso, dada
$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$
, entonces
 $\theta = \operatorname{acos}\left(\frac{r_{11} + r_{22} + r_{33} - 1}{2}\right)$ (34)
 $\mathbf{r} = \frac{1}{2\sin(\theta)} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$ (35)

Cuaterniones Unitarios

Parte escalar $q_{\rm w}$ y parte vectorial $\boldsymbol{q}_{\rm r} = \begin{bmatrix} q_{\rm x} & q_{\rm y} & q_{\rm z} \end{bmatrix}^{\rm T}$

$$\boldsymbol{q}_{\mathrm{r}} = \sin\left(\frac{\theta}{2}\right)\boldsymbol{r} \tag{36}$$
$$\boldsymbol{q}_{\mathrm{w}} = \cos\left(\frac{\theta}{2}\right), \tag{37}$$

donde $r \ge \theta$ son los mismos que para Eje-Ángulo.

Los componentes del cuaternión satisfacen

$$q_{\rm x}^2 + q_{\rm y}^2 + q_{\rm z}^2 + q_{\rm w}^2 = 1$$
.

Cuaterniones Unitarios

Dado un cuaternión $\boldsymbol{q} = \begin{bmatrix} q_x & q_y & q_z & q_w \end{bmatrix}^T$, se puede calcular la matriz de rotación

$$\boldsymbol{R}(\boldsymbol{q}) = \begin{bmatrix} 2(q_{\mathrm{x}}^2 + q_{\mathrm{w}}^2) - 1 & 2(q_{\mathrm{x}}q_{\mathrm{y}} - q_{\mathrm{w}}q_{\mathrm{z}}) & 2(q_{\mathrm{x}}q_{\mathrm{z}} + q_{\mathrm{w}}q_{\mathrm{y}}) \\ 2(q_{\mathrm{x}}q_{\mathrm{y}} + q_{\mathrm{w}}q_{\mathrm{z}}) & 2(q_{\mathrm{y}}^2 + q_{\mathrm{w}}^2) - 1 & 2(q_{\mathrm{y}}q_{\mathrm{z}} - q_{\mathrm{w}}q_{\mathrm{x}}) \\ 2(q_{\mathrm{x}}q_{\mathrm{z}} - q_{\mathrm{w}}q_{\mathrm{y}}) & 2(q_{\mathrm{y}}q_{\mathrm{z}} + q_{\mathrm{w}}q_{\mathrm{x}}) & 2(q_{\mathrm{z}}^2 + q_{\mathrm{w}}^2) - 1 \end{bmatrix}$$

Problema inverso

$$\boldsymbol{q}_{\rm r} = \frac{1}{2} \begin{bmatrix} {\rm sign}(r_{32} - r_{23})\sqrt{r_{11} - r_{22} - r_{33} + 1} \\ {\rm sign}(r_{13} - r_{31})\sqrt{r_{22} - r_{33} - r_{11} + 1} \\ {\rm sign}(r_{21} - r_{12})\sqrt{r_{33} - r_{11} - r_{22} + 1} \end{bmatrix}$$
$$\boldsymbol{q}_{\rm w} = \frac{1}{2}\sqrt{r_{11} + r_{22} + r_{33} + 1}$$

Movimientos rígidos

Haciendo la suma vectorial se obtiene

$${}^{0}\boldsymbol{p} = {}^{0}\boldsymbol{o}_{1} + {}^{0}\boldsymbol{R}_{1}{}^{1}\boldsymbol{o}_{2} + {}^{0}\boldsymbol{R}_{1}{}^{1}\boldsymbol{R}_{2}{}^{2}\boldsymbol{p}$$
 .

Transformaciones Homogéneas

 Se puede forzar la estructura de grupo mediante la matriz de transformación homogénea.

$${}^{\mathrm{a}}\boldsymbol{H}_{\mathrm{b}} = \begin{bmatrix} {}^{\mathrm{a}}\boldsymbol{R}_{\mathrm{b}} & {}^{\mathrm{a}}\boldsymbol{o}_{\mathrm{b}} \\ \mathbf{0} & 1 \\ {}_{1\times 3} & 1 \end{bmatrix} .$$
(38)

Se deben ampliar los vectores:

Vectores de posición: se les agrega un 1 al final, i.e. la representación homogénea de $^{\rm a}p$ es

$${}^{\mathbf{a}}\bar{\boldsymbol{p}} = \begin{bmatrix} {}^{\mathbf{a}}\boldsymbol{p} \\ 1 \end{bmatrix} \,. \tag{39}$$

Vectores libres: se les agrega un 0 al final, i.e. la representación homogénea de ${}^{a}v$ es

$${}^{\mathbf{a}}\bar{\boldsymbol{v}} = \begin{bmatrix} {}^{\mathbf{a}}\boldsymbol{v} \\ 0 \end{bmatrix}. \tag{40}$$

Transformaciones Homogéneas

Para el ejemplo de la figura

$${}^{0}\boldsymbol{H}_{1} = \begin{bmatrix} {}^{0}\boldsymbol{R}_{1} & {}^{0}\boldsymbol{o}_{1} \\ \boldsymbol{0} & 1 \end{bmatrix}$$
(41)
$${}^{1}\boldsymbol{H}_{2} = \begin{bmatrix} {}^{1}\boldsymbol{R}_{2} & {}^{1}\boldsymbol{o}_{2} \\ \boldsymbol{0} & 1 \end{bmatrix} .$$
(42)

Por lo que

$${}^{0}\bar{\boldsymbol{p}} = {}^{0}\boldsymbol{H}_{1}{}^{1}\boldsymbol{H}_{2}{}^{2}\bar{\boldsymbol{p}}$$
(43)
$$= \begin{bmatrix} {}^{0}\boldsymbol{R}_{1} & {}^{0}\boldsymbol{o}_{1} \\ \boldsymbol{0} & 1 \end{bmatrix} \begin{bmatrix} {}^{1}\boldsymbol{R}_{2} & {}^{1}\boldsymbol{o}_{2} \\ \boldsymbol{0} & 1 \end{bmatrix} \begin{bmatrix} {}^{2}\boldsymbol{p} \\ 1 \end{bmatrix}$$
(44)
$$= \begin{bmatrix} {}^{0}\boldsymbol{R}_{1}{}^{1}\boldsymbol{R}_{2}{}^{2}\boldsymbol{p} + {}^{0}\boldsymbol{R}_{1}{}^{1}\boldsymbol{o}_{2} + {}^{0}\boldsymbol{o}_{1} \\ 1 \end{bmatrix}$$
(45)

Propiedades de SE(3)

- Sea ^a $H_b \in SE(3)$, entonces cumple con las siguientes propiedades:
 - 1 Determinante:

 $\det(^{\mathbf{a}}\boldsymbol{H}_{\mathbf{b}}) = 1.$

2 Inversa:

$${}^{\mathrm{a}}\boldsymbol{H}_{\mathrm{b}}^{-1} = {}^{\mathrm{b}}\boldsymbol{H}_{\mathrm{a}} = \begin{bmatrix} {}^{\mathrm{a}}\boldsymbol{R}_{\mathrm{b}}^{\mathrm{T}} & -{}^{\mathrm{a}}\boldsymbol{R}_{\mathrm{b}}^{\mathrm{Ta}}\boldsymbol{o}_{\mathrm{b}} \\ \boldsymbol{0} & 1 \end{bmatrix}$$

3 Reglas de composición: si un movimiento rígido se hace con respecto al sistema **actual**, la matriz de transformación homogénea **postmultiplica** la ecuación, mientras que si el movimiento es con respecto al sistema **fijo**, dicha matriz **premultiplica** la ecuación.

Transformaciones Homogéneas

• Matrices de transformación homogéneas básicas. Tres de traslación:

$$Tras_{\mathbf{x},a} = \begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad Tras_{\mathbf{y},a} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$Tras_{\mathbf{z},a} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Transformaciones Homogéneas

V tres de rotación:

$$Rot_{\mathbf{x},\theta} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\theta} & -s_{\theta} & 0 \\ 0 & s_{\theta} & c_{\theta} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad Rot_{\mathbf{y},\theta} = \begin{bmatrix} c_{\theta} & 0 & s_{\theta} & 0 \\ 0 & 1 & 0 & 0 \\ -s_{\theta} & 0 & c_{\theta} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$Rot_{\mathbf{z},\theta} = \begin{bmatrix} c_{\theta} & -s_{\theta} & 0 & 0 \\ s_{\theta} & c_{\theta} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Cinemática Directa

- Conocer la Pose (posición y orientación) del efector final dadas las variables articulares $\boldsymbol{q} = \begin{bmatrix} q_1 & q_2 & \dots & q_n \end{bmatrix}^{\mathrm{T}}$.
- Restricciones de Denavit-Hartenberg
 - **[DH1]** El eje x_i siempre interseca al eje z_{i-1} .
 - **[DH2]** El eje x_i siempre es perpendicular al eje z_{i-1} .

- Las restricciones DH1 y DH2 se pueden forzar si se realiza la asignación de los sistemas coordenados por medio del siguiente algoritmo de Denavit-Hartenberg (DH):
- 1 Colocar los ejes $z_0, z_1, \ldots, z_{n-1}$. Colocar el eje z_{i-1} sobre el eje de giro de la articulación *i* si es de revolución o sobre el eje de desplazamiento de la articulación *i* si es prismática.

2 Completar el sistema coordenado de la base. Comenzar por o_0 en un punto conveniente sobre el eje z_0 . Colocar $x_0 y y_0$ para formar un sistema dextrógiro ortonormal.

3 Colocar los orígenes $o_1 ldots o_{n-1}$, de acuerdo con los ejes $z_{i-1} ext{ y } z_i$. Si $z_{i-1} ext{ y } z_i$ se intersecan, colocar o_i en la intersección. Si $z_{i-1} ext{ y } z_i$ son paralelos, colocar o_i en cualquier lugar conveniente sobre z_i . Si $z_{i-1} ext{ y } z_i$ no son paralelos ni se intersecan, colocar o_i en la intersección de z_i con la normal común de $z_{i-1} ext{ y } z_i$.

Para el ejemplo:

4 Colocar los ejes $\boldsymbol{x}_1 \dots \boldsymbol{x}_{n-1}$, de acuerdo con los ejes \boldsymbol{z}_{i-1} y \boldsymbol{z}_i . Si \boldsymbol{z}_{i-1} y \boldsymbol{z}_i se intersecan, colocar \boldsymbol{x}_i en la normal al plano que forman \boldsymbol{z}_{i-1} y \boldsymbol{z}_i pasando por \boldsymbol{o}_i . Si \boldsymbol{z}_{i-1} y \boldsymbol{z}_i no se intersecan, colocar \boldsymbol{x}_i en la normal común a \boldsymbol{z}_{i-1} y \boldsymbol{z}_i pasando por \boldsymbol{o}_i .

Para el ejemplo:

5 Colocar los ejes $y_1 \dots y_{n-1}$, completando los sistemas coordenados dextrógiros.

6 Colocar el sistema coordenado del efector final. Colocar o_n en el punto más importante (centro de la pinza, punta de la herramienta, etc.). Luego, colocar el eje \boldsymbol{z}_n paralelo a \boldsymbol{z}_{n-1} y pasando por o_n . Colocar el eje \boldsymbol{x}_n de tal forma que interseque a \boldsymbol{z}_{n-1} . Completar el sistema colocando \boldsymbol{y}_n para formar un sistema dextrógiro.

- 7 Formar la tabla de parámetros cuyas columnas son a_i , d_i , α_i , θ_i y C.I. y cuyas filas son los números de las articulaciones.
- El parámetro a_i es la distancia desde la intersección de los ejes \boldsymbol{z}_{i-1} y \boldsymbol{x}_i hasta el origen \boldsymbol{o}_i . Si esta distancia está sobre el eje \boldsymbol{x}_i , a_i es negativa, mientras que si está del lado opuesto al eje \boldsymbol{x}_i , a_i es positiva.

El parámetro d_i es la distancia desde el origen o_{i-1} hasta la intersección de los ejes z_{i-1} y x_i. Si la articulación i es prismática, este parámetro es variable y se denota como d^{*}_i.

El parámetro α_i es el ángulo desde el eje \boldsymbol{z}_{i-1} hasta el eje \boldsymbol{z}_i tomando a \boldsymbol{x}_i como eje de giro.

El parámetro θ_i es el ángulo desde el eje x_{i-1} hasta el eje x_i tomando a z_{i-1} como eje de giro. Si la articulación *i* es de revolución, este parámetro es variable y se denota como θ_i^* .

- Por último, la columna de condiciones iniciales (C.I.) se llena tomando las cantidades variables $d_i^* \ge \theta_i^*$ como si fueran constantes.
- La tabla de parámetros para el ejemplo es

i	a_i	d_i	α_i	θ_i	C.I.
1	0	d_1	90°	θ_1^*	0°
2	0	0	90°	θ_2^*	90°
3	0	d_3^*	0°	0°	d_3
4	0	d_4	0°	θ_4^*	0°

8 Formar las *n* transformaciones homogéneas ${}^{i-1}H_i(q_i)$ de acuerdo con la siguiente *plantilla*:

$${}^{i-1}\boldsymbol{H}_{i}(q_{i}) = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad (46)$$

donde $c_{\theta_i} = \cos(\theta_i), s_{\theta_i} = \sin(\theta_i), c_{\alpha_i} = \cos(\alpha_i), s_{\alpha_i} = \sin(\alpha_i)$

Para el ejemplo

$${}^{0}\boldsymbol{H}_{1}(q_{1}) = \begin{bmatrix} c_{\theta_{1}} & 0 & s_{\theta_{1}} & 0 \\ s_{\theta_{1}} & 0 & -c_{\theta_{1}} & 0 \\ 0 & 1 & 0 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}, {}^{1}\boldsymbol{H}_{2}(q_{2}) = \begin{bmatrix} c_{\theta_{2}} & 0 & s_{\theta_{2}} & 0 \\ s_{\theta_{2}} & 0 & -c_{\theta_{2}} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$${}^{2}\boldsymbol{H}_{3}(q_{3}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}, {}^{3}\boldsymbol{H}_{4}(q_{4}) = \begin{bmatrix} c_{\theta_{4}} & -s_{\theta_{4}} & 0 & 0 \\ s_{\theta_{4}} & c_{\theta_{4}} & 0 & 0 \\ 0 & 0 & 1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

9 Obtener la cinemática directa, i.e., la transformación homogénea del sistema de la base al sistema del efector final, mediante la composición

$${}^{0}\boldsymbol{H}_{n}(\boldsymbol{q}) = {}^{0}\boldsymbol{H}_{1}(q_{1}){}^{1}\boldsymbol{H}_{2}(q_{2})\cdots{}^{n-1}\boldsymbol{H}_{n}(q_{n}).$$
(47)

Para el ejemplo:

$${}^{0}\boldsymbol{H}_{4} = \begin{bmatrix} c_{\theta_{1}}c_{\theta_{2}}c_{\theta_{4}} + s_{\theta_{1}}s_{\theta_{4}} & c_{\theta_{4}}s_{\theta_{1}} - c_{\theta_{1}}c_{\theta_{2}}s_{\theta_{4}} & c_{\theta_{1}}s_{\theta_{2}} & c_{\theta_{1}}s_{\theta_{2}} (d_{3} + d_{4}) \\ c_{\theta_{2}}c_{\theta_{4}}s_{\theta_{1}} - c_{\theta_{1}}s_{\theta_{4}} & -c_{\theta_{1}}c_{\theta_{4}} - c_{\theta_{2}}s_{\theta_{1}}s_{\theta_{4}} & s_{\theta_{1}}s_{\theta_{2}} & s_{\theta_{1}}s_{\theta_{2}} (d_{3} + d_{4}) \\ c_{\theta_{4}}s_{\theta_{2}} & -s_{\theta_{2}}s_{\theta_{4}} & -c_{\theta_{2}} & d_{1} - c_{\theta_{2}} (d_{3} + d_{4}) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Cinemática Inversa

Dada una posición
$${}^{0}\boldsymbol{o}_{d} = \begin{bmatrix} o_{x} \\ o_{y} \\ o_{z} \end{bmatrix}$$
 y una orientación
 ${}^{0}\boldsymbol{R}_{d} = \begin{bmatrix} {}^{0}\boldsymbol{x}_{d} & {}^{0}\boldsymbol{y}_{d} & {}^{0}\boldsymbol{z}_{d} \end{bmatrix} \in SO(3)$ para el efector final,
donde el subíndice d indica *deseados*, hallar las posiciones
articulares $\boldsymbol{q} \in \mathbb{R}^{n}$ tales que se cumpla

$${}^{0}\boldsymbol{H}_{n}(\boldsymbol{q}) = \begin{bmatrix} {}^{0}\boldsymbol{R}_{d} & {}^{0}\boldsymbol{o}_{d} \\ \boldsymbol{0} & 1 \end{bmatrix}, \qquad (48)$$

donde ${}^{0}\boldsymbol{H}_{n}(\boldsymbol{q})$ es la matriz de transformación homogénea que representa la cinemática directa del robot como función de \boldsymbol{q} .

Desacople cinemático

 Si se tiene un robot de 6 articulaciones (grados de libertad), cuyas últimas 3 forman una muñeca esférica, se puede dividir el problema cinemático inverso en dos problemas más simples: posición inversa y orientación inversa.

Desacople cinemático:

$${}^{0}\boldsymbol{o}_{c} = {}^{0}\boldsymbol{o}_{d} - d_{6}{}^{0}\boldsymbol{z}_{d} = {}^{0}\boldsymbol{o}_{d} - d_{6}{}^{0}\boldsymbol{R}_{d} \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \quad (49)$$

donde d_6 es una distancia constante de Denavit-Hartenberg.

Desacople cinemático

Posición inversa

• Una vez calculado el centro de la muñeca o_c , se resuelve la cinemática inversa de posición, *i.e.*, se calculan q_1 , q_2 y q_3 , dejando de lado por el momento la orientación.

Orientación inversa

• Una vez resuelta la cinemática inversa de posición, se puede garantizar que el centro de la muñeca cumplirá con $o_4 = o_5 = o_c$.

• Nótese que
$${}^{0}\mathbf{R}_{6}(\mathbf{q}) = {}^{0}\mathbf{R}_{3}(q_{1}, q_{2}, q_{3}){}^{3}\mathbf{R}_{6}(q_{4}, q_{5}, q_{6}).$$

Combinando estas ecuaciones y premultiplicando por ${}^{0}R_{3}^{T}$, se tiene

$${}^{3}\boldsymbol{R}_{6} = {}^{0}\boldsymbol{R}_{3}^{\mathrm{T}0}\boldsymbol{R}_{\mathrm{d}} , \qquad (50)$$

donde el lado derecho está en función de cantidades conocidas en este punto.

Orientación inversa

- La importancia de la muñeca esférica radica en que, si le extraemos los ángulos de Euler ZYZ al lado derecho de (50) los podemos igualar a $(q_4, q_5, q_6) = (\theta_4, \theta_5, \theta_6)$ y así resolver el problema cinemático inverso de orientación.
- Si se define la matriz de rotación de ángulos de Euler como la composición $\mathbf{R} = \mathbf{R}_{z,\phi}\mathbf{R}_{y,\theta}\mathbf{R}_{z,\psi}$, entonces podemos calcular θ_4 , θ_5 y θ_6 como

$$\begin{aligned} \theta_4 &= \phi \\ \theta_5 &= \theta \\ \theta_6 &= \psi \end{aligned}$$

Cinemática Inversa (en resumen)

No existe una metodología exacta para obtener la cinemática inversa, pero pueden seguirse estos consejos:

- Hacer la asignación de Denavit-Hartenberg.
- **–** Realizar el desacople cinemático para obtener o_c .
- Redibujar el robot sin las últimas 3 articulaciones y terminando en o_c .
- Mover el robot de tal manera que las cantidades variables $\theta_i^* \neq \{0, \pm \pi/2, \pm \pi\}$ y $d_i^* \neq 0$.
- Si la *i*-ésima articulación es de revolución, proyectar el robot sobre el plano $x_{i-1}y_{i-1}$ para encontrar θ_i .
- Si la *i*-ésima articulación es prismática , proyectar el robot sobre un plano que contenga a z_{i-1} para encontrar d_i .

Libros Recomendados

- Marco A. Arteaga, Alejandro Gutiérrez-Giles y Javier Pliego-Jiménez. Local Stability and Ultimate Boundedness in the Control of Robot Manipulators. Springer. 2022. https://doi.org/10.1007/978-3-030-85980-0
- Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani y Giuseppe Oriolo. Robotics: Modelling, Planning and Control. Springer London. 2008. https://doi.org/10.1007/978-1-84628-642-1
- Mark W. Spong, Seth Hutchinson y M. Vidyasagar. Robot Modeling and Control. 2nd Edition. Wiley. 2020
- 4. K. S. Fu, R.C. Gonzalez y C.S.G. Lee. Robotics: Control, Sensing, Vision, and Intelligence. Mcgraw-Hill. 1987.