

Model-Based Design of Digital Hardware Systems

for Digital Communications

by

Tomás Balderas Contreras
M.Sc., INAOE

A thesis submitted in partial fulfillment of the

requirement for the degree of

DOCTOR OF SCIENCE
IN COMPUTER SCIENCE

at

Instituto Nacional de Astrofísica, Óptica y
Electrónica

November 2012
Tonantzintla, Puebla. MEXICO

Supervised by

Dr. René Armando Cumplido Parra

Professor at INAOE

and

Dr. Gustavo Rodríguez Gómez
Professor at INAOE

©INAOE 2012

All rights reserved
The author grants INAOE the right to reproduce and

distribute full or partial copies of this dissertation

Model-Based Design of Digital Hardware Systems
for Digital Communications

By

Tomás Balderas Contreras

Supervisors

Dr. René A. Cumplido Parra and Dr. Gustavo Rodríguez Gómez

Computer Science Department

Instituto Nacional de Astrofísica, Óptica y Electrónica

Tonantzintla, Puebla. MEXICO

2012

Abstract

The design complexity of digital hardware systems has grown at the same pace
as the scale of integration of integrated circuits, and the need for functionality. This
complexity gave rise to different design approaches at different levels of abstraction
through time, being the current approach that proposing the description of the func-
tionality of digital hardware systems using languages and tools similar to the ones
employed to build software systems. Thus, it is possible to use the latest advances in
software engineering to describe the functionality of modern digital circuits. This dis-
sertation describes a design flow consisting of a dialect of UML 2 adapted to describe
different algorithms operating on blocks of bits; and a transformation technology
that generates structural VHDL code from the high-level models. The technology
described in this document exploits the principles of object orientation, model-driven
engineering, and transformation from models to text. The primary aim is to alleviate
complexity during the design of digital hardware systems implementing demanding
operations used by a wide range of computing devices. The generation of descrip-
tions in VHDL from models describing algorithms used by the data processing stages
of modern digital communication systems illustrates the usefulness of the proposed
technology.

Resumen

La complejidad en el diseño de los sistemas de hardware digital ha crecido al
mismo ritmo que la escala de integración de los circuitos integrados y la demanda de
funcionalidad. Esta complejidad motivó el desarrollo de diversos enfoques de diseño
a distintos niveles de abstracción, siendo el más reciente el que propone la descripción
funcional de los sistemas de hardware digital mediante lenguajes y herramientas si-
milares a las empleadas para desarrollar sistemas de software. Por lo tanto, es posible
aplicar los avances más recientes de la ingeniería de software para describir la fun-
cionalidad de los circuitos digitales actuales. La presente disertación describe un flujo
de diseño consistente en un dialecto de UML 2 que permite modelar algoritmos que
operan con bloques de bits y una herramienta de transformación que genera código
estructural en VHDL a partir de dichos modelos de alto nivel. La tecnología expuesta
en este documento explota los principios de orientación a objetos, ingeniería dirigida
por modelos y transformaciones modelo a texto. El objetivo principal es paliar la
complejidad del proceso de diseño de sistemas de hardware digital que implemen-
tan operaciones demandantes. La utilidad de la tecnología propuesta se demuestra
mediante la generación de descripciones en VHDL a partir de modelos de algorit-
mos empleados durante las etapas de procesamiento de información en un sistema
moderno de comunicación digital.

Acknowledgments

I am indebted with my advisors, Dr. René Cumplido and Dr. Gustavo Rodríguez, for
having provided me with guidance, support and encouragement from the beginning
of this project up to its culmination.

I am grateful to the reviewers of this dissertation, Dr. Leopoldo Altamirano,
Dr. Miguel Arias, Dr. Claudia Feregrino, Dr. María del Pilar Gómez, and Dr. Luis
Fernando González, for having read this dissertation, provided valuable feedback, and
evaluated every stage of the project.

My recognition extends to every single member of the community working at
INAOE, who supported me during my graduate studies; without this assistance, I
could not have earned my PhD degree.

My appreciation goes to Marisol Flores, a wonderful person who helped me with
the paperwork required by INAOE.

Finally, I would like to thank CONACyT, the Mexican council for science and
technology, for financing my graduate studies through the scholarship 41722.

Contents

1 Introduction 1

1.1 Design complexity . 2
1.2 Productivity gap . 4
1.3 Levels of abstraction . 5
1.4 The proposal and its purpose . 7
1.5 Contributions . 8
1.6 Outline . 9

2 Works related to UML as an ESL language 11

2.1 Review of ESL . 11
2.2 Languages based on C . 12
2.3 Functional descriptions using UML 15

2.3.1 Modeling systems-on-a-chip using UML 15
2.3.2 Mapping from UML to VHDL 18

2.4 Discussion . 20

3 Proposed framework 23

3.1 The paradigm of model-driven engineering 23
3.2 Model-driven architecture . 25
3.3 Description . 27
3.4 Defining and bounding the application domain 29

3.4.1 Digital communication systems 29

i

CONTENTS ii

4 The domain-specific modeling language 32

4.1 Overview of meta-modeling . 33
4.2 Introduction to the meta-model of UML 2 35

4.2.1 The meta-levels . 35
4.3 Definition of profiles in UML 2 . 37
4.4 Definition of the domain-specific modeling language 39

4.4.1 Adapting activity diagrams to model flows of bit-blocks 40
4.4.2 The organization of the modeling language 44
4.4.3 Modules and their interfaces 46
4.4.4 Operations and their operands 50
4.4.5 Dataflows . 54
4.4.6 Invoking modules and switching between bit-blocks 54

4.5 Application of the profile . 57
4.5.1 Block ciphering . 58
4.5.2 Multiplication in finite fields 65

5 The code generator 77

5.1 Overview of MOFM2T and Acceleo 77
5.2 The simplified grammar of VHDL . 82
5.3 The transformation to VHDL . 83

5.3.1 Relevant templates and queries 84
5.3.1.1 Literals and signals 84
5.3.1.2 Reduction of labels of dataflows 85
5.3.1.3 Recursive generation of expressions 86

5.3.2 Generating the entity declaration of the design 87
5.3.3 Generating the architecture body of the design 89

5.4 Results of simulation . 92
5.5 Discussion . 97

6 Processes, methods and metrics 100

6.1 It is all about quality . 100
6.2 Related work . 102

CONTENTS iii

6.3 Proposal for a software process and metrics 103
6.3.1 Principles of the proposal . 103
6.3.2 Introduction to the Personal Software Process 104

6.4 Evaluation of productivity . 106
6.4.1 Measures of productivity . 106
6.4.2 Proposed methodology to measure productivity 108

6.5 Discussion . 109

7 Conclusions 111

7.1 Concluding remarks . 111
7.2 Future work . 113
7.3 Contributions . 114
7.4 Publications . 114

A Review of the notation of UML 2 123

A.1 Class diagrams . 123
A.1.1 Classes and relationships . 124
A.1.2 Derived unions . 126
A.1.3 Keywords . 127

A.2 Activity diagrams . 129
A.2.1 Activities, nodes and edges . 129
A.2.2 Actions . 131

A.3 Object diagrams . 131

B The profile BitBlockFlow 133

C Modified version of the grammar of VHDL 148

D List of acronyms 153

List of Figures

1.1 Exponential increase in the number of transistors per chip against the
slower increase in productivity along time 4

2.1 A design framework based on UML to design SoC platforms 17
2.2 MODCO’s transformation from UML to VHDL 20

3.1 A development framework based on MDA: transformation of PIMs into
PSMs and code generation . 25

3.2 Proposed framework based on MDA 28
3.3 Block diagram of a typical digital communications system 30

4.1 Domain model illustrating the organization of an airline company . . 33
4.2 A model including instances of sub-classes of Employee and their links

to an instance of Airplane . 34
4.3 An example of the notation used in UML 2 to denote that a number

of classes are instances of a specific meta-class 35
4.4 The meta-levels in the framework that defines UML 2 36
4.5 Definition of a profile that extends a M2 meta-model and its application

to extend a M1 model . 38
4.6 Extracts of the meta-model of UML 2 defining some modeling elements

in an activity diagram . 41
4.7 The packages in the meta-model of UML 2 extended by the profile . . 45
4.8 The internal structure of the profile BitBlockFlow 46
4.9 The stereotypes in the package ModuleInterface and the meta-classes

extended by them . 47

iv

LIST OF FIGURES v

4.10 A module, its parameters and some operations 47
4.11 The stereotypes in the package Operations and the meta-classes they

extend . 50
4.12 Different kinds of operations and their input and output operands . . 51
4.13 An extended state machine diagram in UML 2 associated to a switch 55
4.14 A module containing invocations to other modules 57
4.15 The components of the block cipher KASUMI 59
4.16 The modules comprising the model of KASUMI in UML 2 and the

profile BitBlockFlow . 60
4.17 The components of the simplified block cipher KASUMI 65
4.18 The modules comprising the model of the simplified KASUMI in UML

2 and the profile BitBlockFlow . 67
4.19 Modules performing multiplication of integers of different lengths ac-

cording to the Karatsuma-Ofman algorithm 71

5.1 Syntax diagrams for the declaration of a class in the Java language . 79
5.2 An operation whose operands are the output of an operation and an

integer literal. 85
5.3 Reduction of labels of dataflows. 86
5.4 Results of the simulation of the description in VHDL implementing

KASUMI . 93
5.5 Results of the simulation of the description in VHDL implementing the

simplified KASUMI . 94
5.6 Results of the simulation of the description in VHDL implementing

KOA and LFSR . 98

6.1 The layers of a software engineering task 101
6.2 Process flow for Personal Software Process 105

A.1 A class diagram in UML 2 and its components 125
A.2 A class diagram illustrating the concept of derived union 127
A.3 The definition of an interface in UML 2 requires modifying a class with

a keyword . 128

LIST OF FIGURES vi

A.4 An activity diagram in UML 2 and its components 129
A.5 An object diagram in UML 2 and its components 132

List of Tables

2.1 Languages for functional description of digital hardware systems . . . 13
2.2 Libraries of hardware components used to build systems 13
2.3 Technologies to map functional descriptions to hardware platforms . . 14

vii

Chapter 1

Introduction

A computer-based system is a combination of hardware and software that implements
a set of algorithms to automate the solution to a number of problems. Computer
design technology transforms the designer’s ideas and objectives into a number of
representations describing software modules and hardware components, which must
be tested and manufactured [14]. The design process is not straightforward; the
developers always deal with the problem of alleviating the complexity of their designs
to develop high-quality products within rigid time constraints. This situation arose as
a direct consequence of the steady evolution of technology and the constant demand
for new functionality.

This document focuses on the challenging process of designing digital hardware
systems and proposes a new method to improve productivity during the phase of
functional description. These functional descriptions can be tested and implemented
in semiconductor platforms like Application-Specific Integrated Circuits (ASIC) or
Field Programmable Gate Arrays (FPGA). In this dissertation, a digital hardware
system is a set of digital circuits that accelerate the execution of algorithms solving
problems belonging to an application domain.

1

CHAPTER 1. INTRODUCTION 2

1.1 Design complexity

Computer-based systems are not becoming easier to design as time passes; on the
contrary, the need to meet new usage demands and the advancement of development
and manufacturing technologies encourage the development of devices incorporating
more and more functionality. This is a list of some key functional aspects that have
been addressed by hardware/software engineers during the last years:

Communication. A large number of computing devices shall be connected to the
Internet nowadays. The options to implement this connection include a broad-
band wired Ethernet link, a local wireless WiFi link, a global wireless WiMax
link, or a link to a cellular telephone network. It is common for a single device
to support more than one of the previous standards to increase its flexibility, at
the expense of being more challenging to design efficiently.

Security. Several computer systems shall implement mechanisms to cipher informa-
tion, authenticate users, guarantee the integrity and confidentiality of data, and
protect against a number of attacks. These systems usually contain hardware
accelerators to increase the performance of the encryption algorithms.

Power management. Modern computers shall execute operating systems able to
switch the operation mode of an idle hardware component to an operation mode
that consumes low power, according to the current workload. The hardware
components shall implement a set of power states, each corresponding to a
specific requirement of power consumption.

Multimedia processing. A wide range of computing devices shall execute software
to visualize video streams and files, produce high definition sound, process 2D
images, and render 3D images. These devices include different kinds of mobile
devices; every video game console; and some desktop computers, workstations,
and servers. In many cases, there exist hardware accelerators that increase the
performance of the most demanding algorithms.

Fault tolerance. Contemporary high performance servers and supercomputers used
in mission critical applications shall implement algorithms to detect errors dur-

CHAPTER 1. INTRODUCTION 3

ing their operation. If the errors cannot be corrected, then the hardware and
software must prevent them from spreading and compromising the whole sys-
tem. These systems also implement algorithms to provide information redun-
dancy and protect sensitive information as much as possible.

When designing the digital hardware of a computer-based system, the developers
face the challenge of implementing some of the previous functional requirements while
meeting a number of design constraints. The following is a list of the most common
restrictions in hardware engineering:

Higher performance. Quite often it is not enough to solve a problem; its solution
shall be fast. The functionality of a system must be implemented using algo-
rithms with a high degree of performance. Performance is measured in different
ways depending on the nature of the problem.

Power consumption efficiency. Portable devices must meet their operational re-
quirements while providing long battery life. In this case, the systems must be
designed with the goal of consuming power as efficiently as possible.

Low area. When there are not enough hardware resources available, the developer
must conceive small designs that use iteratively a hardware component until
the main operation is complete.

It is not possible to optimize all of the previous parameters at the same time because
some of them contradict to each other; therefore, the designer must make trade-offs.
To illustrate this situation consider two implementations of a block cipher algorithm
for 3G cellular networks proposed by Balderas [8]. The first is an area-efficient im-
plementation encrypting information at a rate of 317.8 Mbps (mega-bits per second);
the second is a high-performance implementation requiring 6.3 times more hardware
resources with a performance of 5.32 Gbps (giga-bits per second).

It is not possible to stop the evolution of technology over time or prevent computer-
based systems from implementing more and more functionality and becoming more
complex. Hardware and software engineers will always face the challenge of designing
products that implement lots of functionality and meet contradicting constraints in
shorter periods of time.

CHAPTER 1. INTRODUCTION 4

1.2 Productivity gap

Current design complexity imposes serious limits to the ability of designers to de-
velop high quality products that fully meet their requirements in a short time, that
is, to their productivity. This situation occurs in spite of having millions of transistors
available for designing digital hardware systems1. Figure 1.1 shows the exponential
increase in the number of transistors per silicon chip along the last 30 years (con-
tinuous line) and the increase in design productivity along the same period (dashed
lines). The considerable separation between the lines is called the productivity gap,
which is defined as the challenge that arises when the number of available transistors
grows faster than the ability to design meaningfully with them [20, 14].

Figure 1.1: Exponential increase in the number of transistors per chip against the
slower increase in productivity along time (from [20]).

Developing mechanisms to reduce the productivity gap decreases the chance of in-
troducing errors in the development process of a system. Marketing computer prod-
ucts that were not correctly designed and extensively validated causes economical
losses for the manufacturer, which are induced by recalls of buggy products, correc-

1The prediction commonly known as “Moore’s Law”, from 1965, states that the number of tran-
sistors on a silicon chip doubles every two years, which gives an indication of the current degree of
miniaturization and scale integration in a single semiconductor die.

CHAPTER 1. INTRODUCTION 5

tion of errors in the design, and production and deployment of healthy units. This
occurred with the Intel Pentium processor, whose floating-point unit’s FDIV instruc-
tion produced unexpected results under certain conditions [53]. Another consequence
is the total loss of critical artifacts that rely on the functioning of a faulty computer-
based system. The self-destruction of the European Space Agency’s Arianne 5 rocket,
flight 501, in 1996 is an example of this event [34].

1.3 Levels of abstraction

Booch et al. stated that “abstraction is one of the fundamental ways that we as
humans cope with complexity” [12]. An effective way to alleviate design complexity
and reduce the productivity gap is to raise the level of abstraction at which developers
carry out their activities. The goal is to design correct systems fast by making easy for
designers to check for, identify, and fix errors. The raise in the level of abstraction has
been performed many times in the past for both software and hardware development.

The following is a brief description of the different levels of abstractions that have
been conceived to aid in the design of digital hardware systems throughout the last
decades:

Transistor-level design. The first solid-state computers were built using discrete
transistors and other electronic components. These machines were relatively
complex systems with little memory that consumed several kilowatts of power.
Their hardware became more complex as new architectural techniques to in-
crease performance were conceived, which made the design with discrete com-
ponents impractical.

Schematic design. When Medium-Scale Integration (MSI) and Large-Scale Inte-
gration (LSI) integrated circuits became ubiquitous, the discrete components
that made up a whole computer module were gathered together and encapsu-
lated into a single silicon die. This allowed a high degree of miniaturization and
the description of hardware components as a set of schematics specifying the
interconnection of a number of integrated circuits.

CHAPTER 1. INTRODUCTION 6

Register-Transfer Level (RTL) design. The behavior of a digital circuit is de-
fined in terms of a flow of signals (data transference) between hardware registers
and the logical operations performed on those signals. This level of abstraction
employs hardware description languages (HDLs), like VHDL and Verilog, to
create a more manageable description of a system. This representation can
be simulated, validated, and transformed into a description of the electronic
components that make up the system and the interconnections between them
(net-list), which can be implemented in a Very Large Scale Integration (VLSI)
silicon platform.

Electronic System Level (ESL) design. The functionality of a digital hardware
system is described by means of high level languages built from existing pro-
gramming languages (like C and Java) and/or graphical tools. The main goals
are achieving a high degree of comprehension and reutilization of the functional
descriptions, and automating the implementation process [35].

In spite of their advantages to describe the functionality of digital hardware sys-
tems at higher levels of abstraction, some ESL technologies have serious drawbacks
that prevent them from being used to design some systems, like low-power embed-
ded hardware, efficiently. There is a strong need for high-level design languages and
tools customized for different application domains that help alleviate design complex-
ity. ESL is a recent research trend that has been neither fully explored nor fully
standardized, and there is still room for significant innovations [17].

At the ESL level, there are lots of similarities between the process of functional
description of digital hardware systems and the process of software development2.
Thus, we can think of taking advantage of the recent advances in software engineering
to raise the level of abstraction even further, alleviate design complexity, increase reuse
of existing designs, and automate the production of representations at lower levels of
abstraction.

2The divergence point is at the moment of implementing the functional description. For software,
the description is synthesized as machine code that is executed by a microprocessor; for hardware,
the description is synthesized as a set of interconnected logic elements that are placed and routed
in a silicon die.

CHAPTER 1. INTRODUCTION 7

1.4 The proposal and its purpose

Model-Driven Engineering (MDE) is a recent paradigm intended to raise the level of
abstraction in the design of software systems even further [31]. The first goal of this
approach is to conceive solutions (models) in terms of concepts in the problem domain,
those that the designers and/or customers know well, instead of concepts in the
solution domain, those related to specific hardware/software technologies. A second
goal is to alleviate the complexity of current hardware and software platforms by
automatically transforming the models into an appropriate implementation using such
platforms’ technologies. The ultimate goal is to improve both short-term productivity
(increased functionality) and long-term productivity (greater longevity) during the
development process [5].

This research shows that it is possible to apply the principles of MDE to the design
of digital hardware systems. The questions to answer by this project are:

1. What modeling languages better describe the functionality of digital hardware
systems using a model-based paradigm?

2. What are the algorithms needed to transform the functional descriptions ex-
pressed as high-level models to representations at a level of abstraction closer
to the implementation platform?

3. What is the best way to implement the transformation algorithms designed
when answering the previous research question?

4. How does the proposed design flow alleviate design complexity?

The general objective of the research documented in this dissertation is to take
advantage of the virtues of the MDE paradigm to conceive a model-driven design
flow (framework) that allows digital hardware designers to perform their duties in a
more productive manner. The term design flow refers to an explicit combination of
Electronic Design Automation (EDA) tools to accomplish the design of an integrated
circuit [33]. The main principles of the proposed framework are: the functional
description of systems at a higher level of abstraction, the reuse of the designs, and

CHAPTER 1. INTRODUCTION 8

the automation of the implementation process. These systems intend to accelerate
algorithms used by digital communication devices.

The specific objectives of this project provide more detail on the steps followed to
accomplish the previous general objective, and specify the components of the frame-
work. These objectives are as follows:

1. The definition of custom modeling languages that provide the user with primi-
tive constructs representing concepts and abstractions from the domain of digi-
tal communications. These Domain-Specific Modeling Languages (DSMLs) are
constructed by extending an existing modeling language with new modeling
elements representing abstractions in the application domain. The intention
of these DSMLs is to allow the designer to conceive solutions to a number of
problems within the problem domain by using such domain’s jargon. The base
modeling language of choice for this project is the Unified Modeling Language
version 2 (UML 2) due to its extensibility and widespread use [47, 48].

2. The design of algorithms that synthesize an RTL description of a digital hard-
ware system from the higher level models expressed in DSML. The resulting
code in VHDL can be simulated, tested, and implemented in a FPGA platform
by using the commercial design flows available in the EDA market.

3. The proposal of a methodology that evaluates the impact of the design flow on
the productivity of the designers, accompanied by a suggestion of what existing
software development process is the most appropriate to be extended to use
the design flow. The execution of this methodology to collect actual results is
beyond the scope of this dissertation, mainly because it requires a large team of
designers and the application of various tests throughout long periods of time
to obtain accurate conclusions.

1.5 Contributions

Many worldwide operations currently rely on the correct functioning of computer-
based systems. It is extremely important to conceive technologies that allow devel-

CHAPTER 1. INTRODUCTION 9

opers to design efficient products in a timely manner and minimize the number of
errors in such devices. The project documented in this dissertation will contribute to
advance the state of the art of technology and improve people’s quality of life. The
expected contributions to the body of knowledge of EDA are the following:

1. A model-driven design flow to develop high-level functional descriptions of a
digital hardware system by means of DSMLs and the automatic transformation
of these descriptions to a lower level representation.

2. One modeling language, in the form of a domain-specific dialect of UML 2, to
describe the algorithms that perform encryption or compression operations on
bit-blocks.

3. A tool that implements the algorithms that transform domain-specific models
into an implementation in VHDL. The description of the transformation algo-
rithms is part of the design flow’s infrastructure and one of the main deliverables
of this project, along with the specification of the modeling language.

1.6 Outline

The following chapters of the dissertation describe the main components of the design
flow and the key principles that ruled its conception. The remainder of the document
is organized as follows:

• Chapter 2 provides further details on ESL and some technologies classified at
this level of abstraction. It also reviews the existing projects that use UML to
describe the functionality of digital hardware systems. Finally, it analyzes the
strengths and weaknesses of each proposal.

• Chapter 3 provides an overview of the proposed design flow and the domain to
which it is applied (digital communications). It describes the basic principles
behind the design flow and its components: the modeling language used to build
the high-level functional descriptions and the algorithms that generate VHDL
code.

CHAPTER 1. INTRODUCTION 10

• Chapter 4 provides a thorough description of the construction of the DSML used
to build high-level models. It also documents the features of the language and its
application. This chapter introduces the reader to the concept of meta-modeling
and the procedure used to derive custom dialects from UML 2 (profiling).

• Chapter 5 provides a description of the algorithms that transform high-level
models into VHDL code. This chapter describes the specification that rules the
process of transforming models into text and the technologies used to implement
such specification.

• Chapter 6 discusses an appropriate method to evaluate the impact of the design
flow on productivity. This chapter takes into account the body of knowledge
on software engineering processes and metrics.

• Chapter 7 summarizes the results and contributions of this project and describes
future work.

The following appendixes provide additional and complementary information to
achieve a better comprehension of the work reported in this thesis:

• Appendix A summarizes the notation of UML 2. The reader is encouraged to
examine the information in this appendix to become familiar with the language
used throughout this dissertation.

• Appendix B provides a thorough documentation of the domain-specific modeling
language proposed in this dissertation.

• Appendix C describes the grammar of the language generated by the transfor-
mation algorithms, which is a sub-set of VHDL.

Chapter 2

Works related to UML as an ESL

language

The design flow proposed in this dissertation is an ESL technology providing a level of
abstraction that allows the developer concentrate on the features of the algorithms to
design, instead of the implementation platform. Thus, the proposed framework allows
a better comprehension of the solution under design, which increases the designer’s
chances of achieving a correct product. This chapter describes the characteristics of
ESL, as well as the technologies encompassed by this level related to the proposed
framework.

2.1 Review of ESL

Bailey et al. define ESL as: “the utilization of appropriate abstractions in order to
increase comprehension about a system and to enhance the probability of a successful
implementation of functionality in a cost-effective manner, while meeting necessary
constraints” [35]. The primary concern is to leverage the use of functional descriptions
at higher levels of abstraction to mask not only the implementation details, but also
the programming mechanisms. The second concern is reuse, which refers to both
architectures and design environments [59].

Even though ESL is a recent approach, there already exist several technologies,

11

CHAPTER 2. WORKS RELATED TO UML AS AN ESL LANGUAGE 12

both commercial and academic, at this level of abstraction. According to Densmore et
al., these technologies and tools can be classified into three different categories. The
first category, referred to as Bin F, includes languages that allow designers to express
what the system should do. The second category, referred to as Bin P, includes
libraries of modules and hardware components that can be used to implement the
functionality. The third category, referred to as Bin M, includes software tools to map
the functionality described using the languages to platforms built from the elements
in the libraries [17]. Tables 2.1, 2.2 and 2.3 illustrate some of these academic and
industrial technologies.

In this dissertation, we are only interested in evaluating the virtues and weak-
nesses of the technologies employed to describe the functionality of digital hardware
systems, those classified as Bin F. The proposed synthesis technology is not directly
comparable to the existing technologies in Bin M, listed in Table 2.3, because the
source representations are different. Finally, since we are not proposing a new hard-
ware platform, we do not discuss the existing component libraries listed in Table 2.2.
The next sections describe some technologies for functional description at higher lev-
els of abstractions; they provide a discussion of the strengths and disadvantages of
each technology.

2.2 Languages based on C

Edwards [19] describes the two main reasons that motivate the development of vari-
ants of the C language to describe the functionality of digital hardware systems:

Familiarity. Were it possible to synthesize hardware from C code, there would be
no need to invest time and money in learning a new language.

Hardware/Software co-design. Sometimes, it is convenient to partition the im-
plementation of a solution to a problem into a hardware unit that accelerates
demanding operations and software that implements the rest of the function-
ality. Using a single language to describe both hardware and software would
simplify the designer’s work.

CHAPTER 2. WORKS RELATED TO UML AS AN ESL LANGUAGE 13

Ta
bl
e
2.
1:

La
ng

ua
ge
s
fo
r
fu
nc
ti
on

al
de
sc
ri
pt
io
n
of

di
gi
ta
lh

ar
dw

ar
e
sy
st
em

s
(f
ro
m

[1
7]
).

B
in

F

P
ro
vi
de
r

T
oo

l
D
es
cr
ip
ti
on

M
at
hW

or
ks

M
at
la
b

H
ig
h-
le
ve
l
te
ch
ni
ca
l
co
m
pu

ti
ng

la
ng

ua
ge

an
d
in
te
ra
ct
iv
e
en
vi
-

ro
nm

en
t
fo
r
al
go
ri
th
m

de
ve
lo
pm

en
t,

da
ta

vi
su
al
iz
at
io
n,

an
al
y-

si
s,

an
d
nu

m
er
ic

co
m
pu

ta
ti
on

M
ap

le
so
ft

M
ap

le
M
at
he

m
at
ic
al

pr
ob

le
m

de
ve
lo
pm

en
t
an

d
so
lv
in
g

W
ol
fr
am

R
es
ea
rc
h

M
at
he
m
at
ic
a

G
ra
ph

ic
al

m
at
he
m
at
ic
al

de
ve
lo
pm

en
t
an

d
pr
ob

le
m

so
lv
in
g
w
it
h

su
pp

or
t
fo
r
Ja
va
,C

,a
nd

.N
E
T

N
at
io
na

lI
ns
tr
um

en
ts

La
bV

ie
w

T
es
t,

m
ea
su
re
m
en
t,
an

d
co
nt
ro
la

pp
lic

at
io
n
de

ve
lo
pm

en
t

C
el
ox
ic
a

H
an

de
l-C

C
om

pi
lin

g
pr
og

ra
m
s
in
to

ha
rd
w
ar
e
im

ag
es

of
F
P
G
A
s
or

A
SI
C
s

U
ni
ve
rs
it
y
of

C
al
ifo

rn
ia
,

Ir
vi
ne

Sp
ec
C

A
N
SI
-C

w
it
h
ex
pl
ic
it

su
pp

or
t
fo
r
be

ha
vi
or
al

an
d
st
ru
ct
ur
al

hi
-

er
ar
ch
y,

co
nc

ur
re
nc

y,
st
at
e
tr
an

si
ti
on

s,
ti
m
in
g,

an
d
ex
ce
pt
io
n

ha
nd

lin
g

Ta
bl
e
2.
2:

Li
br
ar
ie
s
of

ha
rd
w
ar
e
co
m
po

ne
nt
s
us
ed

to
bu

ild
sy
st
em

s
(f
ro
m

[1
7]
).

B
in

P

P
ro
vi
de
r

T
oo

l
D
es
cr
ip
ti
on

P
ro
si
lo
g

N
ep
sy
s

St
an

da
rd
-b
as
ed

IP
lib

ra
ri
es

an
d
su
pp

or
t
to
ol
s
(S
ys
te
m
C
)

A
lt
er
a

Q
ua

ru
s
II

F
P
G
A
s,

C
P
LD

s,
an

d
st
ru
ct
ur
ed

A
SI
C
s

X
ili
nx

X
tr
em

eD
SP

,I
SE

,E
D
K

F
P
G
A
s,

C
P
LD

s,
an

d
st
ru
ct
ur
ed

A
SI
C
s

St
re
tc
h

So
ft
w
ar
e
C
on

fig
ur
ab

le
P
ro
-

ce
ss
or

C
om

pi
le
r

C
om

pi
le

a
su
bs
et

of
C

in
to

ha
rd
w
ar
e
fo
r
in
st
ru
ct
io
n
ex
te
ns
io
ns

So
ni
cs

So
ni
cs

St
ud

io
O
n-
ch
ip

in
te
rc
on

ne
ct
io
n
in
fr
as
tr
uc

tu
re

CHAPTER 2. WORKS RELATED TO UML AS AN ESL LANGUAGE 14

Ta
bl
e
2.
3:

Te
ch
no

lo
gi
es

to
m
ap

fu
nc
ti
on

al
de
sc
ri
pt
io
ns

to
ha

rd
w
ar
e
pl
at
fo
rm

s
(f
ro
m

[1
7]
).

B
in

M

P
ro
vi
de
r

T
oo

l
D
es
cr
ip
ti
on

Y
E
xp

lo
ra
ti
on

s
eX

C
it
e

T
ak
e
vi
rt
ua

lly
un

re
st
ri
ct
ed

IS
O

or
A
N
SI
-C

w
it
h
ch
an

ne
l
I/
O

be
ha

vi
or

an
d
ge
ne

ra
te

V
er
ilo

g
or

V
H
D
L
R
T
L
ou

tp
ut

lo
gi
c
sy
n-

th
es
is

Fo
rt
e
D
es
ig
n
Sy

st
em

s
C
yn

th
es
iz
er

B
eh

av
io
ra
ls

yn
th
es
is

Fu
tu
re

D
es
ig
n
A
ut
om

a-

ti
on

Sy
st
em

C
en
te
r
co
-d
ev
el
op

-

m
en
t
Su

it
e

A
SC

I-
C

to
R
T
L
sy
nt
he

si
s
to
ol
se
t

C
at
al
yt
ic

D
el
ta
F
X
,R

M
S

Sy
nt
he

si
s
of

D
SP

al
go

ri
th
m
s
on

pr
oc
es
so
r
or

A
SI
C
s

A
C
E

C
oS

y
A
ut
om

at
ic

ge
ne

ra
ti
on

of
co
m
pi
le
rs

fo
r
D
SP

s

CHAPTER 2. WORKS RELATED TO UML AS AN ESL LANGUAGE 15

There are several dialects of C that contain constructs and primitives that represent
digital hardware structures and components. For instance, the Handel-C language
[25] provides language constructs to describe parallel blocks, memory entities, signals,
and variables with arbitrary bit lengths.

Since digital hardware systems are inherently parallel, synchronous electronic cir-
cuits, a hardware synthesizer from C should figure out how to turn a conceptually
sequential representation into an efficient parallel description. The synthesizer should
also determine, by itself, the time it would take for every operation to execute, and
synchronize it with the proper clock signal. In addition, the synthesizer would need
to determine the best bit-length for the data elements involved to produce an area-
efficient design. Since performing these three tasks automatically is a challenging
task, current tools leave the parallelization of the application to the designer.

2.3 Functional descriptions using UML

The use of notations originally intended to model software systems as languages to
describe the functionality of digital hardware systems is an incipient area of research.
This research includes the development of software tools to implement the descriptions
in a hardware device. The following sub-sections describe the existing works that
apply an object-oriented modeling language (UML) to the design of digital hardware
systems.

2.3.1 Modeling systems-on-a-chip using UML

A system-on-a-chip (SoC) is a computer-based system that integrates processing el-
ements, communication links, memory hierarchies and other electronic components,
either digital or analog, within a single silicon die. The complexity of these devices
has made the designers turn to UML to ease their design tasks.

The Object Management Group (OMG) is a consortium of software vendors fo-
cused on driving the standardization of technologies based on object-orientation like
Common Object Request Broker Architecture (CORBA) and UML. The consortium
also maintains the specification of a dialect of UML (profile) that adds constructs

CHAPTER 2. WORKS RELATED TO UML AS AN ESL LANGUAGE 16

representing the fundamental components of every SoC (modules and channels) to
UML, describes transfers of information between modules, and includes support for
both synchronous and asynchronous semantics [45]. This profile extends the modeling
elements in UML, adds constraints to them, and introduces specialized diagrams to
describe the structure of a SoC in a hierarchical manner. The profile’s specification
does not impose an implementation mechanism to derive a lower level representation
and gives the designer freedom to implement the models.

Benkermi et al. [9] describe a general UML model of a SoC platform that includes
reconfigurable hardware components. The model has three layers that describe every
aspect of the system: the hardware architecture of the SoC; the so-called middleware
made up of the operating system, the communication protocols, and the tasks to be
executed by either the microprocessor or the specialized hardware; and the high-level
applications that are to be mapped to the tasks in the middleware. The purpose of
this project is to support the exploration of the design space for reconfigurable SoCs
and enable validation of different design choices. There is no mention of any synthesis
process going from the models to an implementation in hardware or software.

Mueller et al. [40] and Riccobene et al. [57] describe a profile that adds constructs
to UML to express the structural and behavioral features of a design in SystemC
through diagrams. The authors also propose a design flow to model both the hardware
platform of a SoC and the embedded software by means of UML, see Figure 2.1(a).
According to the authors, UML improves the development process in three ways:

1. UML can be adapted to describe the overall functionality of every SoC.

2. The profile for SystemC describes a digital hardware system at a level of ab-
straction that is higher than that of the RTL representation of the same digital
hardware system.

3. The software branch in the general flow may use UML profiles tailored for
programming languages like C/C++ and Java.

The authors claim that modeling at the level of abstraction of UML has the follow-
ing advantages over writing SystemC code: visualization, design reuse, integration,
documentation, analysis of the model, and automatic generation of SystemC code.

CHAPTER 2. WORKS RELATED TO UML AS AN ESL LANGUAGE 17

The authors’ profile provides the user with the ability to “visualize” SystemC and
design by building diagrams instead of writing code. Figure 2.1(b) illustrates the
most significant modeling elements in the profile. Some of these elements represent
the structural aspects of SystemC and the rest model the behavioral aspects of the
language.

(a) Design flow to develop hardware and software (b) The components of the profile for Sys-
temC

Figure 2.1: A design framework based on UML to design SoC platforms (from [57]).

Mellor et al. [37] describe a more advanced infrastructure to model SoCs using
UML. The authors identified the following problems that occur during the process of
designing a SoC:

Partitioning. Hardware and software engineers gather together at the beginning of
the project to specify the requirements of the product. They need prototypes
of the system’s hardware and software as soon as possible to determine whether
both teams have the same understanding of the requirements.

Interfacing. The only link between separate teams with different skills working in
parallel is the specification of the interface between hardware and software,

CHAPTER 2. WORKS RELATED TO UML AS AN ESL LANGUAGE 18

usually written in natural language. A common failure occurs when the teams
neglect to document changes to the interface in the specification.

Integration. Correcting bugs originated from lack of communication is expensive
and might represent a loss of market share. In this case, the engineers have to
spend extra time correcting errors.

The authors suggest the following solutions to the previous problems:

Creation of a single model for the application. It is necessary to express the
solution using a formal language and in an implementation-independent manner.
To increase visibility and communication, this description should be at a high
level of abstraction.

Building an executable model of the application. The execution of models en-
ables early feedback on desired functionality.

Do not model the structure of the implementation. A set of mapping rules
shall generate the implementation from the executable model and establish the
communication mechanisms between its hardware and software components.

The authors define the process of capturing the executable model of an application
as building the model using a set of data, states and functions. Then, the designer
executes the model independently of its implementation and exercises it with a set of
test benches to validate its functionality. During implementation, the designer marks
each component with a tag indicating whether the component is synthesized as a
software module or a hardware module; thus, it is possible to experiment with different
ways of partitioning the implementation into hardware and software by assigning
different sets of values to the tags.

2.3.2 Mapping from UML to VHDL

Björklund [10] describes a language called Statechart Description Language (SMDL)
that can be used as an interface between high-level UML models and formal verifica-
tion tools, simulators and synthesizers that generate the code of the implementation.

CHAPTER 2. WORKS RELATED TO UML AS AN ESL LANGUAGE 19

SMDL has formal semantics and incorporates high-level concepts like states, queues
and events. A set of structural, operational rules formally defines the semantics of
the statements written in this language.

Björklund et al. [11] use SMDL as an intermediate representation to transform
UML statecharts into VHDL code. The UML edition tools use a standard repre-
sentation based on XML, known as XML Metadata Interchange (XMI), to store
models. The models in XMI are translated into preliminary SMDL code containing
all of the elements in the model, including active states, transitions between states,
event emission and orthogonal states. This code is first reduced by removing trivial
states and applying scheduling policies. The reduced code is then transformed into
software graphs (S-Graphs)1 on which some optimizations occur like removal of iso-
morphic nodes2. Finally, the ultimate code in VHDL is generated from the optimized
S-graphs.

Coyle et al. [15] describe a design flow consisting of a series of transformations
going all the way from requirement specifications to hardware/software implementa-
tion. In the first phase of the design flow, two sets of UML models are generated from
both functional and non-functional requirements. The functional requirements are
transformed into UML structural and behavioral diagrams describing the basic func-
tionality of the system to implement. The non-functional requirements are mapped
into annotations that extend the functional UML models to indicate performance
and timing restrictions. During the second phase, a set of functional UML models
are implemented as software components and the rest are synthesized as hardware de-
scription language modules by means of a tool called MODCO. Figure 2.2 illustrates
the translation process from UML to VHDL performed by MODCO. The UML mod-
els are converted to XMI and then processed by XML parsers that extract information
that is mapped to VHDL by means of templates.

1A S-Graph [11] is a directed acyclic graph representing decision trees with assignment statements.
2Two nodes are isomorphic if they have the same level and their children are isomorphic.

CHAPTER 2. WORKS RELATED TO UML AS AN ESL LANGUAGE 20

Figure 2.2: MODCO’s transformation from UML to VHDL (from [15]).

2.4 Discussion

In spite of their advantages, the languages to describe the functionality of digital
hardware systems based on C have the following drawbacks:

• The language constructs added to these subsets of C describe digital hardware
components, not problem domain abstractions. Since these languages are in-
dependent of the problem domain, the designer must pay careful attention to
every detail when representing, describing and implementing every abstraction
in the problem domain.

• The synthesizers that transform functional descriptions into netlists3 for the
target silicon platforms generate hardware architectures consisting of too many
resources. This situation prevents these languages from consideration by some
designers of embedded systems.

Now, let us discuss the proposals using UML as the base of the corresponding
design flow. The work by Benkermi et al. [9] reports a set of models to describe the

3A netlist is a description listing the electronic components that make up the system and the
interconnections between them.

CHAPTER 2. WORKS RELATED TO UML AS AN ESL LANGUAGE 21

hardware and software components of a reconfigurable SoC. A serious limitation of
this work is the lack of a transformation from the models into lower level descriptions
of the hardware and software components. The OMG’s profile for SoC [45] does not
describe the mechanisms to implement the models built with it either. However, it is
advantageous a standard modeling language to describe SoCs exists.

Mueller et al. [40] and Riccobene et al. [57] are strong advocates of using ex-
tensions to UML 2, known as profiles, to model any system at any level of detail.
They mention the suitability of the new features in UML 2 to design SoCs. The
authors also make the following assertion: “the use of profiles allows moving from a
description of a system in a given language to the description of the same system in
another language, at the same level of abstraction or lower level of abstraction” [57].
The authors’ profile for SystemC facilitates the development of visual descriptions
in the SystemC language and the automatic generation of code. However, since the
level of abstraction at which the developer conceives the solution is still that of the
SystemC language, and not that of the problem domain, there is a risk of low produc-
tivity due to the investment of time in describing implementation details. Therefore,
this profile is not well-suited to high-level functional description of a SoC, but to the
implementation.

Each of the works reported by Coyle et al. [15], Mellor et al. [37] and Riccobene
et al. [57] proposes a design flow based on UML aimed at designing and implement-
ing both the hardware and software components of a SoC. These design flows have
the following advantages: managing a single source for the whole project, modeling
every component of the system using a consistent methodology and a single language,
improving the communication between the software and hardware teams, and testing
the whole system within the same development environment. The conception of a
design flow like this, for both the hardware and software components, is an ambitious
project that is beyond the scope of this project. Thus, we focus on the proposals that
synthesize lower-level descriptions of the digital hardware components.

Schattkowsky et al. [58] provide valuable recommendations related to the appli-
cation of UML for digital hardware design in general and SoC design in particular:

• “UML is, by definition, a general-purpose modeling language that cannot be

CHAPTER 2. WORKS RELATED TO UML AS AN ESL LANGUAGE 22

instantly applied to hardware design. It is necessary to tailor UML in a way
that the domain-specific requirements can be met”.

• “The real world things that need to be represented have to be identified and
consistently put into the right context as UML elements”.

• “The relation between the concepts used in UML and the real circuits has to be
clarified. The application of different diagrams in the design process needs to
be clarified”.

This project takes these recommendations seriously and makes them the foundations
of the proposed solution.

Chapter 3

Proposed framework

This chapter provides an overall description of the proposed framework to design digi-
tal hardware systems. This chapter presents the general principles of the model-driven
development approach to design software systems and then describes the components
of the proposed design framework. This design flow incorporates the general ideas
behind MDE and the recommendations made by Schattkowsky [58].

3.1 The paradigm of model-driven engineering

MDE is a recent paradigm intended to raise the level of abstraction in the design
of software systems even further. The main advantage of this approach is that it
encourages the development of solutions (models) in terms of concepts in the problem
domain, known well by designers or customers, instead of concepts in the solution
domain related to hardware and software technologies. The overall goal is to alleviate
the complexity of current hardware/software platforms by automatically translating
models into an appropriate implementation that employs the technologies of one of
these platforms.

A complete characterization of MDE considers the following features identified by
Kent [31]:

Domain-specific modeling. The designers use DSMLs that incorporate abstrac-
tions, requirements and constraints from the corresponding application domains

23

CHAPTER 3. PROPOSED FRAMEWORK 24

to describe models. The syntax and semantics of every DSML must be defined
in a formal fashion.

Modeling dimensions. In general, abstraction level is only one of multiple criteria
that characterize a model. Think of these criteria as orthogonal dimensions that
define a modeling space, where every point corresponds to a perspective of the
model.

Mappings or transformations. Their goals are to produce a target implementa-
tion consistent with the information contained in the source model and keep
these two entities synchronized whenever the original model changes. A design
flow fully based on MDE automates the mapping process and avoids manual
development of the target implementation.

Processes. For every project, the designers shall define a set of processes to define
the order in the creation and coordination of models, establish the division of
work among the teams, and define guidelines to produce models.

Tools. They allow the designer to build and maintain models, check the correctness
of models, perform transformations between models, test the different models,
and carry out the management of the whole MDE project.

Meta-modeling. No single modeling language is suitable for every application do-
main, thus the need for defining DSMLs formally. One way to do this is to derive
customized languages from a single modeling language, with each version tai-
lored to an application domain. The manipulation or extension of the definition
(meta-model) of the original modeling language is necessary to create new spe-
cialized DSMLs. More ambitious trends include the automatic generation of
customized tools based on a general tool by using meta-tools.

Model-driven architecture (MDA) [21, 39] is an initiative proposed by the Object
Management Group (OMG) that defines a MDE-based framework using the consor-
tium’s standards, most notably UML 2.

CHAPTER 3. PROPOSED FRAMEWORK 25

3.2 Model-driven architecture

MDA separates the specification of the requirements and functionality of a software
system from the implementation of such functionality using a particular technology.
The goals of MDA are to enable the implementation of the same functionality on
multiple platforms by means of transformations and allow the integration of different
systems by relating the corresponding models. Let us analyze MDA in terms of the
features of MDE stated above.

MDA categorizes models according to their level of abstraction, which is the only
dimension considered by this realization of MDE. The platform-independent mod-
els (PIMs) are the high-level models of the solution, and the platform-specific models
(PSMs) are the concrete derivations, each corresponding to a given hardware/software
technology. In a complete scenario, the designer should be able to build, execute, test
and interchange PIMs before generating the corresponding PSMs. Figure 3.1 illus-
trates the transformation of PIMs into PSMs for some software technologies based on
Java, .NET and CORBA. Code generation from PSMs is the following transformation
step and is often the simpler one.

Figure 3.1: A development framework based on MDA: transformation of PIMs into
PSMs and code generation (from [21]).

The language of choice to express models in MDA is UML 2, which may be tai-

CHAPTER 3. PROPOSED FRAMEWORK 26

lored to different application domains by means of its profiling mechanism [47, 48].
The meta-model of UML 2 defines the structure of the language (abstract syntax) and
the relationships between the modeling elements serving as basic blocks of the mod-
els. The specification of the meta-model also defines the semantics of the modeling
elements, but does not state either how to store the models or what methodologies
should be used to build them. The meta-model enables the definition of dialects of
UML 2, known as profiles, used to build domain-specific models. The XML Meta-
data Interchange (XMI) standard, developed by the OMG, defines a notation to store,
access and interchange UML 2 models between modeling tools [46, 23].

The mapping functions consist of rules that describe every step of the process
of transforming a source model into a target model. MDA considers different kinds
of transformations, including refinement (PIM to PIM), synthesis (PIM to PSM),
re-factoring (PSM to PIM) and platform-dependent refinement (PSM to PSM) [39].
As a consequence, the models described by a given profile may be transformed into
models compliant with another profile. The OMG has released two main standards
indicating how to define transformations between models and transformations from
models to text. The Queries/View/Transformation (QVT) standard describes three
transformation languages working on models described by the meta-model of UML
2 [52]. The standard called MOF Model to Text Transformation (MOFM2T) allows
the definition of algorithms that generate source code from models described by the
meta-model of UML 2 [49].

The OMG does not provide a standard indicating what software process must be
used to perform the development tasks using the MDA initiative. In contrast, there
are plenty of modeling tools including a representation of the meta-model of UML 2
that allow developers to build diagrams in such language. Finally, there are a number
of technologies that implement the standards from the OMG for transformation be-
tween models and between models and source code. The following section describes
a technology to build digital hardware systems, inspired by the MDA initiative, from
domain-specific models.

CHAPTER 3. PROPOSED FRAMEWORK 27

3.3 Description

The proposed design framework differs slightly from a design flow entirely based on
MDA in the absence of the platform-specific models. The main principles behind the
proposal in this dissertation are the following:

1. A DSML is necessary for the designer to describe functionality more effectively
because it allows using terms and abstractions within the problem domain,
instead of cumbersome details belonging to the implementation domain. As
Mernik et al. state: “by providing notations and constructs tailored toward a
particular application domain, the domain-specific languages offer substantial
gains in expressiveness and ease of use compared to general-purpose languages
for the domain in question, with corresponding gains in productivity and re-
duced maintenance costs” [38].

2. Transformation algorithms turn functional descriptions in DSML (PIMs in the
jargon of MDA) into lower level representations in VHDL to be implemented on
either an ASIC or FPGA. An intermediate representation in the form of a PSM
is not strictly necessary because all of the information required to generate the
VHDL representation can be obtained or deduced from the PIM. Additionally,
the transformation between the PIM and the source code is not as complex to
require partition into two transformations.

3. UML 2 has two main advantages that make it the best choice to be the foun-
dation of the modeling languages. First, it is extensible and customizable.
Second, its standard graphical notation allows a better comprehension degree
than a textual language.

Figure 3.2 illustrates the proposed design framework, which consists of a DSML
and a transformation tool that generates VHDL code. The models built using the
DSML are functional descriptions of algorithms that manipulate blocks of bits and
perform operations like block ciphering or compression. The transformation tool val-
idates that the models conform to certain rules and generates code in VHDL. The
low-level representation in VHDL describes a digital hardware system that can be im-
plemented on a silicon platform like an ASIC or a FPGA. The implementation phase

CHAPTER 3. PROPOSED FRAMEWORK 28

can be carried out using other design flows marketed by third-party manufacturers of
EDA technologies.

Figure 3.2: Proposed framework based on MDA.

As mentioned previously, the designer employs a version of UML 2 tailored to
an application domain to build high-level models. Every model describes how an
incoming block of bits flows through a series of operations that eventually produce
a resulting block of bits as output. These data-flow models serve as input to the
transformation tool built using a technology that transforms models into a textual
representation, including source code in an artificial language. The transformation
tool generates VHDL code compliant with a reduced version of the formal grammar of
such language. The transformation process consists of a number of templates produc-
ing the skeleton of the source code and queries validating the models and retrieving
information from them to complete the resulting source code. This framework aids
in the design of digital hardware accelerators for digital communication devices.

CHAPTER 3. PROPOSED FRAMEWORK 29

3.4 Defining and bounding the application domain

The demand for mobile computing devices capable of communicating with each other
and consuming power efficiently has increased notably during the last decade. For
this reason, the designers have conceived small and power-efficient digital hardware
architectures to enable a computing device to transmit and receive signals through
different channels. For instance, Arditti et al. [4] proposed a dedicated processor, con-
sisting of hardware accelerators, to process multiple wireless communication protocols
concurrently.

This dissertation applies the proposed design framework to build digital hardware
architectures that perform operations involved in digital communication systems. The
intention is to contribute to increase the productivity of the designers that implement
the digital communication sub-system of modern computer-based devices. The next
paragraphs characterize the domain of digital communication systems and identify
the areas within it where the proposed framework is to be used.

3.4.1 Digital communication systems

The goal of a digital communications system (DCS) is to transmit a digital message
from an information source to an information target, or sink, through a transmission
channel. Figure 3.3 illustrates the processing stages that the message goes through
before the transmitter emits it and after the receiver picks it up.

The format stage samples and quantizes the analogue signal from the source and
transforms it into a bitstream consisting of a number of k-bit groups called mes-
sage symbols. Three successive algorithms process the M = 2k different symbols
(mi, i = 1, 2, . . . ,M) prior to their modulation. The first algorithm performs source
encoding (compression) to represent the symbol with the minimum number of bits.
The second algorithm ciphers the information to guarantee privacy and prevent unau-
thorized access. The third algorithm (channel encoding) adds redundancy bits to the
information, so the receiver detects errors and corrects them if possible. The channel
encoding phase produces a set of channel symbols (ui, i = 1, 2, . . . ,M). A clock signal
from a synchronization element, shown in Figure 3.3, controls these signal processing

CHAPTER 3. PROPOSED FRAMEWORK 30

Figure 3.3: Block diagram of a typical digital communications system (from [60]).

phases.
The pulse modulation phase transforms each of the M possible channel symbols

into the corresponding baseband waveform, characterized by its short bandwidth.
When there are only two possible channel symbols (0 and 1), there will only be
two possible baseband waveforms, known as pulse-code modulation (PCM) wave-
forms (gi, i = 1, 2, . . . ,M). If required by the transmission channel, another mod-
ulation phase transforms the baseband waveforms into bandpass waveforms (si, i =
1, 2, . . . ,M). The frequency of the bandpass waveforms is much larger than the spec-
tral content of gi due to the effect of a carrier wave.

The phases of multiplexing and multiple-access combine signals from different
sources to share a single transmission channel. Frequency spreading (or spread spec-
trum) refers to a set of methods to spread the signal’s frequencies along the frequency
domain to produce a signal having a wider bandwidth, an increased resistance to in-
terference and more security in its transmission.

The receiver implements algorithms to carry out the inverse operations of those
performed by the transmitter (demodulation, decoding, decipher, decompress, and

CHAPTER 3. PROPOSED FRAMEWORK 31

demultiplexing). The output of the whole process in the receiver, denoted as m̂i, i =

1, 2, . . . ,M , is an estimation of the original message symbol transmitted by the source,
which could have been affected by noise and fading during transmission through the
channel.

Although the data flow shown in Figure 3.3 is standard, there is plenty of room
for innovation of new algorithms for each processing stage of a DCS. This innovation
also includes new techniques and architectures to implement those algorithms. These
implementations may be designed to meet any of the requirements of digital hardware
systems (high performance, low area cost or low power consumption) or a trade-off
between them.

The problem domain of interest for this project consists of the concepts, abstrac-
tions and primitive operations used to build algorithms that perform the following
complex operations of a DCS:

1. Source coding:

(a) Ciphering: block ciphering, stream ciphering.

(b) Compression: lossless, lossy.

2. Channel coding (forward error correction).

3. Arithmetic in finite fields.

This dissertation illustrates how to use the proposed design flow to describe and
transform algorithms that carry out ciphering and arithmetic in finite fields. Since
the design flow processes hierarchical models, it is also possible to model algorithms
performing the other complex operations.

Chapter 4

The domain-specific modeling

language

This chapter describes the high-level language used to build models, which is the
result of tailoring UML 2 by means of its profiling mechanism. This domain-specific
profile allows the designer to describe and manipulate the structure of a number
of algorithms operating on bit-blocks without modifying their behavior. The inten-
tion of the manipulations is to increase the performance or reduce the number of
resources consumed by the hardware implementations of the algorithms. The mod-
eling language includes constructs representing operations on bit-blocks, and allows
the creation of hierarchical models.

To understand the process of building profiles that adapt UML 2 to different
application domains, it is necessary to acquire a basic understanding of the meta-
model of UML 2. The meta-model provides the abstract syntax of UML 2, which
defines the structure of the language, and states the rules to build well-formed and
valid models. The meta-model is to UML 2 what a formal grammar is to an artificial
language like C, Java, Smalltalk and VHDL. This chapter introduces the concepts
of meta-modeling and meta-class, briefly reviews the meta-model of UML 2 and the
mechanism to define profiles, and describes the construction of the dialect of UML 2
to model algorithms on bit-blocks.

32

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 33

4.1 Overview of meta-modeling

The domain model in Figure 4.1 shows the classes defining the entities that make
up an airline company, which include different kinds of employees, different kinds of
aircrafts and different kinds of facilities. The diagram also shows the existing links
between the entities, indicated through relationships between the classes, and possible
constraints associated to the entities; see Appendix A for a review of the notation of
class diagrams. This conceptual model characterizes the application domain of air-
line enterprises through object-oriented concepts like classes, attributes, operations,
relationships between classes and constraints. This model is a valuable asset when
developing information systems that automate crucial processes of an airline company
like payroll, aircraft inventory, assignment of employees to facilities and more. How-
ever, the design models describing the structure of such information systems might
be different from the model in Figure 4.1.

Figure 4.1: Domain model illustrating the organization of an airline company.

The model in Figure 4.2 illustrates the objects p1, a1, fa1 and me1, which are
instances of concrete sub-classes of the abstract class Employee and represent em-
ployees of the airline company. The diagram also shows the links between p1 and
ac1, and between fa1 and ac1. The object ac1 represents an aircraft in the fleet of
the company, and the links indicate what employees are part of the crew of such
aircraft. This basic example highlights that the domain models in figures 4.1 and 4.2
represent the entities in a domain of interest, and the relationships between them, in

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 34

Figure 4.2: A model including instances of sub-classes of Employee and their links
to an instance of Airplane.

an accurate fashion. UML 2 includes constructs to represent classes, association rela-
tionships between classes, objects (instances of the classes) and links between objects
(instances of the association relationships).

UML 2 also provides a notation to define meta-classes, which are classes whose
instances are other classes. To understand this concept, imagine that the business
group owning the airline company also owns a flight academy that teaches professions
like pilot, flight attendant, accountant and mechanical engineer. From the point
of view of the flight academy, pilot, flight attendant, accountant and mechanical
engineer are instances of the concept “profession”. The list of attributes defining a
profession includes the name of the profession, the set of subjects to study to get the
corresponding degree, the number of years needed for completion, a reference to the
organization that certifies professionals in that area, among others. If we extended the
domain model in Figure 4.1 with this information, the concepts pilot, flight attendant,
accountant and mechanical engineer would acquire a dual nature. In addition to being
classes defining their own instances, these concepts would become instances of a meta-
concept or meta-class called Profession. Figure 4.3 shows how to indicate that the
classes Pilot, FlightAttendant, Accountant and MechanicalEngineer are also
instances of the meta-class Profession in UML 2.

Now, what is the difference between modeling and meta-modeling? By modeling,
the analyst abstracts properties from the real world; by meta-modeling, the analyst

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 35

Figure 4.3: An example of the notation used in UML 2 to denote that a number of
classes are instances of a specific meta-class.

abstracts properties from the model of the real world. Some authors have published
many extensive studies about the fundamentals of meta-modeling [6, 5, 32, 42] and its
application to the definition of UML during the last two decades. The meta-model of
UML 2 is the model that characterizes the models built using such language [47, 48];
it consists of a number of meta-classes that describe the modeling elements used to
build diagrams.

4.2 Introduction to the meta-model of UML 2

Figure 4.4 illustrates a framework based on meta-modeling that places software ob-
jects, design models in UML 2, and meta-classes from the meta-model of UML 2 at
different conceptual layers or meta-levels. This framework also defines the dependen-
cies between the elements at each layer. The diagram in Figure 4.4 also illustrates
that the specification of the meta-model of UML 2 uses class diagrams to describe
classes, meta-classes and the relationships between one another. Thus, the specifi-
cation defines the abstract syntax (structure) of UML 2 using the concrete syntax
(notation) of UML 2 itself.

4.2.1 The meta-levels

The bottom meta-level, referred to as M0, contains the software objects that com-
prise a running software system. Figure 4.4 illustrates that there is a video-decoding

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 36

Figure 4.4: The meta-levels in the framework that defines UML 2 (from [47]).

software object, referred to within the system as spaceOdyssey, at the meta-level
M0. The meta-level M1 contains the models in UML 2 built by the designer to de-
scribe the software objects. Figure 4.4 illustrates a model of the class Video and a
model of the object spaceOdyssey itself at the meta-level M1. The software object
spaceOdyssey at M0 is an instance of the class Video at M1, represented by the
traditional modeling element for classes in UML 2.

The rules and notation defined by the meta-model of UML 2 allow the designer
to build M1 models and recognize its components. The designer of the M1 model in
Figure 4.4 employed the class box and the attribute entry to define the class Video,
and the instance box to represent the object spaceOdyssey. Every component of
the design model is an instance of a meta-class located at the meta-level M2. This
meta-level contains the meta-classes Class, Attribute and Instance that define the
modeling elements used to build the M1 model. Figure 4.4 illustrates the “instance
of” relationship existing between run-time software objects, modeling elements, and
the meta-classes comprising the meta-model of UML 2.

Now, consider the class Video at the meta-level M1 in Figure 4.4. On the one

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 37

hand, the class Video is an instance of the meta-class Class from a lexical point of
view because the modeling element used to represent it is the class box. The meta-
class Class defines a number of properties present in all of its instances, including
the name of the class represented by the instance, and an indication of whether the
instance represents an abstract class. The values for such properties of the model-
ing element representing the class Video are “Video” and false, respectively. On
the other hand, the class Video may be conceived as an instance of the meta-class
Medium from an ontological point of view, along with other classes like Music and
Image.

The uppermost meta-level in Figure 4.4, commonly referred to as the meta-meta-
model level, or M3 level, contains the Meta-Object Facility (MOF) [43]. MOF is a
specification released by the OMG that sets the foundation for the definition of closely
related meta-models, being UML 2 one of them. Every modeling tool supporting UML
2 must contain an internal implementation of the meta-model from which the tool
instantiates the elements in user models. The modeling tools must also provide the
designer with the mechanism to extend the meta-model and define profiles.

4.3 Definition of profiles in UML 2

Figure 4.5 shows a diagram consisting of three containers of models called packages.
The package SampleProfile contains a profile defining new modeling elements affecting
the meta-class Class in the package SampleMetamodel, which represents the meta-
model of UML 2. The design model in the package SampleModel describes a payroll
software system for an airline company that defines the classes Employee, Fligh-
tAttendant and Pilot. The intention of the profile is to extend the design model
to indicate that the classes FlightAttendant and Pilot also represent professions
taught in a flight academy. The extension initiates when the designer applies the
profile in SampleProfile to the design model in SampleModel, then the modeling tool
creates two instances of Profession, attaches them to FlightAttendant and Pilot,
and indicates the extension with the keyword «profession» on top of the name of the
classes.

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 38

Figure 4.5: Definition of a profile that extends a M2 meta-model and its application
to extend a M1 model.

Defining profiles is a meta-modeling task. The distinct meta-class Profession
in the profile SampleProfile extends the meta-class Class in the meta-model Sam-
pleMetamodel. This means that instances of Profession are able to extend the
modeling elements in SampleModel that are instances of Class. As a result, Fligh-
tAttendant and Pilot may represent not only specializations of the abstract class
Employee, but also instances of the concept profession, represented by the stereo-
type Profession1. Notice that Profession defines an integer property (period) that
extends the list of properties of every instance of Class. Both FlightAttendant

and Pilot receive this property and assign a different value to it. The influence of
M2 Profession extends only to M1 Pilot and M1 FlightAttendant, not to M0
instances of such classes.

Figure 4.5 illustrates the extension relationships between each stereotype and
1A stereotype is a kind of meta-class whose purpose is to extend meta-classes in the meta-model

of UML 2 by adding properties and constraints. At modeling time, the instances of stereotypes
extend the corresponding modeling elements to represent together concepts in the corresponding
application domain.

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 39

the meta-class Class, the package import relationship between SampleProfile and
SampleMetamodel, and the application relationship between SampleModel and the
package containing the profile. The keywords «profession» and «branch» on top of
the names of the classes in SampleModel indicate that the instances of the stereotypes
in SampleProfile extend the instances of Class in the model. The note attached to
the stereotyped instance of Class indicates the value of the tagged attribute period

in the corresponding instance of the stereotype Profession.
When building a profile, the designer must define a number of elements: stereo-

types, tagged attributes, and constraints. The stereotypes extend meta-classes in the
meta-model of UML 2 to obtain “new” modeling elements. The tagged attributes de-
fined by the stereotypes extend the list of the properties of the meta-classes extended
by the stereotypes. The designer may also define constraints, written in the Object
Constraint Language (OCL) [44], to specify invariant rules, preconditions and post
conditions for the stereotypes in the profile. Finally, a stereotype may also include
an optional icon indicating a new notation for the extended modeling element.

To define a profile the designer first selects the diagrams and modeling elements
bearing certain resemblance to the domain-specific abstractions or entities to repre-
sent. Then, the designer extends the meta-classes of the selected modeling elements
using stereotypes. The stereotypes may include tagged attributes conveying relevant
information not available in the extended meta-class, and some expressions in OCL
that impose restrictions to the model built upon instances of the meta-classes ex-
tended by the profile. The definition of profiles, the construction of models, and
the extension of models by profiles are operations performed using a modeling tool
supporting UML 2 and its profiling mechanism.

4.4 Definition of the domain-specific modeling lan-

guage

The algorithms in the application domain considered for this project receive a number
of bit-blocks as input, transform them through successive operations to generate
intermediate results, and produce another bit-blocks as output. This flow of data,

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 40

including the operations indicated by the algorithm, can be described in UML 2 using
the activity diagram. The activity diagrams consist of a number of different kinds of
nodes connected to each other through edges. Please read the description of activity
diagrams in Appendix A to acquire a basic understanding of them.

Every activity diagram is a composite object made up of multiple objects assem-
bled together. All of these objects are instances of the meta-classes that populate
the meta-model of UML 2. By studying the meta-classes defining the elements of
activity diagrams, shown in Figure 4.6, it is possible to determine how to adapt this
kind of diagram to model algorithms like block ciphers, compressors and coders in an
accurate fashion. The profile described in this section defines stereotypes extending
the meta-classes in Figure 4.6, and constraints driving the construction of well-formed
activity diagrams.

4.4.1 Adapting activity diagrams to model flows of bit-blocks

Since activity diagrams are used to describe flows of data in a wide variety of areas,
it is necessary to adapt them to the application domain of interest. This adapta-
tion requires representing the abstractions in the application domain using existing
modeling elements in the activity diagrams. Very often, it is necessary to restrict
the values of the attributes of the modeling elements in the diagrams, and establish
how the nodes can be connected to each other. The transformation tool determines
whether an input model meets these restrictions before generating the corresponding
source code in VHDL. In addition, the expressiveness of the resulting profile can be
improved by assigning new graphical notation to the constrained modeling elements.

The following list introduces some of the abstractions in the application domain,
and exemplifies the restrictions they must meet. Both the abstractions and the con-
strains were identified after an examination of different algorithms in the application
domain of interest:

1. A well-formed bit-block is an ordered sequence of objects that are instances of
the class Bit. The length of the sequence must be nonzero and finite.

2. A module describes either a simple operation on input bit-blocks that performs

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 41

(a) An instance of the meta-class Activity owns a number of nodes
(instances of the meta-class ActivityNode) interconnected by edges
(instances of the meta-class ActivityEdge)

(b) The nodes representing input and output values are instances of the meta-
class ActivityParameterNode and are related to instances of the meta-
class Parameter

Figure 4.6: Extracts of the meta-model of UML 2 defining some modeling elements
in an activity diagram.

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 42

(c) An instance of the meta-class Activity owns special kinds of nodes indicat-
ing operations (instances of concrete sub-classes of the abstract meta-class
Action)

Figure 4.6: Extracts of the meta-model of UML 2 defining some modeling elements
in an activity diagram (cont.)

primitive operations and produces output bit-blocks, or a complex algorithm
involving elaborate flows of bit-blocks and invocations to other modules. This
abstraction is represented by an activity in UML 2.

3. Every module has parameters (extended instances of the meta-class Activity-
ParameterNode) that send/receive a continuous flow of bit-blocks of a fixed
length. This guarantees that the model is always ready to work.

4. A module contains nodes that carry out operations or control the flow of bit-
blocks. Most of the nodes receive input operands and produce output operands.

5. Nodes are connected to each other through edges. The only edges allowed in
a module are those representing flows of data (extended instances of the meta-
class ObjectFlow), and are referred to as dataflows.

6. A node cannot be the target of multiple dataflows.

7. Two nodes connected by a dataflow must produce or receive bit-blocks of the
same length.

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 43

8. Every operand (an extended instance of the meta-class Pin) of an operation
node (an extended instance of concrete sub-classes of the abstract meta-class
Action) must receive or produce a continuous flow of well-formed bit-blocks.

9. Every operation node must specify an operation supported by bit-block al-
gorithms (xor, and, or, shift left, shift right, rotate left, rotate right, split,
concatenation). In case of nodes specifying constants, these must be integer
values.

10. Every operation node must have the appropriate number of input and output
operands:

(a) An operation node indicating a binary bitwise logic operation (xor, and,
or, nand, nor, xnor) must have at least two input operands and only one
output operand.

(b) An operation node indicating a shift or rotate operation (shift left, shift
right, rotate left and rotate right) must have one input operand and one
output operand processing bit-blocks of the same length. A second input
operand must specify the number of bits to shift/rotate.

(c) An operation node indicating a constant value must have a single output
parameter and no input parameters.

(d) An operation node indicating the split of its single input operand must
have multiple output operands, such that the sum of the lengths of the
output operands equals the length of the input operand.

(e) An operation node indicating the concatenation of multiple input operands
must have a single output operand, such that the sum of the lengths of the
input operands equals the length of the output operand.

11. The operands must meet other restrictions imposed to them by the owner op-
eration.

The proposed modeling language includes a number of stereotypes that extend
the meta-classes shown in Figure 4.6 to closely represent the abstractions in the

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 44

application domain, and defines constraints like the ones stated above. The designer
uses the declarative language OCL to express these constraints, which use the values
of the attributes of the extended meta-class, as well as its relationships with other
meta-classes. The transformation tool uses the statements in OCL to validate that an
input model conforms to the restrictions (the model is well-formed) prior to generating
source code in VHDL.

4.4.2 The organization of the modeling language

The meta-model of UML 2 groups all of its meta-classes into packages. An import
relationship from package A to package B indicates that A uses the meta-classes in
B to define its own meta-classes. A merge relationship from package A to package
B indicates that A may add properties and associations to the meta-classes in B to
extend their definitions. Figure 4.7 illustrates that the packages Communications,
CompleteActions, CompleteActivities and BehaviorStateMachines in the meta-model
of UML 2 are related to several other packages in the meta-model through merge
and import relationships. As a result of these relationships, these packages end up
containing the meta-classes extended by our profile, called BitBlockFlow.

The package UMLforBitBlockFlow merges the meta-classes from the packages
Communications, CompleteActions, CompleteActivities and BehaviorStateMachines
into a single repository. The goal is that the stereotypes in the profile BitBlockFlow
extend the meta-classes of interest from the same place, instead of extending meta-
classes from multiple packages in the meta-model. The reference relationship between
BitBlockFlow and UMLforBitBlockFlow indicates that the profile imports all of the
meta-classes contained in the package to extend them with stereotypes.

BitBlockFlow consists of seven packages containing the profile’s stereotypes, as
illustrated in Figure 4.8. The package ModuleInterface contains the stereotypes rep-
resenting the basic unit of modeling of a bit-block flow (the module) and its interface
to the outside world (input and output parameters). The package Types contains the
class Bit, which is crucial in the definition of the entities processed by the modeling
elements in the profile. The package Operations contains stereotypes representing bit-
wise logic, shift and rotate operations on bit-blocks of variable length; it also contains

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 45

Figure 4.7: The packages in the meta-model of UML 2 extended by the profile.

stereotypes performing other manipulations on bit-blocks. The stereotypes located
in the package Edges constraint the edges that transfer objects between nodes in an
activity diagram. The elements defined in the package Literals allow including integer
values in the model. The packages Control and Synchronization contain stereotypes
that direct the flow of data within the model and synchronize output parameters with
external signals. The stereotypes in the package StateMachines allow specifying state
machines that drive the behavior of switch operations.

The designer uses a modeling tool to build and define the profile, and then applies
the stereotypes to instances of the extended meta-classes in an activity diagram. As
a result, the modeling elements in the affected models get extended by instances
of the stereotypes and become representations of abstractions and operations in the
application domain.

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 46

Figure 4.8: The internal structure of the profile BitBlockFlow.

4.4.3 Modules and their interfaces

Figure 4.9 illustrates that the stereotype BBModule extends the meta-class Ac-
tivity, and that the stereotype BBParameter extends the meta-class Activity-
ParameterNode in the meta-model of UML 2. This means that a module is an
abstraction that behaves like an activity, but with special features that only make
sense when modeling operations in the application domain of interest. The parame-
ters behave like a parameter node in the sense that they are attached to an activity
and send or receive objects; however, they are restricted to deal with bit-blocks only.
Figure 4.10 illustrates the use of these elements in a simple model. There is no new
graphical notation to denote modules and parameters, because the standard concrete
syntax is adequate.

The following is a list of the restrictions that instances of ActivityParameter-

Node extended by instances of BBParameter must meet:

1. Every parameter must be either an input parameter, or an output parameter,
or an input/output parameter.

2. Every module must have at least one input parameter and at least one output
parameter; otherwise, at least one input/output parameter.

3. Every parameter must receive/send an unbounded number of well-formed bit-

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 47

Figure 4.9: The stereotypes in the package ModuleInterface and the meta-classes
extended by them.

Figure 4.10: A module, its parameters and some operations.

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 48

blocks of the same length. However, the length of the bit-blocks processed by
different parameters may differ.

4. Every input parameter must have at least one outgoing dataflow and no incom-
ing dataflow. Every output parameter must have only one incoming dataflow
and no outgoing dataflow. Every input/output parameter must have at most
one incoming dataflow or at least one outgoing dataflow, but not both at the
same time.

5. The names of the parameters attached to the same module must be different.

The OCL declarative language is useful to express the previous restrictions in a formal
way, so the transformation evaluates them when validating the parameters of a mod-
ule. The following queries in Acceleo’s version of OCL [41] illustrate the evaluation
of the restrictions for all of the parameters in a module and for a single parameter:

1. [comment Determines whether the parameters in the receiving module are well-formed. /]

2. [query public validateParameters(aModule: Activity): Boolean =

3. if (aModule.validateNumberParameters()) then

4. aModule.getParameters()

5. ->forAll(an: ActivityParameterNode | an.validateParameter())

6. else

7. false

8. endif

9. /]

10.

11. [comment Determines whether the receiving parameter is well-formed. /]

12. [query public validateParameter(aParameter: ActivityParameterNode): Boolean =

13. aParameter.validateType() and

14. aParameter.validateMultiplicity() and

15. aParameter.validateUpperBound() and

16. aParameter.validateDirection() and

17. aParameter.validateNumberDataflows() and

18. aParameter.isUnique()

19. /]

The next two queries evaluate the restrictions 1 and 4 stated above, respectively.
These queries employ other queries that retrieve information from the elements of the
model and use it to compute their returned values. The information provided by the
model lies in the values of the attributes of the objects that make up the model, and
in the associations of these objects with one another. The queries in OCL are able

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 49

to retrieve the values of the attributes and associations of the objects on which they
are invoked, and perform simple or complex computations with them.

1. [comment Determines whether the receiving module has input and output parameters

2. or input/output parameters. /]

3. [query public validateNumberParameters(aModule: Activity): Boolean =

4. (aModule.getNumberInputParameters() > 0 and

5. aModule.getNumberOutputParameters() > 0) or

6. aModule.getNumberInoutParameters() > 0

7. /]

8.

9. [comment Determines whether the number of incoming/outgoing dataflows to/from the

10. receiving parameter conforms to the rules imposed by UML 2, depending on

11. the direction of the data in the parameter. /]

12. [query public validateNumberDataflows(aParameter: ActivityParameterNode): Boolean =

13. (aParameter.isInputParameter() and

14. aParameter.getNumberIncomingDataflows() = 0 and

15. aParameter.getNumberOutgoingDataflows() > 0) xor

16. (aParameter.isOutputParameter() and

17. aParameter.getNumberIncomingDataflows() = 1 and

18. aParameter.getNumberOutgoingDataflows() = 0) xor

19. (aParameter.isInoutParameter() and

20. (aParameter.getNumberIncomingDataflows() > 1 xor

21. aParameter.getNumberOutgoingDataflows() > 1))

22. /]

A module is well-formed if all of its parameters, operations, control nodes and
dataflows meet their corresponding restrictions. Also, if a module contains invocations
to other modules, the invoked modules must be well-formed. Thus, if a module invokes
an invalid module, the invoking module becomes invalid as well. The query that
determines whether a module is well-formed or not invokes the queries that validate
such property for every kind of node and dataflow in the module.

1. [comment Determines whether the receiving module is well-formed. /]

2. [query public validateModule(aModule: Activity): Boolean =

3. aModule.isBBModule() and

4. aModule.validateName() and

5. aModule.validateParameters() and

6. aModule.validateDataflows() and

7. aModule.validateLogicOperations() and

8. aModule.validateIntegerConstants() and

9. aModule.validateShiftRotateOperations() and

10. aModule.validateSplitOperations() and

11. aModule.validateConcatenationOperations() and

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 50

12. aModule.validateJoins() and

13. aModule.validateSyncs() and

14. aModule.validateModuleCalls() and

15. aModule.validateExtractionOperations() and

16. aModule.validateSwitchOperations()

17. /]

4.4.4 Operations and their operands

The proposed profile defines a number of operations in the package Operations. The
modeling language provides stereotypes for bitwise logic operations (and, or, xor,
nand, nor, and xnor), shift and rotate operations, operations that split a bit-block
into shorter bit-blocks, operations that extract a bit-block from a larger bit-block,
operations that concatenate bit-blocks to form a larger bit-block, and operations that
zero-extend a bit-block. Figure 4.11 shows that the stereotypes defining the bitwise
logic operations, and the stereotypes defining the shift and rotate operations, are
sub-classes of the abstract stereotype BBOperation. Figure 4.12 illustrates the
new concrete syntax assigned to the modeling elements extended by instances of the
stereotypes.

Figure 4.11: The stereotypes in the package Operations and the meta-classes they
extend.

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 51

F
ig
ur
e
4.
12

:
D
iff
er
en
t
ki
nd

s
of

op
er
at
io
ns

an
d
th
ei
r
in
pu

t
an

d
ou

tp
ut

op
er
an

ds
.

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 52

Notice in Figure 4.12 that every operation has input operands that receive the
source data, and output operands that issue the result of the operation. An operand
is an abstraction represented by an instance of the abstract meta-class Pin that has
been extended by an instance of the stereotype BBInput or BBOutput. Figure
4.11 shows that the stereotypes BBInput and BBOutput extend the concrete meta-
classes InputPin and OutputPin, and define a new attribute called operandIndex,
used to denote segments of a bit-block in operations that split or concatenate bit-
blocks.

Now, let us examine the restrictions specified for operands by the profile:

1. Every operand must receive/send an unbounded number of well-formed bit-
blocks of the same length. However, the length of the bit-blocks processed by
different operands may differ.

2. Every input operand must have only one incoming dataflow and no outgoing
dataflow. Every output parameter must have at least one outgoing dataflow
and no incoming dataflow. Every input/output parameter must have at least
one incoming dataflow or at least one outgoing dataflow, but not at the same
time.

3. Every kind of operation has its own restrictions on the value of the attribute
operandIndex, especially the operations that split and concatenate bit-blocks.

The following queries in OCL evaluate these restrictions and use other queries to
retrieve information from the activity models and compute the required values:

1. [comment Determines whether the output operands extended by the stereotype

2. BitBlockFlow::BBOutput of the receiving operation meet the constraints

3. for their types, their multiplicities and their upper bound. /]

4. [query public validateOutputs(aOperation: Action): Boolean =

5. aOperation.getOutputs()

6. ->forAll(op: OutputPin | op.validateOperand())

7. /]

8.

9. [comment Determines whether the input operands extended by the stereotype

10. BitBlockFlow::BBInput of the receiving operation meet the constraints

11. for their types, their multiplicities and their upper bound. /]

12. [query public validateInputs(aOperation: Action): Boolean =

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 53

13. aOperation.getInputs()

14. ->forAll(ip: InputPin | ip.validateOperand())

15. /]

16.

17. [comment Determines whether the receiving operand meets the constraints

18. for its type, its multiplicities and its upper bound. /]

19. [query public validateOperand(anOperand: Pin): Boolean =

20. anOperand.validateType() and

21. anOperand.validateUpperBound() and

22. anOperand.validateMultiplicity() and

23. anOperand.validateNumberDataflows()

24. /]

In addition to specifying graphical icons for instances of the extended meta-class
OpaqueAction, the profile also specifies restrictions for the sub-classes of the ab-
stract stereotype BBOperation. The restrictions specified for the all of the bitwise
logic operations are the following:

1. Every bitwise logic operation must have at least two input operands and one
output operand.

2. The operands of every bitwise logic operation must meet the restrictions related
to the number of bit-blocks processed, and the number of dataflows they are
connected to, stated previously.

3. Every bitwise logic operation must produce output bit-blocks whose length is
greater than or equal to the length of every input operand.

The restrictions specified for the shift and rotate operations are as follows:

1. Every shift or rotate operation must have two input operands and one output
operand.

2. The operands of every shift or rotate operation must meet the restrictions re-
lated to the number of bit-blocks processed, and the number of dataflows they
are connected to, stated previously.

3. One of the input operands of a shift or rotate operation must be connected to a
modeling element specifying an integer constant, and the other input operand

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 54

must specify the source bit-block. The integer constant indicates the number
of bits the source operand is shifted or rotated.

4. Every shift or rotate operation must produce output bit-blocks whose length is
greater than or equal to the length of every input operand.

4.4.5 Dataflows

As stated previously, the dataflows connect nodes to each other, and allow objects to
traverse from one operation to another. The stereotype BBDataFlow in the package
Edges extends the meta-class ObjectFlow to adapt it to the application domain of
interest. The concrete syntax of edges (a pointing arrow) defined by UML 2 does
not require changes and is preserved in the proposed profile. Figures 4.10 and 4.12
illustrate several edges interconnecting nodes. Such instances of ObjectFlow have
been extended by instances of BBDataFlow, but the extensions are not show for
clarity reasons.

The constraints defined for BBDataFlow are as follows:

1. Every dataflow must always allow bit-blocks to traverse through it. This is
achieved by setting the guard condition associated to every dataflow to true.

2. Every dataflow must allow only one bit-block to traverse through it. This is
achieved by setting the weight attribute of every dataflow to one.

3. Every dataflow must connect well-formed operands or parameters belonging to
well-formed operations or modules. In addition, the interconnected nodes must
process a continuous flow of bit-blocks of the same length.

4.4.6 Invoking modules and switching between bit-blocks

Figure 4.10 illustrates a switch that selects one of several input bit-blocks and transfers
it to the output. Every switch in a model has an associated state machine indicating
the input to select depending on the current state of the algorithm. Figure 4.13
illustrates the state machine diagram associated to the switch in Figure 4.10. The
current state of the algorithm determines the input selected by the switches, and the

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 55

Figure 4.13: An extended state machine diagram in UML 2 associated to a switch.

operands received by the operations connected to the switches. Switches are useful to
model iterative algorithms where the result of an operation is fed back to the inputs.

The stereotype BBSwitch in the package Controls extends the meta-class Call-
BehaviorAction to provide the designer with a modeling element that selects one of
multiple bit-blocks at the input operands based on the current state of the algorithm.
A switch is actually an action that invokes the behavior described by the associated
state machine. When the state of the algorithm changes, the switches invoke their
state machines, which select the appropriate input depending on the current state and
change to the next state. During transition to the next state, the algorithm carries
out all of its operations using the values provided by the switches and computes the
results.

Every calling action extended by an instance of BBSwitch must fulfill the fol-
lowing constraints:

1. The operands of every switch must meet the restrictions related to the number
of bit-blocks processed, and the number of dataflows they are connected to,
stated previously.

2. The operands of every switch must correspond one-to-one to the parameters of
the state machine invoked.

3. Every switch must be synchronous, which means that the the caller module
waits for completion of the invoked state machine.

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 56

4. The state machine invoked by a switch must fulfill the restrictions specified for
this modeling construct.

5. Every switch must be identified by a non-empty string different from the iden-
tifier assigned to the state machine invoked.

The profile allows modeling complex algorithms as long as two conditions are
met. First, every model must manipulate bit-blocks and use supported operations.
Second, a model may invoke other models or not; if it does, the invoked models must
meet these two conditions. As a result, it is possible to build hierarchical models
made up an arbitrary number of different models. Also, UML 2 provides modeling
constructs that enable behaviors to invoke one another in a hierarchical manner; the
only limitation may be the extent as to which the modeling tools ease sharing and
reusing modeling projects and diagrams.

Figure 4.14 illustrates a module containing modeling elements that invoke other
modules. The stereotype BBModuleCall extends the meta-class CallBehaviorAc-
tion to provide the designer with the ability to reuse modules and build hierarchical
models. The stereotype defines constraints that adapt instances ofCallBehaviorAc-
tion to the application domain of interest, but preserves the concrete syntax defined
for these objects by UML 2, specially the rake symbol (t). The constraints specified
for BBModuleCall are as follows:

1. The operands of every module call must meet the restrictions related to the
number of bit-blocks processed, and the number of dataflows they are connected
to, stated previously.

2. The operands of every module call must correspond one-to-one to the parame-
ters of the module invoked.

3. Every module call must be synchronous, which means that the the caller module
waits for completion of the module called.

4. The module called by a call operation must fulfill the restrictions specified for
this modeling construct.

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 57

5. Every module call must be identified by a non-empty string different from the
identifier assigned to the module called.

Figure 4.14: A module containing invocations to other modules.

4.5 Application of the profile

This section shows practical examples of the use of the proposed domain-specific
modeling language to describe different algorithms. First, we show the application
of the language to the description of a block cipher algorithm. Second, we show the
application of the profile to the description of an algorithm to perform arithmetic in
finite fields, which is used by coders and ciphers. The models presented were built
using Papyrus, a modeling tool working on top of Eclipse [22].

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 58

4.5.1 Block ciphering

Consider the block cipher KASUMI used nowadays to implement security functions
in modern 3G cellular communication networks [1]. The inputs to the algorithm are
a 64-bit plaintext block and a 128-bit key K, and the output is a 64-bit ciphertext
block. Each of the eight rounds of KASUMI’s Feistel network carries out a pair of
operations called FL and FO, where FO is a Feistel network with three rounds, each
invoking a function called FI consisting of four substitution boxes (S9 and S7). The
algorithm’s key scheduler uses the input key K to generate eight sets of round keys
(si = {KLi, KOi, KIi}, i = 1, 2, . . . , 8), one for every round in the main Feistel struc-
ture. The block diagrams in Figure 4.15 illustrate the structure of the components of
KASUMI.

The diagrams in Figure 4.15 are neither models in UML 2, nor schematics of a
hardware architecture implementing the algorithm. However, it is possible to build
models that mimic the structure of KASUMI using UML 2 and the profile described in
the previous section, since all of the operations performed by KASUMI are supported
by the profile. Figure 4.16 illustrates the hierarchy of modules that make up the model
of KASUMI, where each module contains parameters, operations, dataflows, switches,
and invocations to other modules. It is possible to manipulate the structure of the
model to build simplified descriptions of the algorithm that produce area-efficient
hardware architectures.

The designers can modify the structure of KASUMI, without changing its behav-
ior, to obtain implementations of the algorithm that have high performance or save
hardware resources. Figure 4.17 illustrates the results of one of such manipulations of
the algorithm: a compact structure that ciphers a block after 16 iterations over the
same component [8]. The component in Figure 4.17(a) is the result of attaching two
FI blocks (see Figure 4.15(c)) by means of sharing the four S-boxes. The component
in Figure 4.17(b) is a simplification of the FO function that takes 2 iterations over
the dual-input FI function to compute the same result as the Feistel structure shown
in Figure 4.15(b). Finally, the component in Figure 4.17(c) computes the same re-
sult as the eight-round Festel structure in Figure 4.15(a) after 16 iterations over the
simplified FO function.

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 59

(a) Main Feistel net-
work.

(b) Function FO. (c) Function FI. (d) Function FL.

Figure 4.15: The components of the block cipher KASUMI (from [1]).

Figure 4.18 illustrates the model for the previous iterative design. The iterative
modules require switches to indicate the feedback of intermediate results, and state
machines that control the flow of information during every iteration. The result of
implementing this model is a compact design with fewer hardware components than
the implementation of the model in Figure 4.15, at the cost of scarifying performance
because of the overhead of 16 iterations to cipher a single 64-bit block. Therefore, the
designers always face the challenge of making tradeoffs between high performance and
compact implementations. This example illustrates that the proposed profile enables
the designer to manipulate the model of an algorithm according to a design strategy,

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 60

(a) Module for the main Feistel network.

Figure 4.16: The modules comprising the model of KASUMI in UML 2 and the profile
BitBlockFlow.

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 61

(b) Module for an even round.

(c) Module for an odd round.

Figure 4.16: The modules comprising the model of KASUMI in UML 2 and the profile
BitBlockFlow (cont.)

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 62

(d) Module for the function FL.

Figure 4.16: The modules comprising the model of KASUMI in UML 2 and the profile
BitBlockFlow (cont.)

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 63

(e
)
M
od

ul
e
fo
r
th
e
fu
nc

ti
on

F
I.

F
ig
ur
e
4.
16

:
T
he

m
od

ul
es

co
m
pr
is
in
g
th
e
m
od

el
of

K
A
SU

M
I
in

U
M
L
2
an

d
th
e
pr
ofi

le
B
it
B
lo
ck
F
lo
w

(c
on

t.
)

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 64

(f
)
M
od

ul
e
fo
r
th
e
fu
nc
ti
on

FO
.

F
ig
ur
e
4.
16

:
T
he

m
od

ul
es

co
m
pr
is
in
g
th
e
m
od

el
of

K
A
SU

M
I
in

U
M
L
2
an

d
th
e
pr
ofi

le
B
it
B
lo
ck
F
lo
w

(c
on

t.
)

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 65

(a) Dual-input FI function. (b) Iterative FO function.

Figure 4.17: The components of the simplified block cipher KASUMI.

and provides the elements to build either iterative and loop-unrolled models.

4.5.2 Multiplication in finite fields

Modern algorithms that compute error-correcting codes and perform elliptic curve
encryption require multiplication and addition of large integers belonging to a binary
field. A binary field, or Galois field, contains a finite number of elements that can
be expressed as pk, where p is prime and k is a positive integer. A commonly used
finite field is the binary field, denoted as GF (2m),m > 0, that contains 2m integers
represented by m-bit blocks that when multiplied and added produce an integer that
also belongs to GF (2m) [13]. Multiplication of large integers in the binary field is not
a trivial task, and algorithms performing this operation fast are greatly appreciated.

This clause shows the model of an algorithm that performs fast multiplication of

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 66

(c) Iterative round.

Figure 4.17: The components of the simplified block cipher KASUMI (cont.)

two 128-bit integers, and produces a 163-bit integer in GF (2163). The operands can
be thought of as 163-bit integers whose 35 most significant bits are set to zero, and
their multiplier can be used by a multiplier operating on arbitrary 163-bit integers.
The multiplier is based on the Karatsuba-Ofman algorithm (KOA) [29], and uses
linear feedback shift registers (LFSRs) to map the result to the binary field GF (2163).
When the length in bits m of the integers is a power of two, m = 2p, p ≤ 0, the
complexity of KOA is O(mlog23).

Figure 4.19 illustrates the hierarchical model of the KOA that multiplies two 128-
bit integers proposed by Cuevas [16]. The highest module in the hierarchy, illustrated
in Figure 4.19(a), splits the input 128-bit blocks into 64-bit blocks and uses them as
inputs to a module that performs KOA for 64-bit integers, shown in Figure 4.19(b).
The module describing KOA for 64-bit integers splits the input bit blocks into 32-bit

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 67

(a
)
M
od

ul
e
fo
r
th
e
du

al
-in

pu
t
F
I
fu
nc
ti
on

.

F
ig
ur
e
4.
18

:
T
he

m
od

ul
es

co
m
pr
is
in
g
th
e
m
od

el
of

th
e
si
m
pl
ifi
ed

K
A
SU

M
I
in

U
M
L
2
an

d
th
e
pr
ofi

le
B
it
B
lo
ck
F
lo
w
.

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 68

(b
)
M
od

ul
e
fo
r
th
e
it
er
at
iv
e
FO

fu
nc
ti
on

.

F
ig
ur
e
4.
18

:
T
he

m
od

ul
es

co
m
pr
is
in
g
th
e
m
od

el
of

th
e
si
m
pl
ifi
ed

K
A
SU

M
I
in

U
M
L
2
an

d
th
e
pr
ofi

le
B
it
B
lo
ck
F
lo
w

(c
on

t.
)

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 69

(c
)
M
od

ul
e
fo
r
th
e
it
er
at
iv
e
ro
un

d.

F
ig
ur
e
4.
18

:
T
he

m
od

ul
es

co
m
pr
is
in
g
th
e
m
od

el
of

th
e
si
m
pl
ifi
ed

K
A
SU

M
I
in

U
M
L
2
an

d
th
e
pr
ofi

le
B
it
B
lo
ck
F
lo
w

(c
on

t.
)

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 70

blocks and uses them as inputs to a module that performs KOA for 32-bit integers,
shown in Figure 4.19(c). Thus, every KOA module splits its n-bit operands into
n/2-bit blocks and calls a KOA module that multiplies integers of this length. The
model contains modules that multiply integers of length 2, 4, 8, 16, 32, 64 and 128.
Figures 4.19(d), 4.19(e) and 4.19(f) show the modules describing the linear feedback
shift registers that map the result of the multiplication to an element in GF (2163).
These modules employ switches to describe loops and feed back intermediate results.

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 71

(a
)
M
od

ul
e
fo
r
12
8-
bi
t
K
O
A
.

F
ig
ur
e
4.
19

:
M
od

ul
es

pe
rf
or
m
in
g
m
ul
ti
pl
ic
at
io
n
of

in
te
ge
rs

of
di
ffe

re
nt

le
ng

th
s
ac
co
rd
in
g
to

th
e
K
ar
at
su
ba

-O
fm

an
al
go

ri
th
m
.

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 72

(b
)
M
od

ul
e
fo
r
64
-b
it
K
O
A
.

F
ig
ur
e
4.
19

:
M
od

ul
es

pe
rf
or
m
in
g
m
ul
ti
pl
ic
at
io
n
of

in
te
ge
rs

of
di
ffe

re
nt

le
ng

th
s
ac
co
rd
in
g
to

th
e
K
ar
at
su
ba

-O
fm

an
al
go

ri
th
m

(c
on

t.
)

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 73

(c
)
M
od

ul
e
fo
r
32
-b
it
K
O
A
.

F
ig
ur
e
4.
19

:
M
od

ul
es

pe
rf
or
m
in
g
m
ul
ti
pl
ic
at
io
n
of

in
te
ge
rs

of
di
ffe

re
nt

le
ng

th
s
ac
co
rd
in
g
to

th
e
K
ar
at
su
ba

-O
fm

an
al
go

ri
th
m

(c
on

t.
)

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 74

(d) Module for the basic shift register.

Figure 4.19: Modules performing multiplication of integers of different lengths ac-
cording to the Karatsuba-Ofman algorithm (cont.)

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 75

(e
)
M
od

ul
e
th
at

it
er
at
es

ov
er

th
e
ba

si
c
sh
ift

re
gi
st
er

64
ti
m
es
.

F
ig
ur
e
4.
19

:
M
od

ul
es

pe
rf
or
m
in
g
m
ul
ti
pl
ic
at
io
n
of

in
te
ge
rs

of
di
ffe

re
nt

le
ng

th
s
ac
co
rd
in
g
to

th
e
K
ar
at
su
ba

-O
fm

an
al
go

ri
th
m

(c
on

t.
)

CHAPTER 4. THE DOMAIN-SPECIFIC MODELING LANGUAGE 76

(f
)
M
od

ul
e
th
at

it
er
at
es

ov
er

th
e
ba

si
c
sh
ift

re
gi
st
er

12
8
ti
m
es
.

F
ig
ur
e
4.
19

:
M
od

ul
es

pe
rf
or
m
in
g
m
ul
ti
pl
ic
at
io
n
of

in
te
ge
rs

of
di
ffe

re
nt

le
ng

th
s
ac
co
rd
in
g
to

th
e
K
ar
at
su
ba

-O
fm

an
al
go

ri
th
m

(c
on

t.
)

Chapter 5

The code generator

This chapter describes the implementation of the transformation that generates code
in VHDL from the domain-specific data-flow models described in the previous chapter.
This transformation was developed using Acceleo [41], a technology built on top of
Eclipse that implements the MOFM2T standard from the OMG. This standard is used
to describe transformations from models described by meta-models based on MOF
to text, including source code in an artificial language [49]. Every transformation
specified using MOFM2T consists of a number of modules containing templates that
generate the skeleton of the source code; the templates are filled out with values from
properties of the modeling elements or other complex values computed by queries.

5.1 Overview of MOFM2T and Acceleo

This section presents a simple example that illustrates how to specify transformations
using MOFM2T to be implemented in Acceleo. The goal is to generate source code
in Java declaring the classes defined by the diagram in Figure 4.1. After a careful
examination, we decided to organize this transformation according to the section of
the grammar of Java that generates the declaration of classes, whose syntax diagrams
are shown in Figure 5.1. The grammar of the target language is the best guide in
the process of generating source code conforming to such language, but it must be
simplified because not all of the language constructs are considered in this example.

77

CHAPTER 5. THE CODE GENERATOR 78

The production rule that starts the generation of the section declaring the class
is shown in Figure 5.1(a), it invokes the rules that generate the name of the class,
the modifiers of the class, the name of the super-class, the name of the interfaces
implemented by the class, and the set of instance variables and methods. Figure
5.1(b) shows the rule that generates the symbols that modify a class, of which we will
only consider those that indicate abstract and public classes. The rules that generate
identifiers are not considered explicitly in this example because such identifiers are
taken directly from the names of the classes in the diagram in Figure 4.1. Figure
5.1(c) shows the rule that generates the declaration of instance variables and methods
by invoking the rules in Figure 5.1(d) and Figure 5.1(e), respectively. Again, some
of the production rules shown in the diagrams are not explicitly considered during
the implementation of the transformation because they generate elements that can
be obtained directly from the modeling elements, or that are not considered in this
example.

The templates that make up the transformation are written in the language spec-
ified by MOFM2T, a declarative language reminiscent of OCL. Each template im-
plements one of the rules in Figure 5.1 by generating the terminal symbols indicated
by the rule, and invoking the templates for the invoked rules. The template for the
rule in Figure 5.1(a), called generateClassDeclaration(), operates on modeling
elements that are instances of the metaclass Class in the meta-model of UML 2.
This template, written in Acceleo, generates the symbols class, { and } in an output
file, and invokes other templates that generate the rest of the language constructs
involved in the declaration.

1. [template public generateClassDeclaration(aClass: Class)]

2. [aClass.generateModifier()/] class [aClass.generateIdentifier()/] [aClass.generateExtend()/] {

3. [aClass.generateFieldDeclaration()/]

4. }

5. [/template]

The template implementing the rule in Figure 5.1(b), called generateModifier(),
generates only two of the ten modifiers for simplicity matters. This template checks
the value of the property isAbstract in the instance of Class on which it is working
to determine if such modeling element denotes an abstract class. When the modeling

CHAPTER 5. THE CODE GENERATOR 79

(a) Syntax diagram for the section that declares a class.

(b) Syntax diagram for the non-terminal sym-
bol that modifies a field.

(c) Syntax diagram for the section that declares a field of a class.

Figure 5.1: Syntax diagrams for the declaration of a class in the Java language.

CHAPTER 5. THE CODE GENERATOR 80

(d) Syntax diagram for the section that declares an instance variable of a class.

(e) Syntax diagram for the section that declares a method of a class.

Figure 5.1: Syntax diagrams for the declaration of a class in the Java language (cont.)

element indicates an abstract class, the template generates the modifier abstract,
otherwise it generates the modifier public. The properties of the metaclass Class

are documented in the specification of UML 2 [48].

1. [template public generateModifier(aClass: Class)]

2. [if (aClass.isAbstract)]

3. abstract

4. [else]

5. public

6. [/if]

7. [/template]

The template generateExtend() is invoked by generateClassDeclaration() to
generate the symbol extends followed by the name of the super-class of the class being
declared. This template uses the query hasSingleSuperclass() to validate that the
class has one super-class only, and the query getSuperclass() to obtain a reference
to the modeling element representing the super-class. The first query checks that the
number of elements in the collection referred to by the property generalization equals
one, which means that there is only one generalization relationship departing from the
instance of Class. The second query first accesses the modeling element representing
the generalization relationship, and then returns a reference to the modeling element
representing the more general class in the relationship.

CHAPTER 5. THE CODE GENERATOR 81

1. [template public generateExtend(aClass: Class)]

2. [if (aClass.hasSingleSuperclass())]

3. extends [aClass.getSuperclass().name/]

4. [/if]

5. [/template]

6.

7. [query public hasSingleSuperclass(aClass: Class): Boolean =

8. aClass.generalization->size() = 1

9. /]

10.

11. [query public getSuperclass(aClass: Class): Class =

12. aClass.generalization

13. ->asSequence()->first().general.oclAsType(Class)

14. /]

The template generateFieldDeclaration() implements the rule in Figure 5.1(c)
partially, because it only generates the declaration of the instance variables and meth-
ods. This template iterates over the collection of properties (instances of the metaclass
Property), and invokes the template generateVariableDeclaration() for every
one. The template also iterates over the collection of operations (instances of the
metaclass Operation), and invokes the template generateMethodDeclaration()

for every one. These templates correspond to the rules in Figure 5.1(d) and Fig-
ure 5.1(e), respectively, and generate the name, type and visibility of the features of
the class by accessing the values of the corresponding properties in the instances of
Property and Operation. Also, notice that generateMethodDeclaration() also
invokes a template that generates an empty body for every method.

1. [template public generateFieldDeclaration(aClass: Class)]

2. [for (p: Property | aClass.ownedAttribute)]

3. [p.generateVariableDeclaration()/]

4. [/for]

5.

6. [for (o: Operation | aClass.ownedOperation)]

7. [o.generateMethodDeclaration()/]

8. [/for]

9. [/template]

10.

11. [template public generateVariableDeclaration(aProperty: Property)]

12. [aProperty.generateModifier()/] [aProperty.generateType()/] [aProperty.name/];

13. [/template]

14.

15. [template public generateModifier(aProperty: Property)]

CHAPTER 5. THE CODE GENERATOR 82

16. [aProperty.visibility.toString()/]

17. [/template]

18.

19. [template public generateType(aProperty: Property)]

20. [aProperty.type.name/]

21. [/template]

22.

23. [template public generateMethodDeclaration(anOperation: Operation)]

24. [anOperation.generateModifier()/] [anOperation.generateType()/] [anOperation.name/]()

25. [anOperation.generateStatementBlock()/];

26. [/template]

27.

28. [template public generateModifier(anOperation: Operation)]

29. [anOperation.visibility.toString()/]

30. [/template]

31.

32. [template public generateType(anOperation: Operation)]

33. [anOperation.type.name/]

34. [/template]

35.

36. [template public generateStatementBlock(anOperation: Operation)]

37. {

38. }

39. [/template]

5.2 The simplified grammar of VHDL

Not all of the language constructs of VHDL are required to build a description that
complies with activity models like those in figures 4.16 and 4.19. The flow of bit-blocks
starting at the input parameters, going through the operations, and ending at the
output parameters, can be described by concurrent statements only. These sentences
modify the values of bit vectors transported by signals by means of operators and
processes. Thus, the transformation tool targets only a subset of VHDL and generates
structural descriptions.

The language constructs used by the descriptions in VHDL generated by the
transformation tool from the corresponding models are the following:

1. The section that declares the interface (entity) of the design:

(a) Ports declaration.

CHAPTER 5. THE CODE GENERATOR 83

2. Primitive data types:

(a) bit.

(b) bit_vector.

3. The section that declares resources to use by the architecture of the design:

(a) Enumeration types.

(b) Signals.

4. Binary literals.

5. Range specifiers for bit-vectors or signals.

6. The section that contains concurrent statements.

7. Operators:

(a) Bitwise logic.

(b) Shift and rotate.

(c) Concatenation.

8. The statement that declares a process.

9. The case statement.

The modified grammar listed in Appendix C describes this subset of VHDL, it is a
simplification of the full grammar documented in the specification of VHDL [7]. This
modified grammar is the base of the transformation; the identifiers of its templates
and the way they call each other closely follows the non-terminal symbols and the
production rules of the simplified grammar.

5.3 The transformation to VHDL

This section describes the implementation of the transformation that generates source
code in VHDL from well-formed activity diagrams complying to the abstract syntax

CHAPTER 5. THE CODE GENERATOR 84

of UML 2 and the constraints defined by the profile BitBlockFlow. This descriptions
is focused on the templates that generate source code; the queries that validate well-
formedness of the model, introduced in Chapter 4, get evaluated before initiating the
generation process. If the model meets the constrains imposed by the profile, the
transformation generates a source code file for every module, which defines the two
sections mandatory for every design in VHDL: the entity and the architecture.

5.3.1 Relevant templates and queries

This clause describes important templates and queries used throughout the transfor-
mation to generate language constructs that appear multiple times throughout the
definition of the entity and architecture sections. The transformation consists of about
90 templates and 300 queries, which include queries that evaluate the constraints of
the modeling elements, queries that retrieve information from the model, and queries
computing relevant information.

5.3.1.1 Literals and signals

Figure 5.2 illustrates an operation whose operands are, on the one hand, an integer
constant and, on the other hand, the output of another operation received through
a dataflow. To determine whether an operand is connected to a modeling element
representing an integer literal, the transformation employs a query that traverses to
the opposite node and test whether it is the output operand of an element extended
by the stereotype BBIntegerConstant. If the opposite modeling element represents
an integer constant, the query evaluates whether it meets the constraints defined by
the stereotype.
1. [comment Determines whether the receiving node is connected to an integer constant

2. through a valid dataflow. /]

3. [query public isConnectedToInteger(aNode: ObjectNode): Boolean =

4. if (aNode.getIncomingDataflow(1).source.owner.isBBIntegerConstant()) then

5. aNode.getIncomingDataflow(1).source.owner

6. .oclAsType(ValueSpecificationAction).validateIntegerConstant()

7. else

8. false

9. endif

10. /]

CHAPTER 5. THE CODE GENERATOR 85

Figure 5.2: An operation whose operands are the output of an operation and an
integer literal.

5.3.1.2 Reduction of labels of dataflows

Figure 5.3(a) illustrates that the output operand of sourceOperation is connected
to multiple input operands through dataflows that have their own identifier. The
transformation must select only one of these dataflows, map it to a signal in VHDL,
and generate its identifier. Additionally, every time the output of sourceOperation is
required, the transformation must select the same outgoing dataflow. The following
template generates the same signal identifier whenever it is invoked on a given node:

1. [comment Generates the identifier of a signal or a binary literal depending

2. on whether the receiving node is connected to a constant or a operation.

3. /]

4. [template public generateSourceSignalIdentifier(aNode: ObjectNode)]

5. [if (aNode.isConnectedToInteger())]

6. [aNode.generateSourceBitVector()/][else]

7. [aNode.getIncomingDataflow(1).source.getOutgoingDataflow(1).generateSignalIdentifier()/][/if]

8. [/template]

The order of the elements in the collection of outgoing edges of a node may be
different from an execution of the transformation to another. However, the order of
these elements is the same throughout an execution of the transformation; that is
why the previous template generates the same signal identifier when invoked on the
input operand of any of the target operations. The use of this template discards the

CHAPTER 5. THE CODE GENERATOR 86

(a) Normal labels of dataflows. (b) Reduced labels of dataflows.

Figure 5.3: Reduction of labels of dataflows.

identifiers of other dataflows departing from the output operand of sourceOperation,
as illustrated in Figure 5.3(b).

5.3.1.3 Recursive generation of expressions

A bitwise logic operation may receive multiple input operands, either integer literals
or bit-blocks traversing dataflows. The transformation maps this modeling element
to an assignment statement indicating the source signals, the operator and the target
signal. Since OCL lacks complex control structures, the generation of the assignment
statement requires a template that traverses the sequence of input operands recur-
sively until the end of the sequence. At each call, the template generates a binary
literal or the identifier of a signal, depending on whether the first operand of the
sequence is connected to an integer literal or to the output operand of another op-
eration; then, the template invokes itself recursively with the remains of the list as
argument.

1. [template public generateExpression(aSequence: Sequence(InputPin),

2. anOperator: String)]

3. [let firstElement: InputPin = aSequence->first()]

4. [if (aSequence->size() = 1)]

5. [firstElement.generateSourceSignalIdentifier()/]

6. [else]

7. [firstElement.generateSourceSignalIdentifier()/]

8. [anOperator/]

9. [aSequence->excluding(firstElement)->generateExpression(anOperator)/]

10. [/if]

CHAPTER 5. THE CODE GENERATOR 87

11. [/let]

12. [/template]

5.3.2 Generating the entity declaration of the design

According to Bailey et al., “the design entity is the primary hardware abstraction in
VHDL. It represents a portion of a hardware design that has well-defined inputs and
outputs and performs a well-defined function” [7]. The entity declaration section in a
design file defines the interface between the entity and the environment in which it is
used. VHDL supports the declaration of multiple elements in the entity declaration
section of a design file. However, this project only considers the definition of input,
output and input/output ports, which is generated by the following production rules
from the simplified grammar of VHDL:

〈entity_declaration〉 ::= ‘entity’ 〈identifier〉 ‘is’
〈port_clause〉
‘begin’

‘end’ ‘entity’ 〈identifier〉 ‘;’

〈port_clause〉 ::= ‘port’ ‘(’ 〈port_list〉 ‘)’ ‘;’

〈port_list〉 ::= 〈interface_signal_declaration〉
{ ‘;’ 〈interface_signal_declaration〉 }

〈interface_signal_declaration〉 ::= 〈identifier_list〉 ‘:’ 〈mode〉 〈subtype_indication〉

〈identifier_list〉 ::= 〈identifier〉 { ‘,’ 〈identifier〉 }

〈mode〉 ::= ‘in’

| ‘out’

| ‘inout’

〈subtype_indication〉 ::= 〈simple_name〉
| 〈slice_name〉

〈simple_name〉 ::= 〈identifier〉

〈slice_name〉 ::= 〈simple_name〉 ‘(’ 〈range〉 ‘)’

CHAPTER 5. THE CODE GENERATOR 88

〈range〉 ::= 〈integer〉 〈direction〉 〈integer〉

〈direction〉 ::= ‘to’

| ‘downto’

The transformation invokes the templates implementing the production rules on
every module in the source model to generate the source code declaring the entity
and its list of ports. The templates generating the list of ports retrieve the sequence
of activity parameter nodes, extended by instances of the stereotype BBParameter,
of the current module, and maps the nodes to statements declaring the corresponding
ports. However, there are two ports that can be included in the list that do not have
a matching parameter in the module: the port for the clock signal and the port for
the reset signal. The transformation includes the port for the clock signal whenever
the output of the current module, or the output of one of the modules it invokes,
is synchronized with an external event, or when the current module, or one of the
module it invokes, contains a switch. The transformation includes the port for the
reset signal whenever the current module, or one of the module it invokes, contains a
switch.

The templates below implement closely the production rules stated previously.
The first template, generateEntityDeclaration(), generates directly five terminal
symbols that make up the source code (“entity”, “is”, “begin”, “end”, “entity” and
“;”), and generates indirectly other symbols by calling other templates. The second
template, generatePortClause(), generates two more terminal symbols (“port”, “(”
and “)”), and generates indirectly the list of ports by calling generatePortList().
The last template traverses the collection of parameters of the module and gener-
ates the terminal symbols that make up the declarations of the ports, according to
the production rules in the previous grammar. The template generatePortList()

invokes other templates that retrieve values from the parameters of the module and
transfer them to the source code.

1. [template public generateEntityDeclaration(aModule: Activity)]

2. entity [aModule.generateEntityIdentifier()/] is

3. [aModule.generatePortClause()/]

4. begin

5. end entity [aModule.generateEntityIdentifier()/];

CHAPTER 5. THE CODE GENERATOR 89

6. [/template]

7.

8. [template public generatePortClause(aModule: Activity)]

9. port (

10. [aModule.generatePortList()/]

11.);

12. [/template]

13.

14. [template public generatePortList(aModule: Activity)]

15. [for (pn: ActivityParameterNode | aModule.getParameters()) separator(’;\n’)]

16. [pn.generatePortIdentifier()/]: [pn.generateMode()/] [pn.generateSubtypeIndication()/]

17. [/for]

18. [if (aModule.isSynchronized() or aModule.isReseted())];

19. clk: in bit

20. [if (aModule.isReseted())];

21. reset: in bit

22. [/if]

23. [/if]

24. [/template]

5.3.3 Generating the architecture body of the design

According to Bailey et al., “the architecture body specifies the relationships between
the inputs and outputs of a design entity and may be expressed in terms of struc-
ture, dataflow, or behavior” [7]. Thus, the architecture body section in the design
file describes the internals of the entity whose interface was defined in the entity
declaration section. The transformation generates architecture bodies describing the
internal structure of the entity, and the flow of data between the components of such
structure. The architecture body also declares a number of resources used by the
statements that describe the flow of data within the entity.

The resources defined in the architecture declarative part of a design file generated
by the transformation include: signals transporting information, enumeration types
defining literals to denote different states of a module, and the interface of the entities
used by the architecture. An architecture body describing a state machine requires the
declaration of an enumeration type and some signals, but does not require declaring
components. The architecture bodies in the design files for modules in models like
those in figures 4.16 and 4.19 do require the declaration of components, and a number
of signals.

CHAPTER 5. THE CODE GENERATOR 90

As an example, consider the templates and queries that generate the declarations
of the entities used by the architecture body for the module in progress. Although this
module may invoke many other modules many times, the corresponding architecture
declarative part needs only one reference to each of the invoked modules. Thus, the
main template must retrieve a set of invoked modules, not a collection of invoked
modules. For each element in this set, the main template generates terminal symbols
and calls the template that generates the list of ports illustrated above. The following
snapshot contains the template that generates the declarations and the query that
retrieves the set of modules.

1. [template public generateComponentDeclaration(aModule: Activity)]

2. [for (a: Activity | aModule.getCalledModules()) separator(’\n’)]

3. component [a.generateEntityIdentifier()/] is

4. [a.generatePortClause()/]

5. end component;

6. [/for]

7. [/template]

8.

9. [comment Returns a set of modules that are invoked by the calling operations in

10. the receiving module. /]

11. [query public getCalledModules(aModule: Activity): Set(Activity) =

12. aModule.getModuleCalls()

13. ->collect(cba: CallBehaviorAction | cba.getModule())

14. ->asSet()

15. /]

The language constructs in the architecture statement part of a design file include:
the instantiation of the components whose interface was declared in the architecture
declarative part, processes describing multiplexers or state machines, and concurrent
statements that compute and assign values to signals and ports. An architecture body
describing a state machine requires a process containing a sequential case statement
to switch between states, and a number of concurrent assignment statements. The
architecture bodies in the design files for other modules may require instantiating the
entities for other components, using processes describing multiplexers, and a number
of concurrent assignment statements.

As an example, consider the templates that generate a process statements with
a case statement for every switch in the module in progress. These process state-
ments describe the behavior of multiplexers according to the rules suggested by the

CHAPTER 5. THE CODE GENERATOR 91

Xilinx’s Synthesis and Simulation Design Guide [26]. Every process statement uses
a case statement to select one of the input signals and assign its value to the output
signal, depending on the value of a selector signal, whose value is driven by the entity
corresponding to the state machine associated to the switch. Thus, when a module
uses a switch, the transformation generates an entity for the state machine associated
to the switch, declares and instantiates such entity in the architecture of the module
containing the switch, and defines the process statement describing the multiplexer.

1. [template public generateProcessStatement(aModule: Activity)]

2. [for (cba: CallBehaviorAction | aModule.getSwitchOperations()) separator(’\n’)]

3. [cba.getName().concat(’_mux_process’)/]: process([cba.generateSensitivityList()/]) is

4. begin

5. [cba.generateCaseStatement()/]

6. end process [cba.getName().concat(’_mux_process’)/];

7. [/for]

8. [/template]

9.

10. [template public generateSensitivityList(aSwitch: CallBehaviorAction)]

11. [for (ip: InputPin | aSwitch.getInputs()) separator(’, ’) after(’, ’)]

12. [ip.generateSourceSignalIdentifier()/]

13. [/for]

14. [aSwitch.getStateMachine().generateSignalIdentifier()/]

15. [/template]

16.

17. [template public generateCaseStatement(aSwitch: CallBehaviorAction)]

18. case [aSwitch.getStateMachine().generateSignalIdentifier()/] is

19. [aSwitch.generateCaseStatementAlternative()/]

20. end case;

21. [/template]

22.

23. [template public generateCaseStatementAlternative(aSwitch: CallBehaviorAction)]

24. [for (p: Parameter | aSwitch.getStateMachine().getInputParameters())]

25. when [aSwitch.getStateMachine().generateWaveform(aSwitch.getStateMachine().getIndex(p) - 1)/]

26. => [aSwitch.getOutput(1).generateTargetSignalIdentifier()/] <=

27. [p.getMatchingOperand(aSwitch).generateSourceSignalIdentifier()/];

28. [/for]

29. when others

30. => [aSwitch.getOutput(1).generateTargetSignalIdentifier()/] <=

31. [aSwitch.getInputs()->last().generateSourceSignalIdentifier()/];

32. [/template]

CHAPTER 5. THE CODE GENERATOR 92

5.4 Results of simulation

Figure 5.4 illustrates the results of simulating the descriptions in VHDL corresponding
to the modules in Figure 4.16. The main entity in the description corresponds to the
module in Figure 4.16(a), and has a pipelined architecture where every stage computes
one segment of the key scheduler and one round of the Feistel network. The functional
simulation of the description in VHDL for KASUMI uses the standard test vectors
provided by the Third Generation Partnership Program (3GPP), which exercise all
of the components of the architecture [2].

The pipelined design requires eight clock cycles to encrypt the first 64-bit plaintext
block and then issues one ciphertext block every clock cycle. During the first clock
cycle (Figure 5.4(a)) the architecture is fed with the first plaintext block and the
first key, during the second and third clock cycles (Figure 5.4(a) and Figure 5.4(b))
new data is provided to the architecture. From the eighth clock cycle to the tenth
clock cycle (Figure 5.4(d) and Figure 5.4(e)) the architecture generates the resulting
ciphertext blocks. These results prove that the transformation tool generated correct
hardware descriptions in VHDL from the models in Figure 4.16.

Figure 5.5 illustrates the waveforms resulting of simulating the descriptions in
VHDL corresponding to the modules in Figure 4.18. As mentioned in the previous
chapter, the compact model of KASUMI describes an iterative variant of the algorithm
that takes 16 iterations to cipher an input block. The corresponding implementation
in VHDL takes one clock cycle to complete one iteration; thus, it has a latency of 16
clock cycles per block. As a consequence, this implementation does receive new input
blocks until it has finished processing the current one. Since this implementation
takes two clock cycles to complete one round, it must receive a new set of round keys
({KLi, KOi, KIi}, i = 1, 2, . . . , 8) every two clock cycles. Finally, notice in figures
5.5(a) to 5.5(h) that the implementation produces intermediate results, which are fed
back to the input, until the final result is produced at the sixteenth clock cycle.

Let us consider the model for 128-bit KOA in Figure 4.19, whose main module
is illustrated in Figure 4.19(a). The module in Figure 4.19(a) invokes the modules
in figures 4.19(e) and 4.19(f), each iterating over the module representing a shift
register shown in Figure 4.19(d). The LFSR in Figure 4.19(e) iterates over the basic

CHAPTER 5. THE CODE GENERATOR 93

(a)

(b)

(c)

(d)

(e)

Figure 5.4: Results of the simulation of the description in VHDL implementing KA-
SUMI.

CHAPTER 5. THE CODE GENERATOR 94

(a)

(b)

(c)

Figure 5.5: Results of the simulation of the description in VHDL implementing the
simplified KASUMI.

CHAPTER 5. THE CODE GENERATOR 95

(d)

(e)

(f)

Figure 5.5: Results of the simulation of the description in VHDL implementing the
simplified KASUMI (cont.)

CHAPTER 5. THE CODE GENERATOR 96

(g)

(h)

Figure 5.5: Results of the simulation of the description in VHDL implementing the
simplified KASUMI (cont.)

CHAPTER 5. THE CODE GENERATOR 97

shift register 64 times, and the LFSR in Figure 4.19(f) iterates over the basic shift
register 128 times. At the level of abstraction of the model, the module for 128-bit
KOA waits for the modules for LFSR-128 and LFSR-64 to complete their iterations,
and then computes the final result. At the level of abstraction of the description in
VHDL, the entity for 128-bit KOA waits a number of clock cycles for the entities
for LFSR-128 and LFSR-64 to complete their operation, and then computes the final
result.

Figure 5.6 shows the results of the functional simulation of the entity generated
from the model of 128-bit KOA. This entity takes 130 clock cycles to multiply the
two 128-bit integer operands, because 130 is the number of clock cycles required to
complete the execution of the LFSR with longer latency. Figures 5.6(a) and 5.6(b)
illustrate the first two clock cycles of the simulation, during which the state machines
of the two LFSR entities are set to their initial states. Figures 5.6(c) and 5.6(d) show
the transition of the LFSR entity with shorter latency from the its last state to its
initial state, meanwhile the other LFSR continues its iteration. Finally, Figure 5.6(e)
illustrates completion of iteration of the LFSR entity with longer latency, and the
product of the input integers. The values of the input 128-bit integers must be hold
during the latency period of the 128-bit KOA entity for it to compute a correct result.

5.5 Discussion

The waveforms illustrated in figures 5.4, 5.5 and 5.6 provide evidence that the trans-
formation generates VHDL code whose behaviour matches the functional descrip-
tion indicated by the model. This code is structural because it contains only signal
assignment statements, instantiation and interconnection of entities, and processes
implementing multiplexors and state machines. Thus, the descriptions in VHDL pro-
duced by the design are synthesizable and ready to produce a configuration for a
hardware platform like an FPGA. The profile of UML 2 and the transformation tool
describe and process arbitrarily complex models describing a hierarchical composition
of modules.

The transformation does not produce optimized VHDL code, which is its main

CHAPTER 5. THE CODE GENERATOR 98

(a)

(b)

(c)

(d)

(e)

Figure 5.6: Results of the simulation of the description in VHDL implementing KOA
and LFSR.

CHAPTER 5. THE CODE GENERATOR 99

limitation. Implementing techniques that generate code using as few signals and as-
signment statements as possible requires more development time and resources, and
detect hazardous conditions in the high-level models, like combinational feedback
loops. Adding these optimization and analysis mechanisms would produce efficient
implementations, and help designers take better decisions based on information pro-
vided by an automatic analysis of the source models.

In spite of the limitations, the evidence indicates that the goal of implementing
a functional design flow from UML 2 models down to VHDL code was met satisfac-
torily. The profile of UML 2 allows the designer to represent the flow of information
mandated by an algorithm correctly, and the transformation interprets this data flow
and generates structural VHDL code effectively. After the successful implementation
and testing of the design flow described in the previous chapters, it is time to dis-
cuss a possible way to measure its impact in productivity, and its integration with a
well-known methodology to design software systems.

Chapter 6

Processes, methods and metrics

This dissertation shows that it is possible to use a contemporary technology to en-
gineer software in the design of digital hardware systems. This is feasible due to
the similarities between the tasks of developing software systems and describing the
functionality of digital hardware systems at the level of abstraction provided by ESL.
This situation raises the questions: is it possible to use standard processes, methods
and metrics defined for software engineering projects, along with the proposed design
framework, in a digital hardware design project? how to adapt such processes, meth-
ods and metrics to the domain of digital hardware systems to obtain quality products
in a timely manner? This chapter identifies a modern software process that can be
extended by the proposed design flow, and used to support the activities of digital
hardware designers. In addition, this chapter suggests a methodology to measure the
impact of the proposed design flow in the productivity of designers.

6.1 It is all about quality

Figure 6.1 shows that any software engineering project is founded on a strong commit-
ment to comply with the highest level of quality possible. Pressman defines software
quality as “an effective software process applied in a manner that creates a useful
product that provides measurable value for those who produce it and those who use
it” [54]. The standard 9126 from the International Organization for Standardization

100

CHAPTER 6. PROCESSES, METHODS AND METRICS 101

Figure 6.1: The layers of a software engineering task (from [54]).

(ISO) defines quality of software products in terms of a number of attributes that
can be measured [27]. The internal attributes of a software system are evaluated
by measuring intermediate products generated during the process, the external at-
tributes are evaluated by measuring parameters during the execution of the system,
and quality in use attributes are evaluated by measuring the effects of the software
product. Internal and external attributes include: functionality, reliability, usability,
efficiency, maintainability and portability. The attributes related to quality in use
include: effectiveness, productivity, safety and satisfaction.

The software process defines the management tasks controlling the development of
the project, which indicate what methods to apply and when they are required, what
artifacts to produce and when they are needed, what milestones to establish, and
how to cope with changes. The methods provide technical guidance on how to carry
out requirements engineering, design, modeling, implementation, testing, deployment
and maintenance. The tools are computer programs that aid in every phase of the
process and ease the application of methods; it is desirable that all of the tools share
information flawlessly and are integrated as much as possible.

Now, what does quality mean in the world of digital hardware design? Rabaey
et al. describe the following measurable properties that allow designers to quantify
the quality of a digital hardware system: cost, functionality, robustness, performance
and energy consumption [56]. Depending on the problem to solve, some of these

CHAPTER 6. PROCESSES, METHODS AND METRICS 102

properties can be more relevant than the others. The effort to achieve higher levels of
design quality led to the foundation of the International Society for Quality Electronic
Design (ISQED), which promotes quality and innovation in the design of electronic
and electro-mechanical systems. The rest of this chapter discusses how to adapt
software processes and metrics to the realm of digital hardware design with the goal
of achieving higher levels of quality.

6.2 Related work

Protheroe et al. claim that it is possible to quantify quality of a digital hardware
system by the ratio of the measure of complexity of the functional description of a
system (CD), written in VHDL, to the measure of complexity of the implementation of
the system (CI) [55]. This statement is based on the argument that quality is inversely
proportional to complexity. The measure of complexity of the functional description
depends, in an unrevealed way, on the following data: number of lines of code, the
number of branch statements in the flow of control, and the number of input/output
ports and signals in the description. The data on which the measure of complexity of
the implementation depends are: the number of hardware resources consumed by the
implementation in the target platform, the cost of testing, and the cost incurred as a
result of failure of the design. The authors conclude that the quality improves as the
complexity of the implementation decreases, and that it is possible to predict the cost
in terms of hardware resources (a parameter in CI) from the parameters defining the
complexity of the description (CD). This document does not suggest methods and
tools to collect the required measures, and does not indicate which software process
could be adapted to evaluate quality for digital hardware systems either.

Dias et al. state that the quality of a digital hardware system is “a measure of the
fulfillment of a given set of valued characteristics” [18]. The valued characteristics
considered by the authors are: modularity, testability and diagnostic capability, which
are evaluated for the functional description of the system, and for its implementation.
The authors emphasize the importance of describing the functionality of systems ac-
cording to a “design for testability” spirit, and propose their own methodology to

CHAPTER 6. PROCESSES, METHODS AND METRICS 103

optimize the functional descriptions for modularity and testability. At the implemen-
tation level, the authors’ methodology estimates the effectiveness of the optimizations
at the functional description level through tests, and evaluates the quality of the test-
ing process by using metrics of the defects detected in the implemented system. This
work does not take into account software processes, but highlights the importance
of applying metrics related to object-oriented design during the development of the
functional descriptions.

6.3 Proposal for a software process and metrics

This section describes the proposed modifications to a standard software process to
adapt it to the functional description of digital hardware systems with model-driven
technologies. The description of the proposal considers the implementation of the
digital hardware systems using only FPGAs because FPGAs allow fast prototyping
and short development cycles. The modification of the software process to support
design flows for VLSI ASICs is beyond the scope of this project. The analysis pre-
sented in this section is based on the work carried out by Watts S. Humphrey that
led to the definition of the Personal Software Process [24].

6.3.1 Principles of the proposal

Defining a new software process is by far a complex task, and an unnecessary one if
considering the inclusion of the modeling language and the synthesis tool described
in the previous chapters in a development process. Thus, to devise a software process
where the proposed design flow plays a key role, we can take an existing one and
suggest extensions or modifications. Now, what of the existing software processes is
the best candidate for extension? The best candidate is the one that meets a number
of requirements defined in terms of the current status of this project, and the resources
required to implement a process using an incipient technology.

The requirements that the candidate software process must meet are:

Personal. The process shall provide the mechanisms and metrics to evaluate success
at the personal level, not only at the team or organisational level.

CHAPTER 6. PROCESSES, METHODS AND METRICS 104

Adaptable. The process must not be tied to a programming language or design flow.
It must be possible to apply it using any language or methodology.

Proven. The process must have been used in industry for a while.

Simple. The documentation of the process must be understandable and relatively
short.

The process that meets the previous requirements is the Personal Software Process,
released in 1993 and widely adopted by the software industry, specifically by compa-
nies like Microsoft and Motorola.

The design flow described in previous chapters does not imply a radical deviation
from the methods and techniques used to design and build software systems. However,
there are a number of design phases to perform to implement a description in VHDL
in a FPGA platform: synthesis of the functional description in VHDL, place and
route, back annotation, post-synthesis simulation, and testing. The methods, logs
and metrics of the extended PSP may take into account the information gathered
during each of these phases using appropriate metrics. In this manner, the extended
PSP for the design and development of digital hardware systems may reach its goal
of generating products with the minimum number of defects on time and within the
budget planned.

6.3.2 Introduction to the Personal Software Process

According to Humphrey, “when the engineers use PSP, the recommended process
goal is to produce zero-defect products on schedule and within planned costs”. PSP
recognizes that the performance of every engineer is different, and can be evaluated
by measuring the time the engineer spends on each step, the defects that the engineer
introduces and fixes, and the size of the engineer’s final products. PSP also recognizes
that planning plays a crucial role, and encourages the engineers to plan their work
before committing to or starting on a job. The engineers base their plans on personal
information from previous projects and estimates for the current project. PSP has
a strong commitment to quality, and encourages engineers to feel responsible for the

CHAPTER 6. PROCESSES, METHODS AND METRICS 105

Figure 6.2: Process flow for Personal Software Process (from [24]).

quality of their products, measure and track product quality, and analyze the results
of the project to improve their personal processes.

Figure 6.2 illustrates the phases of PSP and the data generated from them. The
process starts, as any engineering process, with a requirements specification that is
the input to the first phase: planning. The engineers perform every phase by following
the instructions of the corresponding script, and record data about the time it takes to
complete tasks, and the defects detected and fixed, in the corresponding log. The last
phase, postmortem, is very important because it allows the engineers to summarize
data about time and defects, measure the size of the resulting product, and use this
information to detect and correct flaws in the performance of every engineer. The
engineers store this information in a report that can be retrieved during the planning
process of a future project to compute estimates for that project.

PSP defines quality in terms of the number of defects found and corrected in
the software product. Thus, the main objective of this process is to find and fix
as many defects as possible before every compilation or test of the software system.
Phases design review and code review, illustrated in the diagram in Figure 6.2, allow
the engineers to inspect their work personally, before compiling and testing, to find

CHAPTER 6. PROCESSES, METHODS AND METRICS 106

defects that are so common that they are injected repeatedly. Well-trained engineers
are able to find and correct many defects per hour, and understand their designs
thoroughly to avoid making mistakes.

Humphrey indicates that collecting information about the size of the software
system produced, amount of time required by every task of the process, and number
of defects detected and fixed enables the engineers to compute a set of measures
of quality. No single measure characterizes the overall quality of a system, but the
full set of measures does provide engineers with more reliable information about
quality. The principal metrics of quality considered by PSP are: defect density,
review rate, development time ratios, defect rations, yield, defects per hour, defect
removal leverage, and appraisal to failure ratio (A/FR).

6.4 Evaluation of productivity

It is necessary to measure the productivity of the employees of an organization to
improve it. The process of developing software systems has many commonalties with
the process of describing the functionality of digital hardware systems; thus, the
discussion about the evaluation of productivity when using the proposed design flow
relies on estimations of productivity defined for software development processes. This
clause indicates that the same principles apply when evaluating productivity during
the process of designing digital hardware systems.

6.4.1 Measures of productivity

A software development process receives a set of requirements as inputs and produces
a software system as its output after consuming a number of resources. According to
Card and Yu et al. [62], the conceptual software development productivity is the ratio
of the measurement of the output produced and the measurement of the resources
consumed:

productivity =
output produced

resources consumed
(6.1)

It is necessary to define, in a clear and objective way, what the measurement of
output and resources are, and howÊto compute them, to make software productivity

CHAPTER 6. PROCESSES, METHODS AND METRICS 107

measurements meaningful.
A common metric of the output produced by the software development process is

the estimation of the size of the system released and delivered to the customer. There
are two criteria to compute the size of a software system:

Lines of code. The number of uncommented sentences in the source code of the
system released. These sentences of production source code can be classified
into three classes:

• New code.

• Ported or reused code.

• Code modified as a result of changes required and bug fixes.

The total size equals a weighted sum of the sizes of the different classes of source
code.

The support code, employed to build and test production code, is not released
to customers. It is not usually considered for productivity evaluation either,
but if it is, the considerable resources needed to develop it must be taken into
account in the denominator of Expression 6.1 [62].

Amount of functionality. The amount of functionality provided by a software sys-
tem can be estimated by a breakdown of its principal data inputs and outputs
[3].

The general approach is to list and count the number of external user inputs,
user inquires to the system, outputs, and files generated by the software system.
These elements are the external manifestation of the system, and cover all of its
functionality. The inputs and outputs are counted individually, and weighted
with values indicating the importance of the function that consumes the input,
or generates the output. The weighted sum of the counters of inputs and outputs
is a function point.

The resources consumed during the development process include effort, computing
and networking costs, and compensation of personnel [62]. The metrics employed to
express the amount of resources consumed are:

CHAPTER 6. PROCESSES, METHODS AND METRICS 108

• For development effort, it is possible to use any of the typical man-year, man-
month, man-day, man-hour, staff-year, staff-month, or staff-day, staff-hour mea-
sures.

• For cost a monetary unit like dollars (USD).

Each organization must select the metrics for the parameters of the Expression
6.1 based on the availability of reliable measurement methods and tools [62], and
construct a suitable indicator that considers the multiple factors that affect produc-
tivity. For instance, Figure 1.1 illustrates the increase in the rate of productivity in
the semiconductor industry along the last 20 years. The computation of this rate uses
the transistors per staff-month metric derived from Expression 6.1 when the metric
of size of an electronic system is set to its number of transistors.

6.4.2 Proposed methodology to measure productivity

Previous chapters identified design complexity as a factor having a significant impact
on the productivity of the development team of digital hardware systems. Each
development team in an organization must identify the set of factors that prevent it
from reaching higher levels of productivity; if design complexity is one of them, the
team should consider using a high level design flow. In addition, the team must adopt
appropriate mechanisms to alleviate the impact of the rest of the factors.

The evaluation of productivity during the development process of a digital hard-
ware system is required to prove that a design flow based on MDA helps to alleviate
design complexity. The proposal to evaluate productivity uses Expression 6.1, where
the output_produced parameter provides a measurement of functionality of the sys-
tem, and the resources_consumed parameter provides a measurement of the effort
required to describe the functionality of the system using the man-day unit. The
reasons for selecting these parameters are the following:

• The designer’s primary concern is to describe the system’s functionality using
models instead of writing code, which will be automatically generated. The
customer’s primary concern is that the system meets the functional requirements
and be delivered on time.

CHAPTER 6. PROCESSES, METHODS AND METRICS 109

• A typical resource that can be consumed during a research project is human
effort. Money is not always available as required.

The proposed strategy to measure productivity is as follows:

1. Select two digital communication systems whose functionality can be modeled
using the proposed design flow and an RTL design flow.

2. Set a development environment where the major factor impacting productiv-
ity is design complexity, and the impact of the remaining factors, like people
experience, is minimum.

3. For each of the systems selected use a conventional RTL design flow, and the
proposed design flow based on MDA, to describe and implement them. The
output of both processes should be a validated VHDL code of the systems.

4. Use function points to compute the amount of functionality implemented ev-
ery day and keep records. Additionally, keep records of the effective time the
designer spent on describing such functionality; do not include breaks. This
recording requires a software tool that keeps track of the relevant information,
and automates the computation of productivity.

5. Define a scale that ranks productivity measurements and classifies them as low,
satisfactory, good or high.

6. Compare the productivity measurements after completion of the two design
flows. The conditions under which the two design processes are executed must
be the same to guarantee fair comparisons. There is no sense in comparing pro-
ductivity estimations for the proposed design flow with estimations from other
people that executed different development processes under different conditions.

6.5 Discussion

Evaluation of productivity requires a careful and controlled planning of tests, software
tools, procedures and metrics. In addition, it requires a pilot team of designers with

CHAPTER 6. PROCESSES, METHODS AND METRICS 110

a certain level of experience and skills. Finally, evaluation of productivity requires
time during which the designers perform tests, exercise the development tools, and
gather data. Unfortunately, it was not possible to set up the infrastructure and
gather the human resources required to perform accurate evaluations for this project.
However, the software process and methodology described in previous clauses can still
be adapted to work well in projects to design complex digital hardware systems.

Adapting the processes and methodologies of software engineering to the realm
of digital hardware design makes sense because of the nature of current development
tools and languages. Of course, there are issues related to the implementation of elec-
tronic circuits that are not present during the development of software systems, but
both development processes share similarities to a large extent. Adapting and unify-
ing the processes and methodologies in such a way that they work with appropriate
changes for both worlds may be an attractive field of study. Among the variations
are the use of different parameters to estimate productivity.

Chapter 7

Conclusions

This dissertation described a domain-specific modeling language that allows the de-
signer to describe algorithms processing bit-blocks using graphical high-level abstrac-
tions, and a synthesis tool that transforms such descriptions into VHDL design files
that can be implemented in a hardware platform. This chapter discusses results,
indicates future challenges, and summarizes the contributions of this project.

7.1 Concluding remarks

This dissertation provided evidence that it is possible to apply the paradigm of model-
driven engineering to the development of digital hardware systems. This dissertation
described a design flow consisting of a domain-specific modeling language and a trans-
formation tool that isolates the designer from low-level abstractions in the digital
circuit world. In spite of its early stage, the design flow can be used to describe a
number of algorithms, synthesize VHDL code from them, and simulate these descrip-
tions using standard test vectors. Finally, this dissertation contributed to the state
of the art of EDA by providing designers with a tool that raises the level of abstrac-
tion when describing the functionality of a digital hardware system. According to an
anonymous reviewer of one of our publications, the proposal is commendable because
“the effort of using a high level abstraction language in describing a hardware design
has indeed become necessary, as engineering problems are getting more complicated

111

CHAPTER 7. CONCLUSIONS 112

continuously”.
Since model-driven engineering is an incipient technology, the supporting soft-

ware tools and specifications are subject to improvements. On the one hand, although
software technologies allowing software engineers to write model-to-model and model-
to-text transformations have reached a functional state, their performance must be
improved. On the other hand, some specifications also require refinement to make
them more manageable and powerful. For instance, UML 2 supports the construction
of different kinds of detailed diagrams at the cost of having a complex meta-model
populated by hundreds of interrelated meta-classes. Also, Acceleo inherited the limi-
tations of OCL to perform complex operations on collections.

The material in this document can be used as a starting point for other projects
that intend to exploit the paradigm of model-driven development. This dissertation
provided the reader with basic concepts like meta-modeling, the meta-model of UML
2, profiles and model-to-text transformations. Interested readers may expand this
knowledge further by examining the existing literature and experimenting with the
software tools available. The interested developer can also experiment further with
the software tools, based on Eclipse and EMF, to build models and write model-to-
model [28] and model-to-text transformations [41].

The last chapter of this dissertation provided suggestions on extending an existing
software process with the proposed design flow and useful metrics. The application
of software processes to management of digital hardware system development may
be an attractive area of research; an idea supported by the growing number of ESL
technologies available at the EDA market currently. The unification resulting from
applying software processes to the world of digital hardware systems may result in
a meta-process that can be instantiated to different applications domains, not only
software engineering or hardware engineering. These modeling and meta-modeling
tasks can be supported by Software Process Engineering Metamodel (SPEM) version
2, a profile of UML 2 [50].

CHAPTER 7. CONCLUSIONS 113

7.2 Future work

There are a number of directions that can be addressed to extend this project. First,
analyzing the convenience of using a different meta-model as the base for the domain-
specific modeling language. The meta-model of UML 2 is difficult to follow due to
the large number of meta-classes and associations it contains. However, the advan-
tages of UML 2 are its standardization, its openness, its widespread use by students
and practitioners, and the availability of many software tools supporting it. Other
commercial meta-models, like SCADE [61] and MetaEdit+ [30], lack one or more of
these advantages.

Second, building a stand-alone integrated design environment (IDE) that gathers
the modeling tool, the proposed synthesizer, the compiler of VHDL, and the simulator.
It is necessary to have all of the development tools available in a single environment,
but it is not necessary to build this environment from scratch. The modeling and
development engines work on top of Eclipse, but not the VHDL compiler and simu-
lator. There are plug-ins for VHDL that work on top of Eclipse and can be used to
integrate all of the components within a single environment. Some issues that require
resolution are the exchange of modeling projects between installations of the same
development environment in different platforms, and between different development
environments. The experience is that exchanging models between tools from different
vendors through XMI does not work well.

Third, executing and validating models before synthesis. It is desirable to validate
the system at modeling phase, not only at a phase after synthesis to VHDL. In this
respect, the expectation from the developer is that the models are able to get executed,
receive inputs and produce outputs transparently. Stephen Mellor proposed the idea
of adding an action language to UML that allowed the model to create instances of
classes, establish associations, perform operations on attributes, or call state events
[36]. As a consequence, the OMG released a specification for precise semantics for an
executable subset of UML 2, or Foundational UML (fUML), on February 2011 [51].
The specification of the action language for this subset of UML 2, or Action Language
for fUML (Alf), is still in beta form. Therefore, no implementation is ready yet.

Fourth, building a transformation tool that generates source code that includes

CHAPTER 7. CONCLUSIONS 114

components and intellectual property (IP) cores for a specific family of FPGAs. Thus,
it is possible to develop a set of domain-specific modeling languages for different
application domains, and write a family of transformation tools, each transforming
models in a modeling language to an implementation for the corresponding platform.

7.3 Contributions

The main contributions of this project, as stated previously, are a domain-specific
modeling language, and a transformation tool from the high-level models to VHDL.
The proposed profile is suitable for standardization, so other people can use it to build
their own transformations to other languages and platforms, or extend it to support
a related application domain. This dissertation, to a lesser extent, also intends to
provide the reader with a tutorial on adapting the meta-model of UML 2 to an
application domain through profiles, and develop model-to-text transformations with
Acceleo.

7.4 Publications

During the last years, we published one paper in the proceedings of an international
conference, a book chapter and a paper in a journal indexed by the Journal Citations
Reports. These documents are the following:

1. Balderas-Contreras, T., Rodríguez-Gómez, G. and Cumplido, R. On Model-
Driven Engineering of Reconfigurable Digital Control Hardware Systems. Re-
configurable Embedded Control Systems: Applications for Flexibility and Agility.
Editors: Khalgui, M. and Hanisch, H. pp. 190–208. IGI Global. 2011. DOI:
10.4018/978-1-60960-086-0.ch008.

2. Balderas-Contreras, T., Rodríguez-Gómez, G. and Cumplido, R. A UML 2.0
Profile to Model Block Cipher Algorithms. In Proceedings of the 6th European
Conference on modeling Foundations and Applications (ECMFA 2010). pp. 20–
31. Lecture Notes in Computer Science, Volume 6138. 2010. DOI: 10.1007/978-
3-642-13595-8_4.

CHAPTER 7. CONCLUSIONS 115

3. Balderas-Contreras, T., Cumplido, R. and Rodríguez-Gómez, G. Synthesizing
VHDL from Activity Models in UML 2. International Journal of Circuit Theory
and Applications. 2012. DOI: 10.1002/cta.1874.

Additionally, the following documents were submitted for review to different jour-
nals indexed by the Journal Citations Reports:

1. Balderas-Contreras, T., Cumplido, R. and Rodríguez-Gómez, G. Using Model-
Driven Development to Educate Software Engineers in the Design of Digital
Hardware Systems. Submitted for review to International Journal of Electrical
Engineering Education.

2. Balderas-Contreras, T., Rodríguez-Gómez, G. and Cumplido, R. Programming
with Domain-Specific Models in the Unified Modeling Language Version 2. Sub-
mitted for review to Software: Practice and Experience.

Bibliography

[1] 3GPP. Specification of the 3GPP Confidentiality and Integrity Algorithms; Doc-
ument 2: KASUMI Specification. Technical Report 3GPP TS 35.202 version 9.0.0
Release 9, 3rd Generation Partnership Program, 2009.

[2] 3GPP. Specification of the 3GPP Confidentiality and Integrity Algorithms; Doc-
ument 3: Implementors’ Test Data. Technical Report 3GPP TS 35.203 version
9.0.0 Release 9, 3rd Generation Partnership Program, 2009.

[3] A. J. Albrecht and J. E. Gaffney. Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation. IEEE Trans.
Softw. Eng., 9(6):639–648, November 1983.

[4] David Arditti Ilitzky, Jeffrey D. Hoffman, Anthony Chun, and Brando Perez Es-
parza. Architecture of the Scalable Communications Core’s Network on Chip.
IEEE Micro, 27:62–74, September 2007.

[5] Colin Atkinson and Thomas Kühne. Model-driven Development: A Metamod-
eling Foundation. IEEE Software, 20:36–41, September 2003.

[6] Colin Atkinson and Thomas Kühne. A Tour of Language Customization Con-
cepts. Advances in Computers, 70:105–161, 2007.

[7] Stephen A. Bailey, Peter J. Ashenden, J. Bhasker, Dennis Brophy, Patrick K.
Bryant, Ernst Christen, Wolfgang Ecker, Masamichi Kawarabayashi, Robert H.
Klenke, Satoshi Kojima, Jim Lewis, Paul J. Menchini, Jean P. Mermet, Gre-
gory D. Peterson, Lance G. Thompson, Alain Vachoux, and John Willis. IEEE

116

BIBLIOGRAPHY 117

Standard VHDL Language Reference Manual. Technical Report IEEE Standard
1076-2002, IEEE Computer Society, 2002.

[8] Tomás Balderas-Contreras. Hardware/Software Implementation of the Security
Functions for Third Generation Cellular Networks. Master’s thesis, Instituto
Nacional de Astrofísica Óptica y Electrónica, Tonantzintla, Puebla. MEXICO,
Dec 2004.

[9] Imène Benkermi, Mohamed El Amine Benkhelifa, Daniel Chillet, Sébastien Pille-
ment, Jean-Christophe Prévotet, and François Verdier. System-Level Modelling
for Reconfigurable SoCs. In Proceedings of the 20th Conference on Design of
Circuits and Integrated Systems (DCIS), Lisboa, Portugal, November 2005.

[10] Dag Björklund. The SMDL Statechart Description Language: Design, Semantics
and Implementation. Master’s thesis, Åbo Akademi University, Turku, Finland,
Nov 2001.

[11] Dag Björklund and Johan Lilius. From UML Behavioral Descriptions to Efficient
Synthesizable VHDL. In Proceedings of the Proceedings of the 20th IEEE Norchip
Conference, NORCHIP02, 2002.

[12] Grady Booch, Robert Maksimchuk, Michael Engle, Bobbi Young, Jim Conallen,
and Kelli Houston. Object-oriented Analysis and Design with Applications, Third
Edition. Addison-Wesley Professional, third edition, 2007.

[13] Jorge Castiñeira Moreira and Patrick Guy Farrell. Essentials of Error-Control
Coding. John Wiley & Sons, Ltd, Chichester, West Sussex, England, 2006.

[14] International Roadmap Committee. Design. In International Technology
Roadmap for Semiconductors. 2007.

[15] Frank P. Coyle and Mitchell A. Thornton. From UML to HDL: a Model Driven
Architectural Approach to Hardware-Software Co-Design. In Proceedings of In-
formation Systems: New Generations Conference, ISNG, pages 88–93, 2005.

BIBLIOGRAPHY 118

[16] Eduardo Cuevas-Farfán. Reducción Polinomial Mediante LFSR para Multipli-
cador KOA en GF (2163). Technical report, Instituto Nacional de Astrofísica
Óptica y Electrónica, Tonantzintla, Puebla. MEXICO, May 2012.

[17] Douglas Densmore, Roberto Passerone, and Alberto Sangiovanni-Vincentelli. A
Platform-Based Taxonomy for ESL Design. IEEE Design and Test of Computers,
23:359–374, September 2006.

[18] O. P. Dias, J. Semião, M. B. Santos, I. M. Teixeira, and J. P. Teixeira. Quality
of Electronic Design: From Architectural Level to Test Coverage. In Proceedings
of the 1st International Symposium on Quality of Electronic Design, ISQED ’00,
pages 197–202, Washington, DC, USA, 2000. IEEE Computer Society.

[19] Stephen A. Edwards. The Challenges of Synthesizing Hardware from C-Like
Languages. IEEE Design and Test of Computers, 23:375–386, September 2006.

[20] Michael J. Flynn and Patrick Hung. Microprocessor Design Issues: Thoughts on
the Road Ahead. IEEE Micro, 25:16–31, May 2005.

[21] David Frankel. Model Driven Architecture: Applying MDA to Enterprise Com-
puting. John Wiley & Sons, Inc., New York, NY, USA, 2002.

[22] Sébastien Gérard. Papyrus User Guide Series. About UML Profiling. Version
1.0.0. Technical report, CEA LIST Institute, 2011.

[23] Timothy J. Grose, Gary C. Doney, and Stephen A. Brodsky. Mastering XMI:
Java Programming with XMI, XML and UML. John Wiley & Sons, Inc., New
York, NY, USA, 2001.

[24] Watts S. Humphrey. The Personal Software Process (PSP). Technical Report
CMU/SEI-2000-TR-022, Carnegie Mellon Software Engineering Institute, 2000.

[25] Agility Design Solutions Inc. Handel-C Language Reference Manual. Technical
Report RM-1003-4.4, Agility Design Solutions Inc., 2007.

[26] Xilinx Inc. Synthesis and Simulation Design Guide. Technical Report UG626,
Xilinx Inc., 2011.

BIBLIOGRAPHY 119

[27] ISO/IEC. Software Engineering - Product Quality - Part 1: Quality Model.
Technical Report ISO/IEC 9126-1:2001, International Organization for Stan-
dardization/International Electrotechnical Commission, 2001.

[28] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev, and Patrick Val-
duriez. ATL: a QVT-like transformation language. In Companion to the 21st
ACM SIGPLAN Symposium on Object-oriented Programming Systems, Lan-
guages, and Applications, OOPSLA ’06, pages 719–720, New York, NY, USA,
2006. ACM.

[29] Anatolii Karatsuba and Yuri Ofman. Multiplication of Many-Digital Numbers by
Automatic Computers. Proceedings of the USSR Academy of Sciences, 145:293–
294, 1962.

[30] Steven Kelly, Kalle Lyytinen, and Matti Rossi. MetaEdit+: A Fully Configurable
Multi-User and Multi-Tool CASE and CAME Environment. In Proceedings of
the 8th International Conference on Advances Information System Engineering,
pages 1–21, London, UK, 1996. Springer-Verlag.

[31] Stuart Kent. Model Driven Engineering. In Proceedings of the Third Inter-
national Conference on Integrated Formal Methods, IFM ’02, pages 286–298,
London, UK, UK, 2002. Springer-Verlag.

[32] Thomas Kühne. Contrasting Classification with Generalisation. In Proceedings of
the Sixth Asia-Pacific Conference on Conceptual Modeling - Volume 96, APCCM
’09, pages 71–78, Darlinghurst, Australia, Australia, 2009. Australian Computer
Society, Inc.

[33] Luciano Lavagno, Grant Martin, and Louis Scheffer. Electronic Design Automa-
tion for Integrated Circuits Handbook - 2 Volume Set. CRC Press, Inc., Boca
Raton, FL, USA, 2006.

[34] Gérard Le Lann. An Analysis of the Ariane 5 Flight 501 Failure - A System
Engineering Perspective. In Proceedings of the 1997 International Conference on

BIBLIOGRAPHY 120

Engineering of Computer-based Systems, ECBS’97, pages 339–346, Washington,
DC, USA, 1997. IEEE Computer Society.

[35] Grant Martin, Brian Bailey, and Andrew Piziali. ESL Design and Verification:
A Prescription for Electronic System Level Methodology. Morgan Kaufmann,
San Francisco, CA, USA, 2007. 488p.

[36] Stephen J. Mellor and Marc Balcer. Executable UML: A Foundation for Model-
Driven Architectures. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002.

[37] Stephen J. Mellor, John R. Wolfe, and Campbell McCausland. Why Systems-on-
Chip needs More UML like a Hole in the Head. In Grant Martin and Wolfgang
Müller, editors, UML for SOC Design, pages 17–36. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2005.

[38] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to Develop
Domain-specific Languages. ACM Computing Surveys, 37:316–344, December
2005.

[39] Joaquin Miller and Jishnu Mukerji. Model Driven Architecture (MDA). Draft
ormsc/2001-07-01, Architecture Board ORMSC, July 2001.

[40] W. Mueller, A. Rosti, S. Bocchio, E. Riccobene, P. Scandurra, W. Dehaene,
and Y. Vanderperren. UML for ESL Design: Basic Principles, Tools, and Ap-
plications. In Proceedings of the 2006 IEEE/ACM International Conference on
Computer-aided Design, ICCAD ’06, pages 73–80, New York, NY, USA, 2006.
ACM.

[41] Jonathan Musset, Étienne Juliot, and Stéphane Lacrampe. Acceleo 2.6: User
Guide. Technical report, Obeo, 2008.

[42] Antoni Olivé. Conceptual Modeling of Information Systems. Springer Publishing
Company, Incorporated, Secaucus, NJ, USA, 2007.

BIBLIOGRAPHY 121

[43] OMG. Meta Object Facility (MOF) Core Specification. Version 2.0. Technical
Report formal/06-01-01, Object Management Group, 2006.

[44] OMG. Object Constraint Language. OMG Available Specification. Version 2.0.
Technical Report formal/06-05-01, Object Management Group, 2006.

[45] OMG. UML Profile for System on a Chip (SoC). Version 1.0.1. Technical Report
formal/06-08-01, Object Management Group, 2006.

[46] OMG. MOF 2.0/XMI Mapping, Version 2.1.1. Technical Report formal/2007-
12-01, Object Management Group, 2007.

[47] OMG. OMG Unified Modeling Language (OMG UML) Infrastructure. Version
2.1.2. Technical Report formal/2007-11-04, Object Management Group, 2007.

[48] OMG. OMG Unified Modeling Language (OMG UML) Superstructure. Version
2.1.2. Technical Report formal/2007-11-02, Object Management Group, 2007.

[49] OMG. MOF Model to Text Transformation Language. Version 1.0. Technical
Report formal/2008-01-16, Object Management Group, 2008.

[50] OMG. Software & Systems Process Engineering Metamodel Specification
(SPEM). Version 2.0. Technical Report formal/2008-04-01, Object Management
Group, 2008.

[51] OMG. Documents Associated with Semantics of a Foundational Subset for Ex-
ecutable UML Models (FUML). Version 1.0. Technical Report formal/11-02-01,
Object Management Group, 2011.

[52] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specifi-
cation. Version 1.1. Technical Report formal/2011-01-01, Object Management
Group, 2011.

[53] Vaughan R. Pratt. Anatomy of the Pentium Bug. In Proceedings of the 6th
International Joint Conference CAAP/FASE on Theory and Practice of Software
Development, TAPSOFT ’95, pages 97–107, London, UK, 1995. Springer-Verlag.

BIBLIOGRAPHY 122

[54] Roger Pressman. Software Engineering: A Practitioner’s Approach. McGraw-
Hill, Inc., New York, NY, USA, 7 edition, 2010.

[55] Dave Protheroe and Francesco Pessolano. An Objective Measure of Digital Sys-
tem Design Quality. In Proceedings of the 1st International Symposium on Qual-
ity of Electronic Design, ISQED ’00, pages 227–233, Washington, DC, USA,
2000. IEEE Computer Society.

[56] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital Integrated
Circuits: A Design Perspective. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 2nd edition, 2003.

[57] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A SoC Design Methodol-
ogy Involving a UML 2.0 Profile for SystemC. In Proceedings of the Conference
on Design, Automation and Test in Europe - Volume 2, DATE ’05, pages 704–
709, Washington, DC, USA, 2005. IEEE Computer Society.

[58] Tim Schattkowsky. UML 2.0 - Overview and Perspectives in SoC Design. In
Proceedings of the Conference on Design, Automation and Test in Europe - Vol-
ume 2, DATE ’05, pages 832–833, Washington, DC, USA, 2005. IEEE Computer
Society.

[59] Patrick Schaumont and Ingrid Verbauwhede. A Component-Based Design En-
vironment for ESL Design. IEEE Design and Test of Computers, 23:338–347,
September 2006.

[60] Bernard Sklar. Digital Communications: Fundamentals and Applications. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition, 2001.

[61] Esterel Technologies. SCADE Suite 6.2: Technical Data Sheet. Technical Report
Whitepaper SC-TDS-6.2, Esterel Technologies, 2011.

[62] Weider D. Yu, D. Paul Smith, and Steel T. Huang. Software Productivity Mea-
surements. In International Computer Software and Applications Conference,
1991.

Appendix A

Review of the notation of UML 2

The purpose of this appendix is to introduce the reader to the notation of UML 2 to
understand the diagrams presented in the previous chapters of this dissertation [48].
Only the class diagram, the activity diagram, and the object diagram will be reviewed
because they are the ones used throughout this document. The next sections describe
the most relevant features of these diagrams, including their goals, their semantics,
and their constituting elements.

A.1 Class diagrams

Of all of the UML 2 diagrams, the class diagram is the most commonly used and
known. It defines the types of the objects present in an application domain or in
a software system, depending on whether the diagram represents a domain model
or a design model, respectively. It also shows the relationships existing between
these types, which model the links existing between the objects in the application
domain or the software system. The types just mentioned are called classes and their
definitions include properties that characterize the state of the instances of the class,
and operations that describe the behavior of such instances.

123

APPENDIX A. REVIEW OF THE NOTATION OF UML 2 124

A.1.1 Classes and relationships

Figure A.1 illustrates the graphical representation for each of the concepts highlighted
above. The figure shows the different types of classes, properties and relationships
that can be included in a class diagram. Let us describe these modeling elements in
detail.

Class. A class is depicted in diagrams using a box with three compartments, with
the name of the class specified in the uppermost compartment. To indicate that
the class is an abstract class1, its name shall be italicized. If the name of the
class is not italicized, then it represents a concrete class2. Figure A.1 shows that
Employee and Airplane are abstract classes, whereas the others are concrete
classes.

Property. A property in a class represents a datum that is present in every instance
of such class. The set of properties defined by a class forms the status of every
instance, which typically changes as time passes. The properties are listed
one after another in the second compartment of the corresponding class box.
Each property has its own attributes that can be specified along with its name,
including its type, its visibility (private, public or protected), its multiplicity, a
default value, and some strings representing restrictions. The class diagrams in
this document show only the type of properties.

Operation. An operation denotes a specific behavior that can be invoked on every
instance of a class. The operations are listed one after another in the third com-
partment of the corresponding class box. Each operation has its own attributes
that can be specified along with its name, including the type of the returned
value, its multiplicity, the name and type of each parameter, and some strings
representing restrictions. The class diagrams in this document show only the
type of the value returned by the operations.

1An abstract class defines attributes that are shared by all of its sub-classes, and a set of empty
operations that are to be implemented also by its sub-classes. This kind of class cannot be instan-
tiated directly.

2A concrete class can be instantiated.

APPENDIX A. REVIEW OF THE NOTATION OF UML 2 125

Figure A.1: A class diagram in UML 2 and its components.

Now, let us describe three relationships between classes that can be present in a
class diagram.

Generalization. A taxonomic relationship between a more general class and a more
specific class. It is denoted by a line departing from the specific class (or sub-
class) and arriving to the general class (or super-class), which is pointed to by
an empty triangle. As a consequence of this relationship, every instance of the
specific class is also an indirect instance of the general class. Also, the specific
class inherits the features (properties and operations) defined by the general
class. Figure A.1 shows that FlightAttendant, Accountant and Pilot are
more specific classes than the general class Employee and that the specific
classes inherit all of the attributes defined by the general class.

Association. Whenever there is a link between two different objects in an appli-
cation domain or software system, there is an association relationship between
the corresponding classes in a class diagram. The association relationship is
expressed by a line between two classes, which models a link between the in-
stances of such classes. In Figure A.1, the generalization relationships arriving
to Airplane and Employee and the association between these two classes im-
ply that there is also an association between the concrete classes Boeing747

APPENDIX A. REVIEW OF THE NOTATION OF UML 2 126

and Pilot, and between Boeing747 and FlightAttendant. As a result, every
instance of Boeing747 may be linked to all of the members of its crew.

Composition. This is a “part of” relationship that indicates that an instance is a
component of only one owner instance. This relationship is denoted with a line
joining two classes, and a filled diamond next to the owner class. The diagram
in Figure A.1 indicates that an instance of a concrete sub-class of Airplane is
owned by only one instance of the class Airline. Normally, an airplane cannot
be used by more than two airlines at the same time.

Aggregation. Another “part of” relationship that intends to model that an instance
may be part of multiple owner instances. This relationship is denoted with a line
joining two classes, and a hollow diamond next to the owner class. The diagram
in Figure A.1 indicates that an instance of the classAirline has several instances
of concrete sub-classes of Employee aggregated to it. This relationship is useful
to model that a freelance accountant can work for different airlines at a given
time.

The properties placed at the ends of the relationships in the diagram, in Figure
A.1, are known as roles. A role located at a specific end of a relationship belongs to
the class located at the opposite end. Every role in the diagram shows its multiplicity,
which is an attribute of a property that indicates how many objects the property refers
to. The multiplicities shown in the diagram are: 1..*, which indicates an unbounded
number of instances greater than one, and 1, which indicates a single instance.

A.1.2 Derived unions

The concept of derived union is used extensively in the meta-model of UML 2, let us
explain it using a familiar example. An airline owns different kinds of facilities like
offices to issue tickets, hangars to maintain aircrafts, and office buildings for manage-
rial operations. The class diagram in Figure A.2 indicates that every instance of the
concrete class Hangar shall be linked to two sets of instances. The first collection is
accessed through the property engineers and represents the set of mechanical engi-
neers performing maintenance activities in hangar. The second collection is accessed

APPENDIX A. REVIEW OF THE NOTATION OF UML 2 127

Figure A.2: A class diagram illustrating the concept of derived union.

through the property accountants and denotes the set of accountants carrying out
the managerial and logistic operations required in the hangar.

The concrete class Hangar inherits the public property employees from the ab-
stract class Facility, which is a reference to any collection of employees (indirect
instances of the abstract class Employee). Thus, employees is perfectly able to
refer to the collection that results from merging the set of accountants (referred to
by accountants), and the set of engineers (referred to by engineers). The string
{readOnly,union} next to employees, and the fact that such property is derived3

indicate that the value of employees is computed by performing a union on the values
of other properties. What other properties? Those labeled by the string {subsets

employees} next to their names (accountants and engineers). Therefore, the values
of accountants and engineers are merged to compute the value that is assigned to
employees, which is a reference to the whole set of employees working at the facility
in question.

A.1.3 Keywords

A keyword in UML 2 is an identifier that is enclosed in guillemets (« ») and modifies
the meaning of an existing modeling element in UML 2. For instance, the diagram in

3A derived property is indicated by the symbol / next to its name. The value of a derived
property is always computed from the values of other properties. When implementing the model in
software, derived properties might be translated to methods instead of actual instance variables.

APPENDIX A. REVIEW OF THE NOTATION OF UML 2 128

Figure A.3 shows that the class box commonly used to define classes can be reused to
represent interfaces. Since the concept of class is similar to the concept of interface,
it is possible to modify the class box to represent an interface by adding the keyword
«interface». The designers of UML 2 decided no to overload the language with too
many symbols, and introduced keywords that mark modeling elements to indicate
something different. Every modeling element that represents an interface can be
related to another through a generalization relationship, and can be related to classes
through two new relationships: dependency and implementation, as illustrated in
Figure A.3.

Figure A.3: The definition of an interface in UML 2 requires modifying a class with
a keyword.

It is important not to confuse keywords with property strings. In Figure A.2, the
property strings {readOnly,union} and {subsets employees} in the diagram do
not change the meaning of the property to which they are attached, but provide more
information about it and its values.

APPENDIX A. REVIEW OF THE NOTATION OF UML 2 129

A.2 Activity diagrams

The activity diagram in UML 2 describes operations performed by a software system
or behaviors occurring in an application domain. Unlike the class diagram, which
focuses on the static structure of a software system or application domain, the ac-
tivity diagram focuses on the dynamic aspects of the system or domain to model.
This diagram allows modeling control flows, as does a flowchart, and describing par-
allel control flows and data flows. This section discusses only activity diagrams that
describe data flows, receive input data and produce output data.

A.2.1 Activities, nodes and edges

Figure A.4 shows a simple activity diagram of the kind used in this dissertation.
This diagram contains a single activity, called “anActivity”, consisting of a number
of activity nodes and actions interconnected by edges. UML 2 classifies nodes into
object nodes and control nodes, and edges into object flows and control flows. All of
the edges in Figure A.4 are object flows because they allow data objects pass through
them. Some nodes are object nodes that consume and/or produce data objects, and
others are control nodes that coordinate the flow of control. Also, an activity may
contain many kinds of actions serving different purposes.

Figure A.4: An activity diagram in UML 2 and its components.

Let us consider the nodes and edges making up by the activity in Figure A.4:

APPENDIX A. REVIEW OF THE NOTATION OF UML 2 130

Activity. Denoted by a rectangle with rounded corners, an activity describes behav-
iors in terms of other subordinate behaviors whose execution is coordinated by
means of a data or control flow. All of the activities in this dissertation are
parameterized and initiate their execution when new data objects are available
in their input parameters.

Activity parameter node. Is an object node that represents input or output data.
It is represented by a rectangle on the border of the activity. There is no graphi-
cal distinction between an input parameter node and an output parameter node;
this distinction is made when setting an attribute in the parameter associated
to the node.

Parameter. Every activity parameter node has a parameter associated to it. This
modeling element specifies the type of the objects received/sent by the param-
eter node, the multiplicity of such data, and the direction of the data (input,
output, input/output). A parameter is usually listed in the upper right corner
of the activity. In Figure A.4, the parameter called “inputParameter1” receives
integers and is associated to the parameter node called “input1”, and the pa-
rameter called “outputParameter” is associated to the parameter node “output”.
This language construct is the same that is used to model the parameters of
operations in class diagrams.

Decision node. A control node represented by a diamond with an incoming edge
and multiple outgoing edges. The data object received through the incoming
edge is offered to each of the outgoing edges, but traverses only one of them.
This edge is selected by evaluating the conditions specified by the guards of the
edges, and determining which guard evaluates to true. For every decision node,
there should be a corresponding merge node, a control node that serves as a
convergence point of multiple data/control flows.

Object flow. Is represented by an arrow that interconnects nodes and actions within
the activity. This kind of edge allows data objects pass along it whenever the
associated guard is evaluated to true. The guard is a condition attached to the
edge and specified by enclosing it in brackets ([]).

APPENDIX A. REVIEW OF THE NOTATION OF UML 2 131

A.2.2 Actions

The action is the fundamental unit of execution when modeling behavior, it represents
a transformation or other kind or processing. UML 2 defines many kinds of actions to
model a wide variety of situations and operations. The diagram in Figure A.4 contains
three different kinds of actions, and other modeling elements generally associated to
actions, the input and output pins.

Opaque action. The semantics of this kind of action, denoted by a rectangle with
round corners, is implementation-specific. The diagram in Figure A.4 shows
that this activity is used to indicate three operations performed on integer
arguments.

Calling behavior action. This kind of action, denoted by a rectangle with round
corners an a rake symbol (t) within, invokes an external activity. The argu-
ments of the action are available to the invoked behavior for use during its
execution. In Figure A.4, the call behavior action invokes an activity called
“power” and passes its two integer arguments to such activity as inputs.

Accept event action. This action is denoted by a concave pentagon and waits for
an event that meets a specific condition. The join node in Figure A.4 prevents
the integer coming from the opaque action “divide by 3” from reaching the
output parameter node until the event occurs. Once the event occurs, the node
lets the integer object pass and reach the output parameter node.

Pins. A pin, denoted by a small rectangle attached to an action, is an object node
that receives incoming data objects (arguments) and sends outgoing data ob-
jects (return values). It also specifies the type and multiplicity of the data
object for the action. In Figure A.4, all of the pins receive/send integer objects.

A.3 Object diagrams

The object diagram shows representations of instances of classes defined in a class
diagram, the links between them, and the values of some or all of their properties.

APPENDIX A. REVIEW OF THE NOTATION OF UML 2 132

The object diagram is a snapshot of the software system at a specific point in time,
and allows the designer to understand links that are not comprehensible in the corre-
sponding class diagram. Figure A.5 illustrates the components of an object diagram
derived from the class diagram in Figure A.1.

Instance specification. This modeling element, denoted by a box with its name
and class underlined, represents an object in a software system or application
domain. The name of the instance and the name of the class are separated by
a colon (:), and sometimes the name of the object may be omitted. The second
compartment of the box contains a list of the properties of the instance along
with its values. Notice that an instance specification is a representation of an
object, not the object itself, and shows the state of the object at a specific point.

Link. Is denoted by a straight line joining two instance specifications. As men-
tioned previously, a link is an instance of the association joining the classes
that describe the instances represented by the specifications. The roles in the
association establish the link and may be located at the appropriate end of the
link.

Figure A.5: An object diagram in UML 2 and its components.

Appendix B

The profile BitBlockFlow

This appendix documents the most relevant stereotypes in the profile BitBlockFlow.
This documentation provides details about the structure of the profile, and allows
the designer to understand the extensions provided to adapt activity diagrams to the
application domain of interest. Each description includes the name of the stereotype,
an indication of whether the stereotype is an abstract or concrete class, the name of
the package the stereotype belongs to, the meta-class extended by the stereotype, an
enumeration of the constraints defined for the stereotype, and a brief introduction to
the responsibilities of the stereotype.

133

APPENDIX B. THE PROFILE BITBLOCKFLOW 134

Name: BBModule.
Is abstract: No.

Package: ModuleInterface.
Superclass: None.

Extends: Activity.
Description: A module is a self-contained unit of behavior describing either a simple op-

eration or a complex algorithm. The module receives input bit-blocks from
its environment, and produces output bit-blocks that transfers back to the
environment. The internals of the module describe the flow of information
from the inputs to the outputs, and consist of nodes representing operations,
invocations to other modules, and control nodes. The interface of the module
consists of input parameters, output parameters, or input/output parameters.
A module may invoke one or more modules, which may invoke one or more
modules, and so on. In this way, it is possible to build arbitrarily complex
hierarchies of modules, and model any composite algorithm.

Tagged attributes: None.
Constraints:

1. The identifier string must not be empty.

2. The parameters of the module must be well-formed.

3. The nodes controlling the flow of bit-blocks must be well-formed.

4. The nodes representing logic and shift/rotate operations must be well-
formed.

5. The nodes representing operations that manipulate bit-blocks (split,
concatenation, extraction and copy) must be well-formed.

6. The dataflows joining nodes must be well-formed.

7. The nodes representing switches must be well-formed.

8. The module must invoke well-formed modules using well-formed calls.

Concrete syntax: The same as the one defined by the extended meta-class.

APPENDIX B. THE PROFILE BITBLOCKFLOW 135

Name: BBParameter.
Is abstract: No.

Package: ModuleInterface.
Superclass: None.

Extends: ActivityParameterNode.
Description: A parameter is either a node that receives input bit-blocks and drives them

to the internals of the module, or a node that receives bit-blocks from the
internals and transfers them to the environment of the module, or a node
that performs both of the previous tasks. The parameters of a module are
restricted to send or receive sequences of instances of the classBit (bit-blocks)
whose length must be finite and greater than zero. The multiplicity of the
parameter indicates the length of the bit-blocks processed.

Tagged attributes: None.
Constraints:

1. Every parameter must be either an input parameter, or an output
parameter, or an input/output parameter.

2. Every module must have at least one input parameter and at least one
output parameter; otherwise, at least one input/output parameter.

3. Every parameter must receive/send an unbounded number of well-
formed bit-blocks of the same length. However, the length of the
bit-blocks processed by different parameters may differ.

4. Every input parameter must have at least one outgoing dataflow and
no incoming dataflow. Every output parameter must have only one
incoming dataflow and no outgoing dataflow. Every input/output
parameter must have at least one incoming dataflow or at least one
outgoing dataflow, but not at the same time.

5. The names of the parameters attached to the same module must be
different.

Concrete syntax: The same as the one defined by the extended meta-class.

APPENDIX B. THE PROFILE BITBLOCKFLOW 136

Name: BBDataflow.
Is abstract: No.

Package: Edges.
Superclass: None.

Extends: ObjectFlow.
Description: A dataflow connects nodes to each other and allows bit-block to traverse

through them to reach a target node from a source node.
Tagged attributes: None.

Constraints:

1. Every dataflow must always allow bit-blocks to traverse through it.
This is achieved by setting the guard condition associated to every
dataflow to true.

2. Every dataflow must allow only one bit-block to traverse through it.
This is achieved by setting the weight attribute of every dataflow to
one.

3. Every dataflow must connect well-formed operands or parameters be-
longing to well-formed operations or modules. In addition, the inter-
connected nodes must process a continuous flow of bit-blocks of the
same length.

Concrete syntax: The same as the one defined by the extended meta-class.

Name: BBOperand.
Is abstract: Yes.

Package: Operations.
Superclass: None.

Extends: Pin.
Description: An operand is an element attached to an owning operation. The operation

receives the bit-blocks on which it is performing its duties through input
operands. The operation produces a bit-block as a result of its execution,
and sends this result back to its environment through an output operand.
The operations that split and concatenate bit-blocks require multiple output
operands and input operands, respectively, that are ordered. The tagged
attribute operandIndex defines the order of operands for such operations.

Tagged attributes:

• operandIndex. Indicates the index of the operand when the owning
operation is a split operation or a concatenation operation. Its default
value es 0. The value of this tagged attribute is not considered for
other operations.

Constraints: Defined by the subclasses.
Concrete syntax: This is an abstract stereotype. The subclasses of this stereotype may define

new concrete syntaxes for the instances of Pin.

APPENDIX B. THE PROFILE BITBLOCKFLOW 137

Name: BBInput.
Is abstract: No.

Package: Operations.
Superclass: BBOperand.

Extends: InputPin.
Description: An input operand is an element attached to an owning operation. The input

operands of an operation receive bit-blocks from other nodes through its in-
coming dataflow. The number of input operands for every operation must be
defined by the stereotype defining the operation.

Tagged attributes: None.
Constraints:

1. Every input operand must receive an unbounded number of well-
formed bit-blocks of the same length. However, the length of the
bit-blocks processed by different input operands may differ.

2. Every input operand must have only one incoming dataflow and no
outgoing dataflow.

3. Every kind of operation has its own restrictions on the value of the
attribute operandIndex, inherited from the superclass, especially the
operations that split and concatenate bit-blocks.

Concrete syntax: The same as the one defined by the extended meta-class.

Name: BBOutput.
Is abstract: No.

Package: Operations.
Superclass: BBOperand.

Extends: OutputPin.
Description: An output operand is an element attached to an owning operation. The

output operands of an operation send bit-blocks to other nodes through its
outgoing dataflow. The number of output operands for every operation must
be defined by the stereotype defining the operation.

Tagged attributes: None.
Constraints:

1. Every output operand must send an unbounded number of well-
formed bit-blocks of the same length. However, the length of the
bit-blocks processed by different output operands may differ.

2. Every output operand must have only one outgoing dataflow and no
incoming dataflow.

3. Every kind of operation has its own restrictions on the value of the
attribute operandIndex, inherited from the superclass, especially the
operations that split and concatenate bit-blocks.

Concrete syntax: The same as the one defined by the extended meta-class.

APPENDIX B. THE PROFILE BITBLOCKFLOW 138

Name: BBOperation.
Is abstract: Yes.

Package: Operations.
Superclass: None.

Extends: OpaqueAction.
Description: This stereotype defines the objects in an activity model affected by BitBlock-

Flow that extend instances of the meta-class OpaqueAction to represent
an operation. This operation may be a bitwise logic operation, a shift/rotate
operation, or an operation that manipulates bit-blocks (split, concatenation,
extraction and copy).

Tagged attributes: None.
Constraints: Defined by the subclasses.

Concrete syntax: This is an abstract stereotype. The subclasses of this stereotype may define
new concrete syntaxes for the instances of OpaqueAction.

Name: LogicOperation.
Is abstract: Yes.

Package: Operations.
Superclass: BBOperation.

Extends: OpaqueAction.
Description: This stereotype defines the objects in an activity model affected by BitBlock-

Flow that extend instances of the meta-class OpaqueAction to represent
bitwise logic operations.

Tagged attributes: None.
Constraints:

1. Every bitwise logic operation must have at least two input operands
and one output operand.

2. The operands of every bitwise logic operation must meet the restric-
tions related to the number of bit-blocks processed, and the number
of dataflows they are connected to, defined for the stereotype BBPa-
rameter.

3. Every bitwise logic operation must produce output bit-blocks whose
length is greater than or equal to the length of every input operand.

Concrete syntax: This is an abstract stereotype. The subclasses of this stereotype may define
new concrete syntaxes for the instances of OpaqueAction.

APPENDIX B. THE PROFILE BITBLOCKFLOW 139

Name: And.
Is abstract: No.

Package: Operations.
Superclass: LogicOperation.

Extends: OpaqueAction.
Description: The instances of OpaqueAction in an activity model extended by instances

of this stereotype represent bitwise AND operations on bit-blocks at the input
operands that produce a new bit-block at the output operand.

Tagged attributes: None.
Constraints: The constraints for this stereotype are inherited from stereotype LogicOp-

eration.

Concrete syntax:

Name: Or.
Is abstract: No.

Package: Operations.
Superclass: LogicOperation.

Extends: OpaqueAction.
Description: The instances of OpaqueAction in an activity model extended by instances

of this stereotype represent bitwise OR operations on bit-blocks at the input
operands that produce a new bit-block at the output operand.

Tagged attributes: None.
Constraints: The constraints for this stereotype are inherited from stereotype LogicOp-

eration.

Concrete syntax:

Name: Xor.
Is abstract: No.

Package: Operations.
Superclass: LogicOperation.

Extends: OpaqueAction.
Description: The instances of OpaqueAction in an activity model extended by instances

of this stereotype represent bitwise XOR operations on bit-blocks at the input
operands that produce a new bit-block at the output operand.

Tagged attributes: None.
Constraints: The constraints for this stereotype are inherited from stereotype LogicOp-

eration.

Concrete syntax:

APPENDIX B. THE PROFILE BITBLOCKFLOW 140

Name: Split.
Is abstract: No.

Package: Operations.
Superclass: None.

Extends: OpaqueAction.
Description: The instances of OpaqueAction extended by instances of this stereotype

represent operations that divide their single input bit-block into n output
bit-blocks. The length of the input bit-block is given by the multiplicity of
the single input operand. The lengths of the output bit-blocks are given by
the multiplicities of the output operands. As long as the input bit-block is
long enough to be split into the the number of output bit-blocks, there is no
limit to the number of output operands.

Tagged attributes: None.
Constraints:

1. Every split operation must have a single input operand and at least
one output operand.

2. The operands of every split operation must meet the restrictions
related to the number of bit-blocks processed, and the number of
dataflows they are connected to, defined for the stereotype BBPa-
rameter.

3. The length of the bit-block at the input operand must be equal to the
sum of the lengths of the bit-blocks at the output operands.

4. The output operands must be indexed according to an increasing
sequence of integers starting at 1. This indexing of operands allows
the split operation to identify what segment of the input signal it will
assign to what output operand.

Concrete syntax:

APPENDIX B. THE PROFILE BITBLOCKFLOW 141

Name: ZeroExtension.
Is abstract: No.

Package: Operations.
Superclass: None.

Extends: OpaqueAction.
Description: The instances of OpaqueAction extended by instances of this stereotype

represent operations that zero-extend the input bit-block to produce the out-
put bit-block. If the length of the input bit-block is n and the length of the
output bit-block is m, such that m ≥ n, then the m− n most significant bits
of the output bit-block are all set to zero.

Tagged attributes: None.
Constraints:

1. Every zero-extension operation must have a single input operand and
a single output operand.

2. The operands of every zero-extension operation must meet the restric-
tions related to the number of bit-blocks processed, and the number
of dataflows they are connected to, defined for the stereotype BBPa-
rameter.

3. The length of the input bit-block must me less that or equal to the
length of the output bit-block.

Concrete syntax:

APPENDIX B. THE PROFILE BITBLOCKFLOW 142

Name: Concatenation.
Is abstract: No.

Package: Operations.
Superclass: None.

Extends: OpaqueAction.
Description: The instances of OpaqueAction extended by instances of this stereotype

represent operations that join their n input bit-blocks to produce a single
output bit-block. The length of the output bit-block is given by the multi-
plicity of the single output operand. The lengths of the input bit-blocks are
given by the multiplicities of the input operands.

Tagged attributes: None.
Constraints:

1. Every concatenation operation must have at least one input operand
and a single output operand.

2. The operands of every concatenation operation must meet the restric-
tions related to the number of bit-blocks processed, and the number
of dataflows they are connected to, defined for the stereotype BBPa-
rameter.

3. The sum of the lengths of the bit-blocks at the input operands must
be equal to the length of the bit-block at the input operand.

4. The input operands must be indexed according to an increasing se-
quence of integers starting at 1. This indexing of operands allows
the concatenation operation to identify the order in which the input
operands are concatenated to generate the output operand.

Concrete syntax:

APPENDIX B. THE PROFILE BITBLOCKFLOW 143

Name: Extraction.
Is abstract: No.

Package: Operations.
Superclass: None.

Extends: OpaqueAction.
Description: The instances of OpaqueAction extended by instances of this stereotype

represent operations that copies a segment of the input bit-block to the output
bit-block. The length of the output bit-block is given by the multiplicity of
the single output operand. The length of the input bit-block is given by the
multiplicity of the input operand.

Tagged attributes:

• lowerIndex. Indicates the position of the least significant bit of the
block to extract.

• upperIndex. Indicates the position of the most significant bit of the
block to extract.

Constraints:

1. Every extraction operation must have a single input operand and a
single output operand.

2. The operands of every extraction operation must meet the restric-
tions related to the number of bit-blocks processed, and the number
of dataflows they are connected to, defined for the stereotype BBPa-
rameter.

3. The tagged values must meet that 0 ≤ lowerIndex ≤ upperIndex

and upperIndex must be less than or equal to the length of the input
bit-block.

4. The length of the output bit-block must be equal to upperIndex −
lowerIndex+ 1.

Concrete syntax:

APPENDIX B. THE PROFILE BITBLOCKFLOW 144

Name: ShiftRotate.
Is abstract: Yes.

Package: Operations.
Superclass: BBOperation.

Extends: OpaqueAction.
Description: This stereotype defines the objects in an activity model affected by BitBlock-

Flow that extend instances of the meta-class OpaqueAction to represent
shift/rotate operations.

Tagged attributes: None.
Constraints:

1. Every shift or rotate operation must have two input operands and
one output operand.

2. The operands of every shift or rotate operation must meet the restric-
tions related to the number of bit-blocks processed, and the number
of dataflows they are connected to, defined for the stereotype BBPa-
rameter.

3. One of the input operands of a shift or rotate operation must be
connected to a modeling element specifying an integer constant, and
the other input operand must specify the source bit-block. The integer
constant indicates the number of bits the source operand is shifted or
rotated.

4. Every shift or rotate operation must produce output bit-blocks whose
length is greater than or equal to the length of every input operand.

Concrete syntax: This is an abstract stereotype. The subclasses of this stereotype may define
new concrete syntaxes for the instances of OpaqueAction.

APPENDIX B. THE PROFILE BITBLOCKFLOW 145

Name: Sll.
Is abstract: No.

Package: Operations.
Superclass: ShiftRotate.

Extends: OpaqueAction.
Description: The instances of OpaqueAction in an activity model extended by instances

of this stereotype represent shift-left logical operations on the input bit-block
by the number of positions given by the operand connected to an integer
literal.

Tagged attributes: None.
Constraints: The constraints for this stereotype are inherited from stereotype LogicOp-

eration.

Concrete syntax:

Name: Srl.
Is abstract: No.

Package: Operations.
Superclass: ShiftRotate.

Extends: OpaqueAction.
Description: The instances of OpaqueAction in an activity model extended by instances

of this stereotype represent shift-right logical operations on the input bit-
block by the number of positions given by the operand connected to an integer
literal.

Tagged attributes: None.
Constraints: The constraints for this stereotype are inherited from stereotype LogicOp-

eration.

Concrete syntax:

Name: Rol.
Is abstract: No.

Package: Operations.
Superclass: ShiftRotate.

Extends: OpaqueAction.
Description: The instances of OpaqueAction in an activity model extended by instances

of this stereotype represent rotate-left operations on the input bit-block by
the number of positions given by the operand connected to an integer literal.

Tagged attributes: None.
Constraints: The constraints for this stereotype are inherited from stereotype LogicOp-

eration.

Concrete syntax:

APPENDIX B. THE PROFILE BITBLOCKFLOW 146

Name: Ror.
Is abstract: No.

Package: Operations.
Superclass: ShiftRotate.

Extends: OpaqueAction.
Description: The instances of OpaqueAction in an activity model extended by instances

of this stereotype represent rotate-right operations on the input bit-block by
the number of positions given by the operand connected to an integer literal.

Tagged attributes: None.
Constraints: The constraints for this stereotype are inherited from stereotype LogicOp-

eration.

Concrete syntax:

Name: BBModuleCall.
Is abstract: No.

Package: Operations.
Superclass: None.

Extends: CallBehaviorAction.
Description: The instances of CallBehaviorAction in an activity model extended by

instances of this stereotype invoke other modules. This operation plays a key
role in the definition of hierarchical and complex modules.

Tagged attributes: None.
Constraints:

1. The operands of every module call must meet the restrictions related
to the number of bit-blocks processed, and the number of dataflows
they are connected to, defined for the stereotype BBParameter.

2. The operands of every module call must correspond one-to-one to the
parameters of the module invoked.

3. Every module call must be synchronous, which means that the the
caller module waits for completion of the module called.

4. The module called by a call operation must fulfill the restrictions
specified for this modeling construct.

5. Every module call must be identified by a non-empty string different
from the identifier assigned to the module called.

Concrete syntax: The same as the one defined by the extended meta-class.

APPENDIX B. THE PROFILE BITBLOCKFLOW 147

Name: BBSwitch.
Is abstract: No.

Package: Controls.
Superclass: None.

Extends: CallBehaviorAction.
Description: The instances of CallBehaviorAction in an activity model extended by

instances of this stereotype select one of multiple bit-blocks at the input
operands based on the current state of the algorithm. A switch invokes the
behavior described by the associated state machine. When the state of the
algorithm changes, the switches invoke their state machines, which select the
appropriate input depending on the current state and change to the next
state. During transition to the next state, the algorithm carries out all of
its operations using the values provided by the switches and computes the
results.

Tagged attributes: None.
Constraints:

1. The operands of every switch must meet the restrictions related to
the number of bit-blocks processed, and the number of dataflows they
are connected to, defined for the stereotype BBParameter.

2. The operands of every switch must correspond one-to-one to the pa-
rameters of the state machine invoked.

3. Every switch must be synchronous, which means that the the caller
module waits for completion of the invoked state machine.

4. The state machine invoked by a switch must fulfill the restrictions
specified for this modeling construct.

5. Every switch must be identified by a non-empty string different from
the identifier assigned to the state machine invoked.

Concrete syntax: .

Appendix C

Modified version of the grammar of

VHDL

The following is the list of production rules that describe the sub-set of VHDL gen-
erated by the transformation described in this dissertation. The rules are described
in Backus-Naur Form (BNF), with the initial non-terminal symbol being design_file.

〈design_file〉 ::= 〈context_clause〉 〈library_unit〉

〈context_clause〉 ::= 〈library_clause〉 〈use_clause〉

〈library_clause〉 ::= ‘library’ 〈logical_name_list〉 ‘;’

〈logical_name_list〉 ::= 〈logical_name〉 { ‘,’ 〈logical_name〉 }

〈logical_name〉 ::= 〈identifier〉

〈use_clause〉 ::= ‘use’ 〈selected_name〉 { ‘,’ 〈selected_name〉 } ‘;’

〈selected_name〉 ::= 〈prefix 〉 ‘.’ 〈suffix 〉

〈prefix 〉 ::= 〈identifier〉
| 〈selected_name〉

〈suffix 〉 ::= 〈identifier〉
| ‘all’

〈library_unit〉 ::= 〈primary_unit〉 〈secondary_unit〉

148

APPENDIX C. MODIFIED VERSION OF THE GRAMMAR OF VHDL 149

〈primary_unit〉 ::= 〈entity_declaration〉

〈entity_declaration〉 ::= ‘entity’ 〈identifier〉 ‘is’
〈port_clause〉
‘begin’

‘end’ ‘entity’ 〈identifier〉 ‘;’

〈port_clause〉 ::= ‘port’ ‘(’ 〈port_list〉 ‘)’ ‘;’

〈port_list〉 ::= 〈interface_signal_declaration〉
{ ‘;’ 〈interface_signal_declaration〉 }

〈interface_signal_declaration〉 ::= 〈identifier_list〉 ‘:’ 〈mode〉 〈subtype_indication〉

〈identifier_list〉 ::= 〈identifier〉 { ‘,’ 〈identifier〉 }

〈mode〉 ::= ‘in’

| ‘out’

| ‘inout’

〈subtype_indication〉 ::= 〈simple_name〉
| 〈slice_name〉

〈simple_name〉 ::= 〈identifier〉

〈slice_name〉 ::= 〈simple_name〉 ‘(’ 〈range〉 ‘)’

〈range〉 ::= 〈integer〉 〈direction〉 〈integer〉

〈direction〉 ::= ‘to’

| ‘downto’

〈secondary_unit〉 ::= 〈architecture_body〉

〈architecture_body〉 ::= ‘architecture’ 〈identifier〉 ‘of’ 〈identifier〉 ‘is’
〈architecture_declarative_part〉
‘begin’

〈architecture_statement_part〉
‘end’ ‘architecture’ 〈identifier〉 ‘;’

〈architecture_declarative_part〉 ::= 〈component_declaration〉 〈type_declaration〉
〈signal_declaration〉

APPENDIX C. MODIFIED VERSION OF THE GRAMMAR OF VHDL 150

〈component_declaration〉 ::= ‘component’ 〈identifier〉 ‘is’
〈port_clause〉
‘end’ ‘component’ 〈identifier〉 ‘;’

〈type_declaration〉 ::= ‘type’ 〈identifier〉 ‘is’ 〈enumeration_type_definition〉 ‘;’

〈enumeration_type_definition〉 ::= ‘(’ 〈enumeration_literal〉 { ‘,’ 〈enumeration_literal〉 }
‘)’

〈enumeration_literal〉 ::= 〈identifier〉

〈signal_declaration〉 ::= ‘signal’ 〈identifier_list〉 ‘:’ 〈subtype_indication〉 ‘;’

〈architecture_statement_part〉 ::= { 〈concurrent_statement〉 }

〈concurrent_statement〉 ::= 〈process_statement〉
| 〈component_instantiation_statement〉
| 〈concurrent_signal_assignment_statement〉

〈process_statement〉 ::= 〈identifier〉 ‘:’ ‘process’ ‘(’ 〈sensitivity_list〉 ‘)’ ‘is’
‘begin’

〈case_statement〉
‘end’ ‘process’ 〈identifier〉 ‘;’

〈sensitivity_list〉 ::= 〈identifier〉 { ‘,’ 〈identifier〉 }

〈case_statement〉 ::= ‘case’ 〈identifier〉 ‘is’
〈case_statement_alternative〉
{ 〈case_statement_alternative〉 }
‘end’ ‘case’ ‘;’

〈case_statement_alternative〉 ::= ‘when’ 〈choice〉 ‘=>’ 〈signal_assignment_statement〉

〈choice〉 ::= 〈bit_string_literal〉
| ‘others’

〈bit_string_literal〉 ::= ‘B’ ‘"’ 〈bit_value〉 ‘"’

〈bit_value〉 ::= 〈binary_digit〉 { 〈binary_digit〉 }

〈binary_digit〉 ::= ‘1’

| ‘0’

APPENDIX C. MODIFIED VERSION OF THE GRAMMAR OF VHDL 151

〈signal_assignment_statement〉 ::= 〈identifier〉 ‘<=’ 〈identifier〉 ‘;’

〈component_instantiation_statement〉 ::= 〈identifier〉 ‘:’ ‘component’ 〈port_map_aspect〉
‘;’

〈port_map_aspect〉 ::= ‘port’ ‘map’ ‘(’ 〈port_association_list〉 ‘)’

〈port_association_list〉 ::= 〈association_element〉 { ‘,’ 〈association_element〉 }

〈association_element〉 ::= 〈port_name〉 ‘=>’ 〈signal_name〉

〈port_name〉 ::= 〈identifier〉

〈signal_name〉 ::= 〈identifier〉

〈concurrent_signal_assignment_statement〉 ::= 〈identifier〉 ‘<=’ 〈waveform〉 ‘;’

〈waveform〉 ::= 〈unconditional_expression〉
| 〈conditional_expression〉

〈unconditional_expression〉 ::= 〈add_expression〉
| 〈logic_expression〉
| 〈shift_expression〉

〈add_expression〉 ::= 〈term〉 ‘&’ 〈term〉

〈term〉 ::= 〈identifier〉
| 〈bit_string_literal〉

〈logic_expression〉 ::= 〈term〉 [〈logic_operator〉 〈term〉]

〈logic_operator〉 ::= ‘and’

| ‘or’

| ‘xor’

| ‘nand’

| ‘nor’

| ‘xnor’

〈shift_expression〉 ::= 〈simple_expression〉 〈shift_operator〉 〈integer〉

〈shift_operator〉 ::= ‘sll’

| ‘srl’

| ‘sla’

APPENDIX C. MODIFIED VERSION OF THE GRAMMAR OF VHDL 152

| ‘sra’

| ‘rol’

| ‘ror’

〈conditional_expression〉 ::= 〈identifier〉 ‘when’ 〈condition〉

Appendix D

List of acronyms

3

3GPP Third Generation Partnership Program

A

Alf Action Language for fUML

ASIC Application-Specific Integrated Circuit

B

BNF Backus-Naur Form

C

CORBA Common Object Request Broker Architecture

D

DCS Digital Communications System

DSML Domain-Specific Modeling Language

E

EDA Electronic Design Automation

153

APPENDIX D. LIST OF ACRONYMS 154

EJB Enterprise JavaBeans

ESL Electronic System Level

F

FPGA Field Programmable Gate Array

fUML Foundational UML

G

Gbps Giga-bits per second

H

HDL Hardware Description Language

I

IDE Integrated Development Environment

IP Intellectual Property

ISO International Organization for Standardization

ISQED International Society for Quality Electronic Design

K

KOA Karatsuba-Ofman Algorithm

L

LFSR Linear Feedback Shift Register

LSI Large-Scale Integration

M

MBD Model-Based Development

APPENDIX D. LIST OF ACRONYMS 155

Mbps Mega-bits per second

MDA Model-Driven architecture

MDE Model-Driven Engineering

MOF Meta-Object Facility

MOFM2T MOF Model to Text Transformation

MSI Medium-Scale Integration

O

OCL Object Constraint Language

OMG Object Management Group

P

PIM Platform-Independent Model

PSM Platform-Specific Model

PSP Personal Software Process

Q

QVT Queries/View/Transformation

R

RTL Register-Transfer Level

S

SMDL Statechart Description Language

SoC System-on-a-Chip

U

APPENDIX D. LIST OF ACRONYMS 156

UML 2 Unified Modeling Language version 2

V

VHDL Very High Speed Integrated Circuit Hardware Description Language

VLSI Very Large Scale Integration

X

XMI XML Metadata Interchange

XML Extensible Markup Language

	cover
	thesis

