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Abstract

The widespread use of third generation (3G) cellular communications networks will

revolutionize the way people communicate with each other and the manner in which

large and medium-size companies share their information and make businesses. The

most promising 3G technology, the Universal Mobile Telecommunications System

(UMTS) standard, offers advanced services, high transmission data rates (384 Kbps

– 2 Mbps) and an advanced security architecture based on a mutual authentication

protocol, a confidentiality algorithm (f8 ), an integrity algorithm (f9 ) and a block

ciphering algorithm (KASUMI). This dissertation meets the problem of efficiently

implementing the algorithms aforementioned and proposes a novel solution scheme

that achieves higher performance than the two traditional solution approaches: soft-

ware implementation in a general purpose microprocessor and the use of an external

coprocessor unit. The contributions of this project to its state of the art are multi-

fold. First, four different high performance hardware functional units implementing

the KASUMI block cipher, one of them reaching the highest throughput reported so

far. Second, the integration of one of such functional units into the microarchitec-

ture of a general purpose processor and the definition of new instructions to perform

encryption. Thus, the new solution approach is a combination of hardware and soft-

ware.



Resumen

El empleo cada vez más difundido de las redes celulares de comunicación de tercera

generación (3G) promete revolucionar la manera en que la gente se comunica y la

forma en que las compañ́ıas, grandes y medianas, comparten su información y rea-

lizan actividades de negocios. El estándar de tercera generación más prometedor es

UMTS (Universal Mobile Telecommunications System) y ofrece una gama de servicios

avanzados, tasas de transmisión elevadas (384 Kbps – 2 Mbps) y una arquitectura

de seguridad avanzada que cuenta con un protocolo para autenticación mutua, un

algoritmo para confidencialidad (f8 ), un algoritmo para integridad (f9 ) y un algoritmo

para cifrado de bloques (KASUMI). El presente documento trata el problema de

implantar de forma eficiente los algoritmos mencionados anteriormente y propone

un esquema de solución original que alcanza un mayor desempeño que los enfoques

tradicionales: implantación en software para procesadores de propósito general y

el uso de unidades coprocesadoras externas al procesador central. Son varias las

contribuciones de este trabajo al estado del arte. Primero, un conjunto de unidades

funcionales en hardware que implantan el algoritmo KASUMI, una de ellas con el

más alto desempeo reportado a la fecha. Segundo, un mecanismo de integración de

una de las unidades funcionales a la microarquitectura de un procesador con el fin

de proporcionar instrucciones para cifrado. De esta manera, la nueva solución es una

combinación de las bondades tanto de hardware y software.
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Chapter 1

Introduction

Nowadays millions of people around the world rely on mobile cellular telephones to

communicate with their relatives and friends, to engage in business conversations, to

carry out journalistic activities, and much more. The nature of the information that

flows throughout the cellular communications networks has evolved noticeably since

the early years of the first generation (1G) systems, when only voice sessions were

possible. With today’s third generation networks it is possible to transmit both voice

and data, including e-mail, pictures, video and more.

The third generation standards, like the Universal Mobile Telecommunications

System considered for this work, enable the implementation of sophisticated services

and the transmission of information at data rates ranging from 384 kbps to 2 Mbps.

The increasing number of network operators interested in implementing this standard

and in getting licenses from governments to use its frequency band allows to foresee

that UMTS will be the most widely used network technology in the near future.

1.1 The importance of security measures

The importance of the security issues is higher in third generation cellular networks

than in previous systems because the users are provided with the mechanisms to

accomplish very crucial operations like banking transactions and sharing of confiden-

tial business information, which require high levels of protection. Weaknesses in the

5



CHAPTER 1. INTRODUCTION 6

security architecture allow successful eavesdropping , message tampering and mas-

querading attacks to occur, with disastrous consequences for end users, companies

and other organizations.

Not only does the UMTS standard provide advanced communications services, it

also includes the means to guarantee high levels of confidentiality and integrity of

information as well as the authentication of each entity engaged in a communications

session. The answer to the security challenge is the development of a sophisticated

mutual authentication protocol [2], the f8 confidentiality algorithm [4, 33], the f9

integrity algorithm [4, 33] and a modern block cipher called KASUMI [5, 33].

UMTS’ modern security architecture mends the security flaws present in previous

generation systems. As an example of these weaknesses consider the A5/1 encryption

algorithm present in the second generation (2G) Global System for Mobile commu-

nications (GSM) standard during its early years [28]. The work reported in [13]

concerns two attack schemes to A5/1 that require different time-memory tradeoffs

and compute the ciphering key on a personal computer; they only need some minutes

or seconds of sampled output data and a short processing time.

1.2 The implementation challenge

Once the security algorithms are fully defined and specified, the problem of designing

efficient implementation methods arises. An implementation that consumes too much

resources or that takes too much time when performing its task is not very useful.

Additionally, the following requirements must be met when the algorithms are realized

in practice: small silicon area, high throughput and low power consumption. The task

of designing to achieve a good tradeoff of these requirements might be as challenging

as choosing the best security algorithms to use. This dissertation explores a solution

strategy to the problem of the efficient implementation of the security functions for

third generation cellular networks.

There are two choices to accomplish the task. The first alternative is a pure

software solution, i.e. coding the operations as a sequence of instructions defined

by the Instruction Set Architecture (ISA) of a general purpose microprocessor or
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Digital Signal Processor (DSP). The second choice consists of designing a custom

coprocessor, either as a dedicated Application Specific Integrated Circuit (ASIC) or

as a reconfigurable Field Programmable Gate Array (FPGA), that communicates

with a central processor through a system bus and provides a set of security services

on demand.

The software approach is unable to reach very high performance, mainly because

of the overhead introduced by the instruction decoding process and the stalls in which

the processor’s pipeline incurs during instruction execution. In addition, the length of

the operands required by the security functions does not agree with the word length of

modern general purpose processors. The main drawback of the coprocessor alternative

is the degradation of performance due to the great number of cycles consumed in bus

operations, including service requests and transfers of data to and from memory.

On the basis that an algorithm implemented in hardware achieves higher per-

formance than the corresponding software codification and that software is such a

flexible method to solve problems, this work proposes a novel approach to address

the problem of implementing the confidentiality and integrity algorithms efficiently

by means of a combination of hardware and software modules. At a glance, the ex-

perimentation work is based on the hypothesis that it is possible to implement in

hardware the most performance demanding component of both the f8 and f9 algo-

rithms, i.e. the KASUMI block cipher; attach this hardware module as a functional

unit to a general purpose processor, extending its instruction set to exploit the new

hardware, and then build the whole algorithms in software. As a result, a considerable

reduction in the size of code and the number of clock cycles required is obtained and

the system bus is freed from encryption service requests, being used only to transfer

data to and from memory.

1.3 Summary of objectives

This dissertation tackles the problem of efficiently implementing the security algo-

rithms specified for UMTS-like third generation cellular communications networks.

The solution to this problem is the general objective of this work, which is motivated
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by the need for mechanisms that achieve higher levels of security during the trans-

mission of information and their corresponding high performance implementations.

To solve the problem this work proposes a novel approach consisting of integrating

a cryptographic functional unit into a general purpose processor, thus combining the

advantages of pure software and pure hardware solutions. If this integration is feasible

is an important question this project intends to answer.

The specific objectives are:

• To conceive some design techniques to develop compact and high performance

hardware implementations of the KASUMI block cipher among which the most

suitable to be attached to a processor is chosen.

• To design a customized RISC processor that includes extensions to support the

execution of the KASUMI block cipher and can be included in equipment for

3G networks.

• To define a set of extended instructions that exploit the new KASUMI functional

unit.

1.4 Methodology

The following is an enumeration of the steps to accomplish the goals and solve the

problem:

1. Thorough investigation of the foundations of cellular communications systems

and the features of the successive generations that have come up, with special

emphasis on 3G networks and the UMTS standard.

2. Deep study of the confidentiality, integrity and encryption algorithms lying at

the core of UMTS’ security architecture, as well as other mechanisms that fulfill

additional security requirements.

3. Study and understanding of the techniques to implement the security algorithms

in hardware proposed previously by different researchers. An analisys of their

advantages and disadvantges is also performed.
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4. Design of different hardware architectures based on some design strategies de-

vised and their synthesis to a reconfigurable hardware platform. The module

that integrates with the processor core shall be selected among these proposals.

5. Selection of the processor core based on specific requirements.

6. Addition of the new functional unit to the processor core, extension of the

instruction set and comparision with a compiled program.

1.5 Dissertation overview

The work reported in this document represents the first step of a more ambitious

project towards the identification of computationally expensive processes present in

third generation cellular networks and the development of high performance functional

units that carry out such processes.

The rest of this dissertation is organized as follows:

• Chapter 2 provides introductory information about cellular communications

technologies and a description of the UMTS standard and its security architec-

ture, including a review of the f8 , f9 and KASUMI algorithms.

• Chapter 3 is a revision of the proposals published previously to implement in

hardware the security functions contained in UMTS’ security architecture. A

thorough critical analysis of the state of the art is provided as well.

• Chapter 4 deals with the problem of the efficient implementation of the security

functions in depth. This chapter describes the deficiencies of the software and

the coprocessor approaches and provides evidence of them.

• Chapter 5 describes the first phase of the development of the project: the

design of a high performance functional unit for the KASUMI block cipher.

This chapter presents the set of basic design techniques conceived to build the

different proposals.
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• Chapter 6 describes the scheme conceived to integrate the KASUMI functional

unit into a MIPS-based general purpose processor core, the extensions to the

instruction set and the results obtained when implementing the customized

processor in a reconfigurable hardware platform.

• Chapter 7 summarizes the contributions and results of this project and describes

future work.



Chapter 2

Background

This chapter provides the reader with the information needed to understand the rest

of the dissertation. Topics like cellular communications systems, the evolution of

cellular communications technology, and modern proposals and trends are covered

briefly. The emphasis of this chapter is on the features of the security architecture

of modern third generation cellular networks; as well as in the algorithms contained

within this architecture.

2.1 Introduction to cellular communications sys-

tems

A cellular communications system is a special kind of wireless system which uses part

of the radio spectrum to transmit information, and has the following features:

Frequency reuse: The whole coverage area is divided into several smaller areas,

called cells , in such a way that some transmission frequencies are used across

a cell, or set of cells, and reused for another set of cells, located far away, with

little potential for interference.

Mobility/Roaming: Subscribers are able to move freely around the network they

are subscribed to, and from this to another one. This feature requires that the

11
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network tracks the location of each subscriber in an accurate way to deliver

calls and messages properly.

Handoff/Handover: The subscriber’s transmission commutes from one radio chan-

nel to another as the user moves from one cell to another while engaged in a

conversation.

2.2 Evolution of cellular communications systems

The first generation of cellular communications services was launched in the late

1970s. The networks that provided those services were based on analog transmis-

sion channels. In spite of its great success, the technology employed during this

stage of evolution had the following drawbacks: limited capacity, lack of means to

guarantee high levels of security, and interference proneness. In addition, the main

purpose of these analog systems was to enable voice sessions only, through the use

of circuit-switched (dedicated) resources. The most important standards developed

during this period are: Advanced Mobile Phone Services (AMPS), used in the United

States, Nordic Mobile Telephony (NMT), deployed in Scandinavia, and Total Access

Communications System (TACS), mainly developed in UK.

When operators realized that the first generation systems already deployed were

not enough to meet the requirements of a growing market, and that there were sev-

eral security weaknesses, new attempts were made to mend the flaws. Unlike first

generation networks, second generation systems are based on digital signaling and

offer important advantages, like greater reliability, enhanced security, greater net-

work capacity, and the expansion of the range of applications to include services like

called line identification, short message service and fax. Even though the network

standards proposed during this stage of evolution were also based on circuit-switched

technologies, they are able to exchange information at data rates ranging from 9.6

Kbps to 14.4 Kbps. These standards were launched in early 1990s and are still in use

all around the world; some have been successfully implemented in several countries,

whereas others have not been successful enough to be implemented out of the coun-

try in which they were developed. The list of second generation network standards
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include: Global System for Mobile communications, Personal Digital Cellular (PDC),

and Interim Standard 95 Code-Division Multiple Access (IS-95 CDMA).

Some enhancements were carried out to the existing 2G networks to implement

several Internet-based services and provide similar capabilities than those planned

for third generation systems. These upgrades make up the second generation +

(2.5G) of cellular communications networks, which increases data rates by adding

components devoted to transmit data as IP packets, both within the home public

mobile network (PLMN) and between the PLMN and external packet-based networks

like Internet and private virtual networks (PVN). The General Packet Radio Service

(GPRS) standard is an overlay to GSM that adds a packet-switched domain whose

goal is the implementation of data services at higher data rates: 171 Kbps theoretical

and 40 Kbps–53 Kbps practical. A further improvement to the GSM-GPRS pair is

the Enhanced Data rates for Global Evolution (EDGE) technology, which elevates

the data rates even more, up to 384 Kbps, and reuses the GSM’s resources for radio

transmission. Finally, the High-Speed Circuit-Switched Data (HSCSD) technology is

intended to increase the data rate in a circuit-switched network to enhance its data

transmission capabilities.

2.3 IMT-2000

Everything that 3G is intended to be is well established in the International Mobile

Telecommunications-2000 (IMT-2000) specification [19], defined by the International

Telecommunications Union (ITU). This document is meant to be a unifying specifica-

tion comprising multiple technologies covering a number of frequency bands, channel

bandwidths, modulation formats and network organizations.

2.3.1 Objectives

The following is a list of the general objectives IMT-2000 aims to achieve:

1. To make available to mobile users a wide range of voice and data services,

irrespective of their location.
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2. To provide services over a wide coverage area.

3. To provide the best quality of service (QoS) possible.

4. To extend the number of services provided subject to constraints like radio

transmission, spectrum efficiency and system economics.

5. To accommodate a great variety of mobile stations.

6. To admit the provision of service by more than one network in any area of

coverage.

7. To provide an open architecture which will permit the easy introduction of

technology advancements as well as different applications.

8. To provide a modular structure which will allow the system to start from a

small and simple configuration and grow as needed, both in size and complexity,

within practical limits.

The specification establishes some other operational objectives that are worth

mentioning:

1. To implement adequate schemes for user authentication, unique user identifica-

tion, unique user numbering and unique equipment identification.

2. To enable each mobile user to request particular services as well as initiate and

receive calls. Multiple simultaneous calls are allowed, which might be associated

to different services either voice or data.

3. To minimize the opportunity for fraud by restricting some services which are

prone to fraud.

4. To protect users against misuse of stolen mobile stations by maintaining a list

of the identities of the stations, as well as monitoring their traffic.

5. To aid emergency services by providing, as far as possible, useful information

along with the emergency call: user identity, location information and other

information that might be needed for local authorities.
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6. To support user mobility by allowing registration on different terminals. This

can be accomplished by providing users with individual Subscriber Identity

Module (SIM) smart cards.

7. To allow international operation and automatic roaming of mobile subscribers

and their stations.

8. To provide service to a variety of mobile stations ranging from those which are

small enough to be easily carried by a person to those which are mounted in a

vehicle.

9. To provide high speed packet data rates:

• 2 Mbps for fixed environments.

• 384 Kbps for pedestrians.

• 144 Kbps for vehicular traffic.

2.3.2 Spectrum bands

The total spectrum band assigned to IMT-2000 by ITU is made up of the 1885 MHz–

2025 MHz band and the 2110 MHz–2200 MHz band, as shown in figure 2.1. Notice

that the spectrum allocation is quite similar in Europe and Japan, whereas in the

United States the second generation systems use great part of such spectrum. As a

consequence, American network operators will need to gradually replace their existing

infrastructure with third generation technologies.

The most important radio transmission technology that fulfills IMT-2000’s re-

quirements is the Universal Terrestrial Radio Access (UTRA) radio interface, which

has been considered compatible with IMT-2000 since November 1999. The UTRA in-

terface is based on the Wideband-CDMA (WCDMA) technology and operates in two

modes: Frequency Division Duplex (FDD) and Time Division Duplex (TDD). It has

received support both from the European Telecommunications Standards Institute

(ETSI) and the Association of Radio industries and Businesses (ARIB).
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Figure 2.1: Spectrum allocation for IMT-2000 and MSS (Mobile Satellite Service) in

several countries.
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2.4 UMTS

When it was signed and formalized, on December 1998, the 3rd Generation Part-

nership Project (3GPP) collaboration agreement gave rise to a standardization orga-

nization which currently comprises several telecommunications standards bodies or

Organizational Partners. The goal of this organization is to produce specifications for

the Universal Mobile Telecommunications System, a third generation network based

on two important technologies: the UTRA radio interface and the GSM-GPRS net-

work. Later, the organization’s scope was extended to include the maintenance and

further development of technical specifications for GSM, GPRS and EDGE.

2.4.1 Organization

A UMTS network is logically divided into two parts, which are referred to with

the generic terms Core Network (CN) and Generic Radio Access Network (GRAN)

[1, 23, 31, 32]. The CN reuses several elements already present in the GSM-GPRS

network; it consists of two overlapped domains: the Circuit-Switched (CS) domain

and the Packet-Switched (PS) domain. The CS domain comprises the entities that

allocate dedicated resources for user and control traffic at the start of a session, and

release those resources at the end of the session. The entities in the PS domain trans-

port user data in the form of autonomous IP packets, which are routed independently

of each other. The CN allows the user to set up a connection to and from external

packet-based networks, public switched telephone networks (PSTN) and other wire-

less networks. The UMTS Terrestrial Radio Access Network (UTRAN) is UMTS’

implementation of the GRAN concept; it is based on the UTRA radio interface, and

performs functions like: management of radio resources, power control both in the

downlink and the uplink direction, handoff management and allocation of channels

for transmission.

Figure 2.2 shows a simplified organization of a UMTS network, according to the

3GPP specifications in Release 99. The diagram shows the CN, the UTRAN, the

mobile stations, the components of the CS and PS domains, the interfaces that link

the components to each other and the external networks the UMTS system can com-
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Figure 2.2: Basic architecture of a UMTS mobile network (Release 99) (from [32]).

municate with. Later 3GPP specifications, like those in Release 5, propose a different

organization: the all-IP multimedia network. The main feature of this architecture

is that both voice and data are transported over IP packets all the way from the

mobile station to final destination, thanks to the addition of a new domain in the

core network: the IP-Multimedia domain (IM).

2.4.2 Important components

The following is a description of some of the network components present in figure 2.2,

which is required to understand the security features included in the UMTS proposal:

Home Location Register (HLR): This module stores data related to each sub-

scriber of the service provided by the home network. There are two kinds of

information in a HLR entry: permanent and temporary. Permanent data does

not change unless a subscription parameter is required to be modified. Tempo-

rary data change continuously, even from call to call, and some items might not

always be necessary. Permanent data include an authentication key. A mobile



CHAPTER 2. BACKGROUND 19

network can have several HLRs depending on the size of its coverage area.

Visitor Location Register (VLR): The VLR holds information related to every

mobile station that roams into the area serviced by the associated MSC. It

contains information about the active subscribers in the corresponding serving

network, even those to whom the network is not their home network. When

a subscriber roams into a serving network, the information in his/her HLR is

copied to the VLR in the visited network, and discarded when the subscriber

leaves such network. The information stored by the VLR is quite the same as

that stored by the HLR.

Authentication Center (AuC): Physically attached to a HLR, this component

stores, for each subscriber, an authentication key K and the corresponding

International Mobile Subscriber Identity (IMSI), which are permanent data

entered at subscription time. The AuC plays a crucial role in the network’s

security architecture, since it is responsible of the generation of important data

used during the authentication and encryption procedures.

Serving GPRS Support Node (SGSN): This component is responsible for the

mobility management and IP packet session management. It routes user packet

traffic from the radio access network to the appropriate Gateway GPRS Support

Node (GGSN), which in turn provides access to external packet data networks.

In addition, it generates records to be used by other modules for charging pur-

poses. SGSN helps to control access to network resources, preventing unau-

thorized access to the network or specific services and applications. The IuPS

interface links the SGSN, the main component of the PS domain, with the Radio

Network Controller (RNC) in the UTRAN, as figure 2.2 illustrates.

2.5 UMTS’ security architecture

According to the specifications, the security architecture is made up of a set of security

features and security mechanisms [2]. A security feature is a service capability that

meets one or several security requirements. A security mechanism is an element or
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process that is used to carry out a security feature. Figure 2.3 shows that the security

features are grouped together in five different sets of features, each one facing a specific

threat and accomplishing certain security objectives. The following is a description

of these groups of features:

Network access security (I): Provides secure access to 3G services and protects

against attacks on the radio interface link.

Network domain security (II): Allows nodes in the operator’s network to se-

curely exchange signaling data and protects against attacks on the wired net-

work.

User domain security (III): Secures access to mobile stations.

Application domain security (IV): Enables applications in the user and in the

provider domain to securely exchange messages.

Visibility and configurability of security (V): Allows the user to get informa-

tion about what security features are in operation or not, and whether provision

of a service depends on the activation of a security feature or not.

An exhaustive study of the literature revealed that some of the mechanisms that carry

out the set of network access security features require the execution of algorithmic

processes with the highest performance possible.

2.5.1 Network access security features

Network access security features can be further classified into the following categories:

entity authentication, confidentiality and data integrity. The following is a description

of the security features classified into the category of entity authentication:

User authentication: The Serving Network (SN in figure 2.3), the network that

provides the service to the user, corroborates the identity of the Mobile Equip-

ment (ME).
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Figure 2.3: Overview of the security architecture (from [2]).

Network authentication: The user corroborates that he/she is connecting to a

serving network that is authorized by the user’s Home Network (HE in figure

2.3) to provide him/her with the service; this includes the guarantee that this

authorization is recent.

The following security features deal with the confidentiality of data along the

network access link:

Cipher algorithm agreement: The mobile station and the serving network can

securely negotiate the algorithm that they shall use subsequently.

Cipher key agreement: The mobile equipment and the serving network agree on

a cipher key that they may use subsequently.

Confidentiality of user data: User data can not be overheard on the radio inter-

face.

Confidentiality of signaling data: Signaling data can not be overheard on the

radio interface.

The features provided to achieve integrity of data on the network access link are

the following:
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Integrity algorithm agreement: The mobile equipment and the serving network

can securely negotiate the integrity algorithm that they shall use subsequently.

Integrity key agreement: The mobile station and the serving network agree on an

integrity key that they may use subsequently.

Data integrity and origin authentication of signaling data: The receiving en-

tity (mobile station or serving network) is able to verify that signaling has not

been modified in an unauthorized way since it was transmitted by the send-

ing entity (serving network or mobile equipment) and that the origin of the

signaling data received is indeed the one claimed.

2.5.2 UMTS Authentication and Key Agreement

The UMTS Authentication and Key Agreement (UMTS AKA) is a security mech-

anism used to accomplish the authentication and key agreement features described

above. This mechanism is based on a challenge/response authentication protocol con-

ceived to be compatible with GSM’s subscriber authentication and key establishment

protocol to facilitate the transition from GSM to UMTS. A challenge/response pro-

tocol is a security measure in which an entity verifies the identity of another entity

without revealing a secret password shared by the two entities. The key concept is

that each entity must prove to the other that it knows the password without actually

revealing or transmitting such password.

The UMTS AKA process is invoked by a SN after a first registration of a user, after

a service request, after a location update request, after an attach request and after

a detach request or connection re-establishment request. In addition, the relevant

information about the user must be transferred from the user’s home network to the

serving network to complete the process. The home network’s HLR/AuC provides

the serving network’s VLR/SGSN with Authentication Vectors (AVs).

The authentication and key agreement process is summarized in the following

algorithm and illustrated in figure 2.4:

Stage 1:
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Figure 2.4: Authentication and key agreement security mechanism (from [2]).
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1. The visited network’s VLR/SGSN requests a set of AVs from the HLR/AuC in

the user’s home network.

2. The HLR/AuC computes an array of AVs. This is done by means of the au-

thentication algorithms and the user’s private secret key K, which is stored only

in the home network’s HLR/AuC and the USIM in the user’s mobile station.

3. The home network’s HLR/AuC responds by sending n authentication vectors

AV1, . . . , AVn back to the visited network’s VLR/SGSN.

Stage 2:

1. The visited network’s VLR/SGSN chooses one AV and challenges mobile sta-

tion’s USIM by sending the RAND and AUTN fields in the vector to it.

2. The mobile station’s USIM processes the AUTN. With the aid of the private

secret key K, the user is able to verify that the received challenge data could

only have been constructed by someone who had access to the same secret key

K. The USIM will also verify that the AV has not expired by checking its

sequence number (SEQ) field. Provided that the network can be authenticated

and that the AV is still valid, the USIM proceeds to generate a confidentiality

key (CK), an integrity key (IK) and a response for the network (RES).

3. The user equipment responds with RES to the visited network.

4. The visited network’s VLR/SGSN verifies that response is correct by comparing

the expected response (XRES) from the current AV with the response (RES)

received from the mobile station’s USIM.

2.5.3 Integrity

Since the control signaling information transmitted between the mobile station and

the network is so important and sensitive, its integrity must be protected. The

mechanism that carries out this security feature is based on an UMTS Integrity

Algorithm (UIA) implemented both in the mobile station and in the module of the

UTRAN closer to the core network, i.e. the RNC. See figure 2.2.
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Figure 2.5: Derivation of message authentication codes from signaling information

using the f9 algorithm (from [4]).

The UIA explained in this subsection is the f9 algorithm, shown in figure 2.5. The

procedure of signaling data integrity verification in the uplink direction consists of

four steps. First, the f9 algorithm in the user equipment computes a 32-bit message

authentication code for integrity of signaling data (MAC-I) based on its input pa-

rameters, including the signaling data (MESSAGE). Second, the MAC-I computed is

attached to the signaling information and sent over the radio interface from the user

equipment to the RNC. Third, the RNC computes an expected message authentica-

tion code value (XMAC-I) once it has received the signaling data and the MAC-I,

in the same way as the mobile station computed MAC-I. Fourth, the integrity of the

signaling information is determined by comparing the MAC-I and the XMAC-I. The

process of integrity verification in the downlink direction is the same.

Figure 2.6 shows that the internal structure of the f9 algorithm uses the shared

integrity key IK and it is based on a series of KASUMI block ciphering modules

interconnected in a variant of the Cipher Block Chaining (CBC) mode [16]. The

algorithm combines the 64-bit intermediate outputs of all of the block ciphers by

using XOR operations, and, lastly, applies the KASUMI algorithm to this sum. The

64-bit output of this final process is truncated to 32 bits to obtain the MAC-I value.

A thorough description of the parameters of the f9 algorithm is provided in [4]

and [33].
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Figure 2.6: The f9 integrity algorithm (from [4]).

2.5.4 Confidentiality

Unlike the integrity algorithm, which only operates on signaling information, the

confidentiality mechanism operates on both signaling information and user data. The

algorithm defined to perform the confidentiality tasks is called f8 .

The confidentiality process carried out by the f8 algorithm in the uplink direction

consists of five steps. First, using the ciphering key CK, and some other parameters,

the f8 algorithm in the user equipment computes an output keystream block. Second,

this output keystream block is XORed, bit by bit, with the data stream, also called

plaintext , to obtain a ciphered data block or ciphertext . Third, the ciphertext is sent

to the network through the radio interface. Fourth, the f8 algorithm in the RNC uses

the parameters employed by the user equipment, including the shared cipher key CK,

to generate the same output keystream that was computed in the user equipment.

Finally, this keystream is XORed with the ciphertext received to recover the initial

information. Figure 2.7 illustrates the procedure, which is the same for the downlink

case.

Figure 2.8 illustrates the structure of the f8 algorithm. Once again, notice that

several instances of the KASUMI block cipher are present, this time organized in a so
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Figure 2.7: Ciphering of user and signaling data using the f8 algorithm (from [4]).

called Output Feedback (OFB) mode [16]. Each block cipher generates 64 bits of the

whole output keystream and forwards its output to the input of the following block

cipher, subject to its modification by a XOR operation with a counter and a static

value.

The input parameter LENGTH indicates the length of both the keystream and

the plaintext stream. The parameter BEARER identifies to each radio bearer among

those associated with each user; this input value avoids the use of the same keystream

for encryption/decryption in every radio bearer. For more information refer to [4] and

[33].

2.5.5 The KASUMI block cipher

Not only was the KASUMI block cipher adopted by the 3GPP as the cornerstone of

the operations involved in the security architecture defined for the third generation

UMTS standard, but also of those in the security architectures for the evolved second

generation GSM standard, and the second generation + GPRS standard. Therefore,

KASUMI is the main primitive of the f8 confidentiality algorithm, the f9 integrity

algorithm, and the A5/3 and GEA3 encryption/decryption algorithms [8].

KASUMI’s specifications were developed based on previous work carried out for

MISTY [25], an algorithm that has proven its security against the most advanced

cryptanalysis techniques and is suitable for hardware implementation. KASUMI has
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Figure 2.8: The f8 confidentiality algorithm (from [4]).

a Feistel structure comprising eight rounds, operates on 64-bit data blocks, its pro-

cessing is controlled by a 128-bit encryption key K, and has the following additional

features derived from its Feistel nature [5]:

• Input plaintext is the input to the first round.

• Ciphertext is the last round’s output.

• K is used to generate a set of round keys {KLi, KOi, KIi} for each round i.

• Each round computes a different function as long as the input round keys are

different.

• The same algorithm is used both for encryption and decryption.

Figure 2.9 shows the structure and components of the KASUMI block cipher. For

odd rounds the round-function is computed by applying the FL function followed by

the FO function. For even rounds the FO function is applied before FL. FL, shown in

figure 2.9(d), is a 32-bit function made up of simple AND, OR, XOR and left rotation

operations. FO, see figure 2.9(b), is also a 32-bit function having a three-round Feistel

organization which contains one FI block per round. FI, see figure 2.9(c), is a non-

linear 16-bit function having itself a four-round Feistel structure; it is made up of two
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1 2 3 4 5 6 7 8

KL1 K1 ≪ 1 K2 ≪ 1 K3 ≪ 1 K4 ≪ 1 K5 ≪ 1 K6 ≪ 1 K7 ≪ 1 K8 ≪ 1

KL2 K3′ K4′ K5′ K6′ K7′ K8′ K1′ K2′

KO1 K2 ≪ 5 K3 ≪ 5 K4 ≪ 5 K5 ≪ 5 K6 ≪ 5 K7 ≪ 5 K8 ≪ 5 K1 ≪ 5

KO2 K6 ≪ 8 K7 ≪ 8 K8 ≪ 8 K1 ≪ 8 K2 ≪ 8 K3 ≪ 8 K4 ≪ 8 K5 ≪ 8

KO3 K7 ≪ 13 K8 ≪ 13 K1 ≪ 13 K2 ≪ 13 K3 ≪ 13 K4 ≪ 13 K5 ≪ 13 K6 ≪ 13

KI1 K5′ K6′ K7′ K8′ K1′ K2′ K3′ K4′

KI2 K4′ K5′ K6′ K7′ K8′ K1′ K2′ K3′

KI3 K8′ K1′ K2′ K3′ K4′ K5′ K6′ K7′

Table 2.1: Key scheduling for the KASUMI algorithm.

nine-bit substitution boxes (S-boxes), each called S9, and two seven-bit S-boxes, each

called S7. Figure 2.9(c) shows that data in the FI function flow along two different

paths: a nine-bit long path (thick lines) and a seven-bit path (thin lines). Notice

that in Feistel structures, such as the one used in this algorithm, each round’s output

is twisted before being applied as input to the following round. After completing

eight rounds KASUMI produces a 64-bit long ciphertext block corresponding to the

plaintext input block.

The key scheduler receives the 128-bit initial input key K and generates the round

keys KL (32-bit long), KO (48-bit long) and KI (48-bit long) for each of the eight

rounds. Each of these round keys is made up of two or three 16-bit subkeys, which

are the ones directly computed by the key scheduler in the fashion shown in table 2.1.

The diagrams in figure 2.9 illustrate how these subkeys are used within each of the

function modules within the rounds. The initial key K is also split into eight 16-bit

values Ki, 1 ≤ i ≤ 8.

In table 2.1 “≪” means a left rotation by the number of bits specified by the

number to the right, and each K ′
i is defined as follows:

K ′
i = Ki ⊕ Ci, 1 ≤ i ≤ 8;

where Ci is a constant specified in [5].
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Figure 2.9: The KASUMI block cipher.
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Figure 2.10: The KGCORE keystream generator function (from [8]).

2.6 Security issues for 2G and 2.5G networks

As mentioned previously, the 3GPP consortium currently has the responsibility of the

maintenance of the set of specifications for GSM and GPRS, including those for the

A5/3 and GEA3 stream ciphers. Both of these algorithms are built around a common

function module called KGCORE, which is based on the KASUMI block cipher.

2.6.1 The KGCORE function

The organization of the KGCORE, illustrated in figure 2.10, function is identical

to the organization of the f8 stream cipher. As in f8 , the KASUMI instances are

connected in an OFB mode, where the feedback data are modified by a static value

and a 64-bit counter.

KGCORE has seven input parameters (CA, CB, CC, CD, CE, CK and CL) with

variable lengths, and one output (CO). The A5/3 and GEA3 algorithms are defined

by appropriately mapping their inputs to the KGCORE module’s inputs, and KG-

CORE’s output to the algorithm’s outputs.
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Figure 2.11: The A5/3 stream cipher (from [8]).

2.6.2 The A5/3 algorithm for GSM

The A5/3 algorithm generates two 114-bits keystream blocks; one is employed for

the encryption and decryption processes in the uplink direction, and the other in for

encryption and decryption in the downlink direction. Figure 2.11 shows the input

and output parameters of the A5/3 algorithm and the information passed to the

KGCORE function block.

2.6.3 The GEA3 algorithm for GPRS

The GEA3 algorithm generates an M-byte keystream block, where M is variable that

never exceeds 216 = 65536. Figure 2.12 shows the input parameters of the GEA3

algorithm and their mapping to the inputs of the KGCORE function module. For

this algorithm, KGCORE’s CO output has a length, in bits, of eight times the value

of the integer M.

More information about KGCORE, A5/3 and GEA3 can be found in references

[8] and [33].
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Figure 2.12: The GEA3 stream cipher (from [8]).



Chapter 3

State of the art

This chapter describes the strategies proposed in the past to design hardware mod-

ules for the KASUMI block cipher and the f8 , f9 and GEA3 algorithms. The results

obtained after implementing those architectures in FPGA technology are provided

as well. This chapter includes a section that analyzes the advantages and disadvan-

tages of the previous proposals and deduces a set of requirements and useful design

strategies from the discussion. The last section of this chapter describes the Motorola

MPC185 security coprocessor, which includes a functional unit (FU) to perform the

f8 and f9 algorithms.

3.1 Implementation of the KASUMI block cipher

Several principles to implement a Feistel block cipher in hardware are described in

[14]. The first choice is to implement only a small number N of rounds and then

iterate over them, feeding back the output of the Nth round to the input of the first

round until the required number of rounds has been carried out. Improvements to

this technique include the addition of inner- and outer-round pipeline registers. The

second scheme consists of unrolling the whole number of rounds and adding inner-

and outer-round pipeline stages to the design. While the first strategy is aimed to

be used when area restrictions are strong, the second strategy is used to reach the

maximum throughput possible without space restrictions.

34
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(a) Type 1 (b) Type 2

Figure 3.1: Single-round architectures implementing the KASUMI block cipher (from

[20]).

The emphasis of this section is to show the different techniques to implement the

Feistel structure of the KASUMI block cipher and the key scheduler, as well as their

implementation results.

3.1.1 Iterative and reuse-based designs

The two architectures proposed by [20] implement logic for only one round, i.e. the

FO and the FL function blocks. The first architecture, called Type 1, iterates over

these two components eight times until completion of the process, feeding the design’s

output back to its input at the end of each iteration. It is a simple component that

sacrifices performance in the interests of achieving low hardware complexity, low

power consumption, and suitability for implementation in mobile stations. Figure

3.1(a) illustrates this proposal.

Figure 3.1(b) shows the second design, the Type 2 architecture, which is intended

to be implemented within the RNC in the UTRAN section of a UMTS network. High
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performance is needed to fulfill encryption/decryption requests from several users.

Therefore, this proposal contains a four-stage inner-round pipelined FO module that

results in an increased operating frequency and an improved throughput, by a factor

of four. Notice in figure 3.1(b) that the FL function is replicated twice to avoid

conflicts.

Both architectures were developed using the VHDL language, and implemented in

devices belonging to the Virtex-E family of FPGAs from Xilinx. Type 1 architecture

turns out to be such an inexpensive implementation in terms of hardware resources,

requiring 650 slices, when compared to Type 2 architecture, which requires 1100

slices. Concerning performance, Type 2 architecture has a throughput of 234 Mbps,

working at a clock frequency of 33 MHz, whereas Type 1 design has a throughput of

110 Mbps, synchronized with a clock working at 20 MHz.

The goal of the work documented in [24] is to investigate the suitability of the

KASUMI block cipher for hardware implementation. The two architectures proposed

are implemented in Xilinx Virtex-E and Altera APEX 20KE FPGA technologies, as

well as in Atmel’s 0.25 µm Application-Specific Integrated Circuit (ASIC) technology,

and highlight the principle that a trade-off between area and speed must be considered

when designing. The first proposal’s goal is to reduce the area required to implement

the block cipher by implementing a two-round iterative architecture, see figure 3.2.

An interesting fact about this design is that the S7 and S9 S-boxes are implemented

as combinational logic and, alternatively, mapped to embedded memory blocks within

the FPGA, taking advantage of Xilinx’s Block SelectRAM+ (BRAM) and Altera’s

Embedded System Block (ESB) technologies. This design requires 24 BRAM blocks

when implemented in Virtex-E FPGAs, 12 blocks for each round, and 48 ESB blocks

for devices from Altera, 24 blocks for each round.

The registers at the end of each round make the architecture to have a total com-

pletion latency of 8 clock cycles when the S-boxes are implemented as combinational

modules, and 40 cycles when the S-boxes are mapped to embedded memory blocks;

this due to the inner-round pipeline stages introduced by the registered outputs of

the synchronous memory blocks. However, this two-round design is not intended to

work in a pipelined fashion, i.e. ciphering two blocks during each clock cycle, though.
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Figure 3.2: Two-round iterative KASUMI architecture (from [24]).

Clock Frequency Throughput

Technology Architecture (MHz) (Mbps) Area

Xilinx two-round comb. 20.88 167.04 1287 slices

two-round BRAM 35.35 70.70 749 slices

Altera two-round comb. 31.17 249.36 2077 logic elements

two-round ESB 61.30 122.60 821 logic elements

ASIC two-round comb. 90.421 723.37 N/A

Table 3.1: Implementation results for the two-round architecture.

Table 3.1 reports the results obtained after performing the implementation process

of the two versions of the two-round design on the three platforms. Notice that the

process for Altera devices produces architectures with higher clock frequencies and

throughputs. The number of slices required by the Virtex-E devices is less than the

number of logic elements for the APEX devices. However, this is not conclusive

since the organization of Xilinx’s FPGAs differs from the organization of the Altera’s

FPGAs. The ASIC implementation has the highest throughput and clock frequency

even when the S-boxes are implemented using combinational logic.

It is possible to manipulate the structure of the KASUMI block cipher, by means

of aggressive simplifications, to get inexpensive datapaths with long latencies that

carry out the ciphering process. The work reported in [29] presents the application

of a simplification technique to design two KASUMI architectures requiring less than

600 slices in Virtex-E FPGAs and having latencies of 56 and 32 cycles, respectively.
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Latency Clock Frequency Throughput Area

Proposal (Cycles) (MHz) (Mbps) (Slices)

1 56 68.13 77.86 368

2 32 58.06 116.12 370

3 8 33.14 265.12 588

Table 3.2: Implementation results for the simplified architectures.

A third architecture with a latency of eight cycles is mentioned, and its results pro-

vided, but not described. Figure 3.3 shows the datapaths obtained after applying the

simplification strategy proposed by the authors.

Table 3.2 shows the results obtained after implementing the three architectures

in a Virtex-E FPGA. These designs are cheaper in terms of hardware resources than

the former two proposals. Notice that the first architecture, the cheapest one, has

the higher clock frequency and the lowest throughput. This situation is explained by

the following expression:

throughput =
block size× clock frequency

latency
. (3.1)

For the three architectures the size of the block is fixed, 64 bits, whereas the clock

frequency and the latency values change for every design. The expression (3.1) indi-

cates that as the latency increases, the throughput decreases in such a way that the

performance is affected.

The two-round architecture described in [21], and shown in figure 3.4, is similar

to that described in [24]. However, the proposal takes advantage of both inner- and

outer-round pipeline techniques to decrease the period of the clock and increase the

throughput. Inner-round registers are negative edge-triggered, whereas outer-round

registers are positive edge-triggered; consequently, the execution time of each round

is one clock cycle. The pipelined design allows this circuit to process two blocks

simultaneously, with an initial latency of eight cycles. The S-boxes in this architecture

are implemented with combinational logic.

The implementation results of this architecture, in a Virtex-E platform, are the

following: 1726 Configurable Logic Blocks (CLBs), which is equivalent to 3452 slices,

a clock frequency of 54 MHz and a throughput of 432 Mbps.
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(a) 56-cycle architecture (b) 32-cycle architecture

Figure 3.3: Two simplified iterative KASUMI architectures (from [29]).
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Figure 3.4: Two-round dual edge-triggered pipelined KASUMI architecture (from

[21]).

3.1.2 Pipelined designs

The second architecture proposed in [24] is shown in figure 3.5, its goal is to maximize

throughput by implementing an unrolled eight-round outer-round pipelined datapath.

This design requires four times more hardware resources than the two-round design in

figure 3.2. There are also two variants of this architecture: the first variant includes

combinational S-boxes, whereas the second one implements S-boxes using embedded

memory blocks. In the first case, the initial latency is 9 clock cycles, and in the second

case the initial latency is 41 cycles. A new plaintext block enters the datapath every

clock cycle and, once the pipeline fills, the datapath issues a ciphertext block each

clock cycle.

The results of the implementation process for this design are shown in table 3.3.

Again, the FPGA implementations in the Altera devices achieve the highest through-

puts and clock frequencies. The following expression to compute throughput in a

pipelined architecture illustrates why these designs achieve performance above 1 Gbps:

throughput = block size× clock frequency. (3.2)

Figure 3.6 illustrates the eight-round architecture described in [21]. This datapath,
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Figure 3.5: Eight-round pipelined KASUMI architecture (from [24]).

Clock Frequency Throughput

Technology Architecture (MHz) (Mbps) Area

Xilinx eight-round comb. 20.86 1335.04 4032 slices

eight-round BRAM 37.72 2414.08 2213 slices

Altera eight-round comb. 26.24 1994.88 7106 logic elements

eight-round ESB 40.50 3221.12 2316 logic elements

ASIC eight-round comb. 94.05 5786.94 N/A

Table 3.3: Implementation results for the eight-round architecture.
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Figure 3.6: Eight-round dual edge-triggered pipelined KASUMI architecture (from

[21]).

like the one shown in figure 3.4, contains an inner- and an outer-round pipeline; the

outer-round registers trigger during the positive edge of the clock signal, and the

inner-round registers trigger during the negative edge. Unlike the pipelined datapath

described previously, the initial latency of this circuit is only eight clock cycles due

to its dual edge-triggered design and the implementation of combinational S-boxes.

The implementation results of this architecture for a Virtex-E FPGA platform

are the following: a total number of 4738 CLBs required, equivalent to 9476 slices, a

clock frequency of 56 MHz and a throughput of 3584 Mbps.

3.1.3 KASUMI soft core

The company sci-worx commercializes an intellectual property (IP) core, available

in VHDL and Verilog HDL, implementing the KASUMI block cipher as part of its
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Figure 3.7: KASUMI intellectual property core from sciworx (from [30]).

DesignObjectsTM line of reusable cores ready to synthesize. Figure 3.7 shows the

design of the core.

The core’s top level component is called kasumi do and contains three functional

units implementing an odd round, and even round and the key scheduling, respec-

tively. The core receives the ciphering keys and the plaintext blocks through its input

ports and is controlled by some input signals. The core is fully synchronous and

takes one clock cycle to perform one round; thus, it needs eight cycles to complete

the ciphering task.

Implementation data indicate that the core needs 1150 slices and reaches a clock

frequency of 25 MHz in a Xilinx Virtex 1000 FPGA, no information concerning

throughput is provided.

3.2 Implementations of the key scheduler

This section presents the strategies employed by the designers of the previously de-

scribed KASUMI architectures to implement the block cipher’s key scheduler. Unfor-
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Figure 3.8: Key scheduler for the single-round pipelined architecture (from [20]).

tunately, not all of the references contain thorough descriptions of the architectures

proposed.

The key scheduler corresponding to the KASUMI architecture in figure 3.1(b)

stores four ciphering keys in its 32 16-bit registers, see figure 3.8. The control rotates

the array of registers and the scheduler computes the subkeys needed for each pipeline

stage during each cycle. The ciphering process for the first block concludes after

rotating the array 32 times. Successive rotations will allow the next blocks to reach

the final stage of the ciphering process. It may be that new ciphering keys are stored

in the array of registers, if necessary, after an already stored key has been rotated

throughout the array.

The key scheduler proposed in [29] for the architectures in figure 3.3, and illus-

trated in figure 3.9, is also a shift register architecture, where the initial key is rotated
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Figure 3.9: Key scheduler for simplified architectures (from [29]).

to the left during encryption and to the right during decryption. The Kin 16-bit input

port is used to load the 128-bit initial key into the scheduler’s registers after eight

clock cycles, the barrel shifter stores the constants to be used during computation of

the subkeys and the logic modules generate the subkeys. The registers are shifted

every cycle for the 1 cycle/round architecture; and every 7 and 4 cycles for the 7

cycles/round and 4 cycles/round architectures, respectively.

The key scheduler presented in [21], and illustrated in figure 3.10, computes a

number of 16-bit subkeys by means of an array of left rotation modules and a set of

XOR gates. By concatenating some of these 40 subkeys the scheduler generates the

round keys for the Feistel implementations in figures 3.4 and 3.6. These round keys

are stored in a register file to accelerate the ciphering process.

3.3 Implementations of the f8 and f9 algorithms

The hardware implementations of f8 and f9 proposed in [24] consider that the algo-

rithms will work with data whose length ranges between 1 and 5114 bits. Processing

pieces of data with such lengths implies that a hardware module implementing the f8

algorithm contains from 1 up to 80 instances of any of the KASUMI designs described

in the previous section, which is costly. Figure 3.11 illustrates that the architectures

designed implement the algorithms by iterating, at most 80 times, over a single KA-
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Figure 3.10: Key scheduler for dual edge-triggered KASUMI architectures (from [21]).

SUMI module; generating a 64-bit block of the keystream, in the case of f8 , and an

operand for the XOR-sum required to compute the MAC-I value, in the case of f9 ,

during each iteration. Another KASUMI module is required in f8 prior the iteration

to set the register A properly. In f9 , the second KASUMI module is placed after the

iteration to compute the MAC-I value based on the result of the iteration phase.

Table 3.4 shows the results obtained after implementing the design for f8 in the two

FPGA platforms. The architecture uses the two variants of the two-round KASUMI

core (figure 3.2) and one variant of the eight-round datapath (figure 3.5), the one

implementing combinational S-boxes. There are not enough memory blocks to store

the 192 S-boxes required by the two KASUMI modules included in the designs.

The throughput for the architecture using the two-round variant using combina-

tional S-boxes is computed by:

throughput =
block size× number of blocks× clock frequency

(number of blocks + 1)× 8
. (3.3)

For the architecture using memory blocks for the S-boxes, the throughput is given

by:

throughput =
block size× number of blocks× clock frequency

(number of blocks + 1)× 40
. (3.4)
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(a) f8 (b) f9

Figure 3.11: Iterative architectures implementing f8 and f9 (from [24]).

In both cases remember that block size = 64 and 1 ≤ number of blocks ≤ 80.

Table 3.5 shows implementation data for the f9 architecture. This time, the

performance metric is the time required to generate a message authentication code

from a variable-length message. The expression to compute this parameter is as

follows:

time =
(number of blocks + 1)× latency

clock frequency
. (3.5)

Remember that latency is the number of clock cycles needed by the KASUMI module

Clock Frequency

Technology Architecture (MHz) Area

Xilinx two-round comb. 20.52 2781 slices

two-round BRAM 33.14 1563 slices

eight-round comb. 20.01 8146 slices

Altera two-round comb. 30.76 4687 logic elements

two-round BRAM 49.50 2128 logic elements

eight-round comb. 29.06 15232 logic elements

Table 3.4: Implementation results for the f8 architecture.
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Clock Frequency

Technology Architecture (MHz) Area

Xilinx two-round comb. 20.68 2671 slices

two-round BRAM 33.52 1560 slices

eight-round comb. 20.19 8104 slices

Altera two-round comb. 29.62 4382 logic elements

two-round BRAM 51.79 1901 logic elements

eight-round comb. 28.93 13628 logic elements

Table 3.5: Implementation results for the f9 architecture.

Figure 3.12: Merged architecture for f8 and f9 (from [29]).

to carry out the ciphering process on a 64-bit block. As before

1 ≤ number of blocks ≤ 80.

The design proposed in [29] also considers input data and messages with a length

of at most 5114 bits; its most remarkable feature is that it carries out both the f8 and

f9 algorithms with the same architecture, see figure 3.12. Special care was taken to

not add expensive and unnecessary components to the design, as well as implementing

the combination of the ciphering and integrity keys with the key modifiers (KMs) in

an efficient manner.

Table 3.6 shows the implementation results for this architecture. The first set of

data were obtained after synthesizing to a Virtex-E device using a speed grade of −8,
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Latency Area Frequency Throughput

Speed grade (cycles) (slices) (MHz) (Mbps)

-8 56 511 59.88 68.43

32 544 51.96 103.92

8 741 30.12 240.96

-6 56 512 51.15 58.46

32 544 44.42 88.84

8 742 25.80 206.40

Table 3.6: Implementation results for the merged architecture.

whereas the second data set corresponds to an implementation on a device with a

speed grade of −6.

3.4 Analysis of the implementations of the KA-

SUMI block cipher

The UMTS’ requirements specification for cryptographic algorithms [3] states that

hardware designs of the confidentiality and integrity algorithms should be imple-

mented using less than 10000 gates, achieve throughputs of at least 2 Mbps both

on the downlink and the uplink direction, and work using clock frequencies upwards

20 MHz. In addition, these hardware modules must be allocated both to the user

equipment and the RNC.

Even though each of the architectures for f8 and f9 described in the previous

section fulfills the requirements of throughput and clock frequency stated in [3], there

is still room for improvement in their designs. The following analysis emphasizes

the strengths and weaknesses of the proposals to implement the KASUMI algorithm,

since that module concentrates the most demanding processing.

The most advantageous feature of the Type 2 architecture described in [20], and

shown in figure 3.1, is that its pipelined datapath is able to process up to four plaintext

blocks at a time. However, in spite of this important characteristic, the complexity of

the FO function module does not allow the design to have a short critical path. The

only strategy considered to reduce the critical path is to insert an inner-round pipeline

register between the FI blocks, which is not enough since each FI module contains four
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S-boxes, presumably implemented with combinational elements, which prevent the

critical path from decreasing under a certain limit. The Type 1 architecture’s critical

path is even longer because this design contains the same number of components as

Type 2 architecture but does not contain inner-round pipeline registers. Implementing

any of these architectures as a functional unit inside a processor core will increase its

clock frequency and degrade its performance.

A very important lesson taught by the experiences reported in [24], see figures 3.2

and 3.5, is that mapping the S-boxes to embedded memory blocks produces higher

clock frequencies and has a significant effect on throughput. Although the results re-

ported for these proposals contain some inaccuracies concerning the number of mem-

ory blocks employed, the throughputs achieved by employing this mapping strategy

are rather good. The eight-round architecture is very expensive to be added as a

functional unit inside a processor core, it consumes lots of hardware resources and

embedded memory blocks. The two-round architecture would be a better choice, but

it can be improved further by performing some simplifications in the structure of the

rounds with the goal of saving resources and shortening the critical path.

Consuming too many hardware resources is a serious hindrance to incorporate an

architecture into a processor core; but it is not the only one. Having inexpensive

implementations of the integrity and confidentiality algorithms that have long laten-

cies is also a counterproductive situation because it degrades performance, no matter

the higher clock frequency, as revealed by the expression (3.1). This is the case of

the architectures proposed in [29] and shown in figure 3.3, which require many clock

cycles to encrypt one plaintext block and have long critical paths since there is no

any intermediate clock-driven device. Although the proposals are wisely designed and

fulfill the goal of being compact, it is possible to achieve a better tradeoff between

compactness and low latency by manipulating the structure of the KASUMI block

cipher in a different way to the proposed for these architectures.

Let us now examine the architectures described in [21], see figures 3.4 and 3.6.

Notice that not only do they have outstanding performances, as a consequence of

higher clock frequencies and shorter latencies in expressions (3.1) and (3.2), but are

among the most expensive designs. The key for the high frequencies is the use of



CHAPTER 3. STATE OF THE ART 51

negative edge-triggered inner-round registers and positive edge-triggered outer-round

registers, which is a smart way to reduce the critical path and constitutes the main

contribution of these works. The disadvantages of these proposals are that the S-boxes

are implemented as combinational logic and the Feistel structure is not simplified to

optimize the use of resources and decrease the critical path even further.

The previous discussion shows up the need for a KASUMI implementation that

meets the following requirements in order to be incorporated into a processor core:

• Its critical path must be shorter than the processor’s critical path in order for

its clock frequency does not affect the processor’s frequency.

• It must minimize the use of hardware resources by sharing modules.

• It must achieve a better tradeoff between performance and area complexity than

the proposals discussed previously.

The analysis also revealed the following useful strategies that are worth to be taken

into consideration when designing an architecture that meets the requirements:

• To transform the structure of the KASUMI block cipher without altering its

functionality so that the new structure has the following features: shared use

of resources, a shorter critical path and the possibility of reuse of a minimal

number of components.

• The implementation of the S-boxes using lookup table structures in hardware.

When using FPGAs, the embedded memory blocks are the most efficient al-

ternative to use this strategy. This technique is advantageous because it saves

hardware resources and, when the outputs of the memory modules are regis-

tered, contributes to reducing the critical path.

• The use of inner- and outer-round pipelines using both positive edge-triggered

registers and negative edge-triggered registers allows decreasing the design’s

critical path.
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Figure 3.13: Security system for GPRS mobile stations (from [22]).

3.5 Implementation of the GEA3 algorithm

The security system for GPRS mobile stations proposed in [22] includes hardware

implementations of the A3 and A8 algorithms [7], used to perform authentication

and ciphering key generation tasks, and the GEA3 keystream generator. The A3/A8

pair is intended to be included in the SIM smart card, whereas the GEA3 module lies

within the mobile equipment. Figure 3.13 shows the organization of the system.

The GEA3 module, see figure 3.14, is able to encrypt and decrypt data whose

length varies between 1 and M bytes, where 1 ≤ M ≤ 65536; it is controlled by a

128-bit ciphering key K ′
c = Kc||Kc, where Kc is the encryption key generated by the

A8 algorithm; and it works by iterating over the KASUMI pipelined implementation

in figure 3.4, but with the restriction that the ciphering processing for a new block

is started after completion of the former one. This architecture is actually an imple-

mentation of the KGCORE function, which is identical to the f8 algorithm. Notice

the similarities between this design and that in figure 3.12.

The results of the implementation process, carried out in a Virtex-E platform, for

this design are the following: 2687 CLBs, equivalent to 5374 slices, and a clock fre-

quency of 33 MHz. A throughput of 363 Mbps is reported, but there is no information
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Figure 3.14: Iterative GEA3 architecture (from [22]).

concerning the number of iterations required to reach that throughput.

3.6 The MPC185 security coprocessor

Previous sections describe different published proposals that implement cryptographic

functions for UMTS networks in hardware, with different levels of performance and

hardware utilization. But, what commercial security solutions exist for the telecom-

munications market? what strategies do these technologies use to provide 3G cellular

networks with efficient security services? This section describes the Motorola MPC185

security coprocessor [27], which contains execution units intended to accelerate dif-

ferent cryptographic operations, including the f8 and f9 algorithms.

3.6.1 Description of the coprocessor

There exist several cryptographic coprocessors manufactured by Motorola implement-

ing different algorithms and working with different bus technologies. The MPC190

and MPC184 devices include bus interfaces compliant with the PCI 2.2 standard, as

well as FUs to perform several functions. The MPC185 is designed to work within a
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Figure 3.15: Organization of the MPC185 security coprocessor (from [27]).

system based on the 60x bus and, unlike the devices mentioned before, includes an

execution unit implementing the KASUMI block cipher and the f8 and f9 algorithms.

Other operations provided by this coprocessor include elliptic curve arithmetic, gen-

eration of random numbers and the following algorithms: DES, 3DES, RC-4, SHA-1

and AES.

Figure 3.15 shows the organization of the coprocessor, which resides in the mem-

ory map of the system’s main processor. The MPC185’s 60x Interface employs mas-

ter/slave protocols to transfer 64-bit words between the bus and the device’s internal

modules, managing the communication between execution units and other devices

present in the bus in an independent of existing processor fashion. When program-

ming the MPC185, the user writes a bundle of information, known as data packet

descriptor , to one of the four crypto-channels within the coprocessor using the sys-

tem’s bus. The crypto-channel decodes the descriptor, books an execution unit, uses

the bus interface to fetch all the required data, sends information back to the bus

after the cryptographic operation completes, resets the execution unit, and notifies

when the processing over the descriptor is done. The control unit schedules the re-

quired activities and manages the on-chip resources, including the execution units

and their first-in first-out (FIFO) buffers, the bus interface and the internal busses

interconnecting the various components.

Data packet descriptors allow access the cryptographic functions of the coproces-
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sor, some of which are conceived to be multifunction to facilitate the implementation

of security protocols. The header of the descriptor indicates the service required and

specifies which FU to use and in which operation mode. This FU might require

fetching information from system memory to carry out its task. For this purpose,

the descriptor contains seven (length, pointer) pairs indicating the initial address of

the piece of data required and its length. The last component of the descriptor is a

pointer to the next descriptor to process.

The modes in which the control unit can configure the on-chip resources are the

following:

Host-controlled mode. An external host is directly responsible for all data move-

ment into and out of the resource. This bypasses the crypto-channels and the

control arbitration unit.

Static mode. The user can reserve a specific execution unit to a specific crypto-

channel. This removes the execution unit from control unit arbitration.

Dynamic mode. A crypto-channel can request a particular service from the cor-

responding available execution unit. The control unit is responsible for the

execution unit and the bus arbitration and management.

3.6.2 The KASUMI execution unit

The KASUMI execution unit within the MPC185 coprocessor (KEU) is able to carry

out either a single f8 operation or a f8 followed by a f9 operation or a single f9

operation or both of them simultaneously, depending on the operation mode the unit

is working on. The length of the block of data to process is between 1 and 5114 bits.

A key size register indicates the length, in bytes, of the ciphering key; its permitted

values are 16, when the KEU performs only one operation, and 32, in case the unit

simultaneously carries out the two algorithms.

During the processing of the f8 function, the KEU reads data from its input FIFO,

XORs these data with the keystream it computes, and places the results in the output

FIFO buffer. When carrying out the f9 function, the KEU reads the input message

from the input FIFO and stores the resulting MAC-I value in the unit’s Data Out
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register. Data are read from the input FIFO buffer 64 bits at a time. In a similar

manner, reading from the FIFO address space will pop 64 bits of message data from

the output FIFO.

The parameter values for the f8 and f9 functions, COUNT, BEARER and FRESH,

are written in registers whose addresses in the map are: 1410016, 1410816 and 1411016,

respectively. These registers make up the initialization vector (IV) of the KEU.

There is no further information which provides details of how the KASUMI block

cipher is designed and how the function algorithms are implemented.



Chapter 4

Problem statement

As stated in chapter 1, this dissertation tackles the problem of implementing UMTS’

security operations in an efficient way. The previous chapter described different iso-

lated hardware implementations of KASUMI, f8 and f9 that turn out not to be well-

suited to work within a larger processing equipment present in a UMTS network.

Thus, the efficiency also involves a non-intrusive coexistence with other modules in

the system that perform the rest of the operations required.

There are two general methods to solve the problem. The first alternative con-

sists of programming the functions as software modules for standard general purpose

processors or digital signal processors. In the second approach a central processing

element entrusts the computation of the security functions to a specialized coproces-

sor attached to the system bus, like the MPC185 security processor. The following

sections discuss these two approaches in depth.

4.1 The software approach

Programs compiled from a high-level language or an assembly language use exclusively

the instruction set specified by the architecture of a general purpose microprocessor.

Implementing the f8 and f9 entirely in software has the following drawbacks:

• The overhead introduced by the pipeline stalls occurred during the execution of

the large number of instructions making up each program reduces performance.

57
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• Generally, the width of an embedded processor’s internal registers (32 bits)

is shorter than the width of the block to process (64 bits). Therefore, two

separate sequences of instructions are needed to process each 32-bit half of the

block. On the contrary, when processing either 16-bit or 9-bit or 7-bit long

data the program wastes the processor’s registers and its capabilities. Both

disadvantages may be solved by using a processor with a Single Instruction

Multiple Data (SIMD) instruction set.

• The program needs the processor to execute many of its bitwise logic instruc-

tions to implement each S-box. On the other hand, implementing the S-boxes as

lookup tables stored in the system’s memory requires several accesses to mem-

ory and bus requests, unless advanced caching strategies are employed. In any

case the overhead caused by the memory latencies and the cache management

has a negative effect on performance.

4.2 The coprocessor approach

The coprocessor unit that carries out the confidentiality and integrity operations is

attached to the system’s bus and communicates with the main processor and the

memory using data and control signals. There are two alternatives to design the

coprocessor unit: as an ASIC like the MPC185 coprocessor or as a hardware module

implemented in a FPGA-based development board.

The main advantage of the coprocessor scheme is that it frees the processor from

performing long sequences of instructions to accomplish the security functions, allow-

ing it to devote its resources to other tasks. In spite of this situation, the performance

of the systems implementing this approach is severely limited by the long latencies

introduced by the communication through the system bus. This bus might be the 60x

bus for the case of the MPC185 coprocessor or the PCI bus for a FPGA development

board attached, for instance, to a personal computer. In addition, unfulfilled bus

operations increase the delays even further.

The following is a description of the steps that the MPC185 coprocessor carries

out to read data from the 60x bus when working as a bus initiator, i.e. it is able to
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issue read and write commands to other components through the bus [27]:

1. A crypto channel asserts its 60x request to the control unit.

2. The crypto channel issues an address and the length of the transfer.

3. The control unit acknowledges request to the crypto channel.

4. The control unit asserts request to the 60x interface module.

5. The control unit waits for 60x read to begin.

6. When 60x read begins, the control unit receives data from the 60x interface

module and performs a master write to the appropriate internal address using

the address supplied by the crypto channel.

7. Transfer continues until the 60x read is completed and the controller has written

all data to the appropriate internal address. The 60x interface module will

continue making 60x bus requests until the full data length has been read.

The former sequence shows up the number of delays the MPC185 may incur when

reading data from the bus, which might be either ciphertext blocks or keys. In

particular, notice the cycles spent on waiting for the bus interface unit to start the

reading procedure in step 5. Similarly, steps 6 and 7 indicate that several cycles might

be needed to fetch data from the bus. This high consumption of cycles considerably

degrades the overall system’s ciphering throughput. Hence the need for a scheme that

tightly couples the ciphering module with a processing datapath that carries out the

rest of the computational processing.

4.3 Solution proposal

The limitations of the pure software and coprocessor approaches to implement the se-

curity functions highlight the need for experimentation on a different design strategy.

This scheme consists on adding a functional unit to a general purpose processor core

that carries out the most computationally expensive operation within the security



CHAPTER 4. PROBLEM STATEMENT 60

functions, namely the KASUMI algorithm; extending the ISA with instructions that

have access to the new hardware; and coding the f8 and f9 functions as sequences

of the added instructions. By executing these software modules the processor would

employ fewer clock cycles for completion of the security functions than with other soft-

ware implementations, made up of only the processor’s integer and logic instructions.

In addition, there would be no need to access the system bus.

There is no any previous reference to an implementation of an integration approach

using the KASUMI algorithm in the revised literature, so this dissertation proposes

a novel method to solve the problem considered. The crucial problem of designing an

efficient functional unit implementing the KASUMI block cipher is solved first.

The hypothesis that the incorporation of a KASUMI functional unit into a gen-

eral purpose processor core is feasible is supported by the results of similar successful

works. The work in [15] concerns the acceleration of the Data Encryption Stan-

dard (DES) algorithm by means of an extension to the customizable ARCtangent

microprocessor. The work reported in [17] deals with a methodology to evaluate the

impact of extensions to an instruction set architecture both on software performance

and hardware efficiency. It provides important hints concerning the derivation of an

Application-Specific Instruction Set Processor (ASIP) from an extendible processor

core.



Chapter 5

Novel proposals to implement

KASUMI

This chapter describes the hardware architectures for the KASUMI algorithm de-

signed with the goal of meeting the requirements described in a previous chapter: a

short critical path, the use of shared resources and a good tradeoff between perfor-

mance and number of hardware components utilized. The first, second and fourth

architectures are iterative proposals based on the reuse of hardware components,

whereas the third architecture is a fully pipelined design.

The four architectures are designed in VHDL and the corresponding prototypes

implemented using FPGA technology. Among the virtues of FPGAs are: high flexibil-

ity, similar to that for software solutions; performance close to ASIC implementations;

fast prototyping and the possibility to experiment with reconfigurable solutions.

5.1 Reuse-based designs

The simplification techniques presented in this section are novel and allow the archi-

tectures to meet the requirements of sharing resources and achieving a good balance

between high performance and low area complexity.

61



CHAPTER 5. NOVEL PROPOSALS TO IMPLEMENT KASUMI 62

5.1.1 Reuse-based architecture 1

The main principle to design for reuse is to specify an architecture consisting of some

of the components that are needed to perform a round. This design is used every

clock cycle in such a way that the output at the end of one cycle is the input for

the next cycle. The fewer the components, the larger the number of cycles needed to

carry out the ciphering process for one block. Also, the fewer cycles the architecture

requires to perform the process, the more complex the architecture is in terms of area.

5.1.1.1 Datapath for the FO function

Instead of simplifying the algorithm at a lower level, for instance at the FI level as

in [29], the manipulation is carried out at a higher level, at the FO function level.

Figure 5.1 presents the process followed to design a datapath that reuses components

within FO. Figure 5.1(a) illustrates an alternative parallel view of the FO function

shown in figure 2.9.

• In 5.1(b) two XOR gates are added to FO to make the upper and lower sections

more similar without modifying the behavior of the function. If these two parts

were structurally the same, it would be possible to reduce the architecture to

only one section that carried out the whole FO function after two cycles.

• The lower section in figure 5.1(b) needs a right FI function block to be struc-

turally identical to the upper section in this modified FO block. In figure 5.1(c)

an additional FI block is added to the lower section. The multiplexers in each

section allow selecting the appropriate data flow.

• The whole datapath in figure 5.1(c) is now ready to be simplified. Figure 5.1(d)

shows the final design, which takes two cycles to complete the FO function.

Notice that multiplexers are necessary to supply the correct values both to the

XOR gates and the FI module depending on if the datapath is in the first or

second cycle.

Also notice that the datapath in figure 5.1(d) contains one dual input FI block,

called dpFI, instead of two FI blocks as in the previous diagrams. This situation is
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explained in more detail later because it constitutes another special feature of the

designs proposed in this document.

The control for this module is implemented as a finite state machine that sets the

multiplexers’ selector input properly each cycle. Since the design takes two cycles to

complete its processing, it requires a two-state control.

5.1.1.2 Datapath for the FI function

Figure 5.1(c) shows that the FO module requires two FI blocks to work properly. Since

FI contains two seven-bit S-boxes and two nine-bit S-boxes, the simplified datapath

that takes two cycles to complete the FO function requires a total number of eight

S-boxes. Implementing S-boxes using four 128×7 ROMs and four 512×9 ROMs is a

rather expensive choice in terms of area. The solution proposed is to map the S-boxes

to dual-port ROMs, which decreases by two the number of ROMs required. The use

of this technique exploits the principle of reuse even further because the same S-box

is now able to meet two requests at the same time.

Consider two instances of the FI block shown in figure 2.9(c), replace each pair

of S9 S-boxes located in the same position in the FI blocks by a single dual-port

S9 S-box and repeat this procedure with the pairs of S7 S-boxes. The result is the

datapath illustrated in figure 5.2, which only contains two dual-port S9 S-boxes and

two dual-port S7 S-boxes and combines two FI function blocks into one.

There are several notes to point out concerning this design. First, during the

implementation phase the four dual-port S-boxes are mapped to dual-port embedded

memory blocks inside the FPGA. Second, the embedded memory blocks are syn-

chronous and this dual-port FI datapath is required to provide its results after one

clock cycle; therefore, the upper S-boxes are designed to be negative edge-triggered,

whereas the lower S-boxes are designed to be positive edge-triggered, as indicated in

figure 5.2. Third, the registers shown in the figure, colored in grey, synchronize input

data with the values provided by the upper and lower S-boxes.

Notice that the datapath in figure 5.1(d) also has positive edge-triggered registers

used to synchronize input data used by logic that is located further on the dual-

port FI module in the datapath. Actually, every input signal that is to be used
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after a component containing the dual-port FI module must be synchronized with

the data provided by the dual-port FI module by means of registers, either positive

edge-triggered or negative edge-triggered.

5.1.1.3 Datapath for the round logic

The round logic, see figure 5.3, is the highest-level component of the KASUMI design

proposed in this section. During the first two cycles it receives input data from

outside by selecting the zero input in multiplexers A and B, and performs an odd-

round operation by selecting zero input both in multiplexer C and in multiplexer D.

During the next 14 cycles the outputs yielded by the datapath each cycle are fed back

to its inputs. The same data must be present at the datapath’s inputs during two

cycles to carry out the correct processing; that is why there is a third registered input

in both input multiplexers.

Notice in figure 5.3 that input data used after the FO function module, which in

turn contains the dpFI function module, are synchronized using registers, which are

colored in grey as well.

The control for this module is implemented as a finite state machine that sets each

multiplexer’s selector input properly each cycle. The datapath in figure 5.3 requires

16 cycles to fulfill the encryption process for every plaintext block. Therefore, the

finite state control has 16 states and controls the four selectors.

5.1.1.4 The key scheduler

Figure 5.4(a) illustrates the key scheduler component developed for this project, which

adapts easily to different implementation schemes. For this design, the outputs are

fed back to the inputs. Other inputs are the initial key as the array of eight 16-bit

values (Ki, 1 ≤ i ≤ 8) and the array of eight 16-bit constants (Ci, 1 ≤ i ≤ 8). In

addition to yielding the set of round keys in a combinational way, this component

outputs its input arrays rotated to the left one position.

Notice that the design for the round logic described previously requires that each

set of round keys is available during two cycles. Adding logic to the key scheduler to

keep its output round keys without change for two cycles might result in a complex
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and expensive circuit. The most efficient way to fulfill the requirement is to connect

the key scheduler’s clock input to the output of the divide-by-2 clock divider in figure

5.4(b). This technique preserves the simplicity of the key scheduler without affecting

the ciphering process.

5.1.2 Reuse-based architecture 2

Some of the techniques used to design the second architecture are an evolution of

those employed to build the first one, whereas others are simply used again. This

time, the goal of the manipulation strategy is to reduce the number of clock cycles

needed to cipher a plaintext block, i.e. the architecture’s latency.

5.1.2.1 Joining two FO function components

The manipulation strategy considers a pair of consecutive rounds; an odd round fol-

lowed by an even round. It changes the structure of the pair without altering its

effects, adds components that balance the structure and discovers a design pattern

that replicates. This pattern then turns into the basic building block that is imple-

mented once and then reused until completion of the ciphering process.

The development of the strategy is illustrated, step by step, in figure 5.5. Fig-

ures 5.5(a)–5.5(c) show exactly the same two-round sequence in three different ways.

In figure 5.5(d) both FO boxes are replaced by the parallel description for the FO

function. Figure 5.5(e) illustrates the result of splitting the 32-bit XOR gate located

between the two FO function blocks into two 16-bit XOR gates and “unfolding” the

datapath comprising the upper FO function block’s output, the two 16-bit XOR gates

and the lower FO function block in figure 5.5(d). Notice that both the 32-bit R0 input

and the 32-bit R2 output are now split into two 16-bit lines, and that the components

to the left of the lower FO function in figure 5.5(d) appear to the right in figure 5.5(e)

as a consequence of the unfolding action. Figure 5.5(f) shows the result of joining the

two FO function blocks to highlight the parallelism between each pair of FI function

blocks. Some 16-bit XOR gates with one zero input are added along the datapath

in certain places so that the datapath can be divided in three structurally similar

sections. Figure 5.5(g) illustrates the result of this step: the sections between dashed
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Figure 5.5: Sequence of steps to design a reusable datapath for a double FO function.

lines are structurally identical to each other due to the additional XOR gates, which

do not modify the datapath’s behavior. The design pattern to be used as the basic

component for the system is present in each section; it needs three cycles to perform

the operations corresponding to two consecutive FO functions, one for the odd round

and the other for the even round. Figure 5.5(h) shows the basic FO module, called

superFO, and the surrounding logic needed to provide the appropriate inputs each

cycle.

A three-state finite state machine issues the signals that control the multiplexers.

Two positive edge-triggered registers delay the R2 output one cycle, which is required

because R2 is computed during the second cycle.

5.1.2.2 Assembling the components

Figure 5.6 illustrates an improved superFO module containing the dual-port FI block

illustrated in figure 5.2 instead of the pair of parallel FI function blocks. The dual-port
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Figure 5.6: Datapath for the superFO module including a dual-port FI block.

FI module outputs its results at every positive clock edge, so the additional registers

are needed to delay data, synchronizing them with the outputs of the dpFI module.

Figure 5.7 shows the complete datapath that performs the operations corresponding

to two consecutive rounds. This architecture takes three cycles to complete two

rounds, performs the block ciphering process in 12 cycles, and requires that two

sets of round keys ({KL1, KO1, KI1} and {KL2, KO2, KI2}), corresponding to two

rounds, be available during the three cycles. The control for this datapath consists

of a 12-state finite state machine that sets the multiplexers’ select inputs properly.

5.1.2.3 The key scheduler

The key scheduler for this design must provide the reusable datapath with two sets of

round keys, one for each round, and maintain these sets of keys during three cycles.

The module shown in figure 5.8 meets the requirement of providing two sets of round

keys since it contains two replicas of the components used to generate one set. Adding
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logic to keep the output values during three cycles would be too expensive; therefore,

an alternative solution is conceived. The key scheduler is synchronized with a clock

signal whose frequency is one third the frequency of the overall system’s clock. A

divide-by-three frequency divider, implemented as a three-state finite state machine,

generates the appropriate clock signal for this module. The key scheduler receives the

encryption key K as an array of eight 16-bit input values, which are used to generate

the two sets of round keys, and issues these same values rotated to the left twice every

positive clock edge. The key scheduler module is reused in this project by feeding the

rotated outputs back to the inputs.

5.2 Pipelined design

As in the case of the second reuse-based proposal, the design of the pipelined archi-

tecture also relies on techniques that were developed during the design process of the

previous architectures. The aims of this proposal are to achieve the highest perfor-

mance reported so far for a hardware implementation of the KASUMI block cipher

and to conceive a datapath with short critical path that can be implemented as a

functional unit for a RISC processor.
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5.2.1 The datapath

At every clock cycle the architecture receives a plaintext block as input, which is

processed as it goes through the stages that make up the pipeline to produce a

ciphertext block. Several blocks can be processed simultaneously in the different

stages of the datapath. At every clock cycle a ciphertext block leaves the pipeline

from the last stage and the first stage receives a new input plaintext block. This

architecture reaches the best performance owing to the exploitation of temporal and

spatial parallelism when processing plaintext blocks.

The first phase of the design process consists of the manipulations illustrated in

figures 5.5(a)–5.5(f) over a pair of rounds; exactly as shown in the sequence of figures,

no more, no less.

For the second phase consider the two-round datapath in figure 5.5(f); from it, it

is possible to derive the pipelined datapath shown in figure 5.9. At first, each pair

of parallel FI function blocks is replaced by the single dual-port FI module in figure

5.2; in this case three replacements are needed. Next, a couple of registers, a negative

edge-triggered register followed by a positive edge-triggered register, is added in every

line surrounding each dual-port FI block to synchronize the corresponding data with

the two values produced by the dpFI module. The resulting pipeline has four stages,

which means that it requires four cycles to perform two rounds of the ciphering

process. A sequence consisting of four concatenated instances of this pipelined two-

round datapath carries out the whole encryption process with an initial latency of 16

clock cycles.

Since the pipeline stages are independent of each other and have no interdepen-

dencies, the proposed datapath is free of data hazards. Structural hazards do not

exist either because there is not any conflict in the use of hardware resources. Fi-

nally, control hazards are impossible since the architecture does not deal with any

kind of control transfer instruction.

5.2.2 The key scheduler

The key scheduler corresponding to the pipelined datapath described previously is

also designed using a pipelined approach, and must issue the set of round keys corre-
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sponding to the odd round and the set of round keys corresponding to the even round

in the following order:

Clock cycle 1: The key scheduler generates the 32-bit long KL1 round key and the

32 most significant bits of both the KO1 and KI1 round keys, i.e. KO1,1||KO1,2

and KI1,1||KI1,2.

Clock cycle 2: The key scheduler generates the 16 least significant bits of both the

KO1 and KI1 round keys, i.e. KO1,3 and KI1,3, as well as the 16 most significant

bits of both the KO2 and KI2 round keys, i.e. KO2,1 and KI2,1.

Clock cycle 3: The key scheduler generates the 32 least significant bits of both

the KO2 and KI2 round keys, i.e. the key scheduler issues KO2,2||KO2,3 and

KI2,2||KI2,3.

Clock cycle 4: The key scheduler generates the 32-bit long KL2 round key.

Figure 5.10 shows the organization of the key scheduler just described. Notice that

its pipelined design enables it to compute the round keys for different plaintext blocks

during the same clock cycle. In addition, each stage of the key scheduler computes

only the round keys, or the portion of them, that are required by the corresponding

stage in the ciphering datapath and no more. As the key scheduler in figure 5.8,

this design also rotates the input arrays two positions to the left and outputs the

resulting arrays, so the following instance receives the correct values and generates

the appropriate sets of round keys for the next two-round sequence.

5.3 Reuse-based architecture 3

The strategy consists of iterating several times over a datapath implementing only

a fraction of the whole block cipher discussed in the previous section, feeding back

the output to the input, until completion of the process. This scheme is appropriate

when the goal of the implementation is to save hardware resources, sacrificing perfor-

mance. The architecture for this approach, unlike the pipelined one, does not receive

a plaintext block each clock cycle, so there is no temporal parallelism. There is still

spatial parallelism between the components of the datapath though.
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5.3.1 The datapath

The basic block for the new architecture is the datapath in figure 5.9, although

not used in a pipelined fashion. A multiplexer is placed at each of the L0 and R0

input ports; these multiplexers select the input to the datapath from two options:

a new input plaintext block and the output value L2||R2, which is fed back to the

datapath’s input. A plaintext block travels alone through the datapath every clock

cycle, requiring four clock cycles to reach the end of the two-round datapath and 16

cycles to complete the iterative eight-round ciphering process.

5.3.2 The key scheduler

This architecture requires the design of a new key scheduler that issues and maintains

the set of round keys for the first round ({KL1, KO1, KI1}) along with the 16 most

significant bits of the KO2 and KI2 round keys during two cycles. In addition, during

the next two cycles it must issue and maintain the rest of the round keys for the second

round, i.e. the 32 least significant bits of the KO2 and KI2 round keys, as well as

the KL2 round key. Figure 5.11 illustrates the key scheduler designed to meet these

requirements. It contains two left-rotate registers: one register stores the array of

eight 16-bit subkeys (Ki, 1 ≤ i ≤ 8) that make up the encryption key K and the

second register stores the array of fixed constants (Ci, 1 ≤ i ≤ 8) used to generate

the round keys. Both of these registers are synchronized with a divide-by-two clock

divider that allows the contents of the registers to be available during two clock cycles

before being shifted. The registers must be preloaded with the encryption key K and

the array of constants before any ciphering process is carried out; this preloading

needs 16 clock cycles and must be performed every time the encryption key changes.

5.4 Implementation and results

As mentioned at the beginning of this chapter, the implementation process was car-

ried out using the VHDL language to build synthesizable cores of the designs and the

FPGA technology to get a functional hardware prototype. Each of the designs was

successfully verified using the four tests described in [6]. This phase of the project
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provided an important amount of information concerning the operation of the archi-

tectures, their performance and the number of resources consumed.

To make fair comparisons with the architectures described in chapter 3, the designs

described here were also implemented in FPGA devices belonging to the Virtex-E

family from Xilinx and synthesized using the Xilinx Synthesis Technology (XST)

software tools [35, 36].

5.4.1 Platform description

The elements of every Virtex-E device are: the CLBs, which are the building blocks

used to assemble a complete digital system; the Input/Output Blocks (IOBs) that

provide the interface between the packet’s pins and the CLBs; the embedded memory

blocks; the Delay Lock Loops (DLL), which are digital circuits intended to perform

clock management functions such as clock-distribution and delay compensation; and

the static configuration memory.

Each Virtex-E CLB contains two slices that are made up of two Logic Cells (LCs),

so there is a total number of four LCs per CLB. Figure 5.12 shows the organization of

the two LCs comprising every slice. Each LC contains a four-input function generator

implemented as a four-input lookup table (LUT), dedicated elements for logic opera-

tions such as XOR and AND, dedicated carry paths, a flip-flop storage element and

logic that combines the outputs of the function generators to implement functions of

more inputs.

The Virtex-E devices introduce large blocks of BRAM memories. Each of these

blocks is a fully synchronous dual-port (True Dual Port) 4096-bit RAM with indepen-

dent control signals for each port. The data widths of the two ports can be configured

in an independent fashion.

5.4.2 Synthesis results

Table 5.1 shows the results of the synthesis process concerning utilization of the

FPGA’s internal resources for the four designs described in the previous section.

Notice that the percentage of resources in the reconfigurable fabric, i.e. slices, flip-

flops and LUTs, required by the reuse-based architectures does not surpass 20%.
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Figure 5.12: Organization of a Virtex-E slice.

Also notice that the pipelined proposal occupies less than one-third of the hardware

resources of the FPGA where it was implemented. This is an indication of how

compact the architectures are and a proof of the efficient use of the resources in the

FPGA.

To make fair comparisons with most of the synthesis results provided for the

other proposals, the designs were synthesized for devices with a speed grade of -8.

The optimization goal was set to speed.

Consider the number of bits needed to implement each S-box: 128× 7 = 896 bits

for each S7 S-box and 512×9 = 4608 bits for each S9 S-box. A S7 S-box fits well in a

4096-bit BRAM block, whereas a 4608-bit S9 S-box is far larger; therefore, two blocks

are required to implement one S9 dual-port S-box. That is why in our proposals each

dpFI module needs six BRAM blocks to implement the S-boxes instead of only four.

The use of BRAM blocks removes complexity from the reconfigurable fabric.
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5.5 Comparison

Table 5.2 is a summary of the relevant data concerning performance and area com-

plexity for all of the FPGA implementations of the KASUMI algorithm considered

so far. The throughput of the architectures developed for this project was computed

by using the expression (3.1) for the iterative designs and the expression (3.2) for the

pipelined proposal. The table illustrates that some throughput values reported for

other proposals do not agree with the expressions, perhaps due to a miscalculation;

these values are indicated in the table.

The reuse-based architecture with the highest performance is the hybrid design

proposed in [21]; it achieves a throughput of 432 Mbps, at the expense of a great

number of slices though. The second place is for the third iterative architecture

developed for this project, which with 5.5 times fewer slices it achieves almost 73.6%

of the hybrid design’s performance.

There is no any comment in [29] about the design of the architecture with a la-

tency of eight clock cycles, only its results; however, its performance is good and

even surpasses this project’s second reuse-based proposal in this respect. Notice that

although our proposal’s clock frequency (41.63 MHz) is higher than the other archi-

tecture’s clock frequency (33.14 MHz), its longer latency (12 clock cycles) decreases

its performance. Notice that the difference between the number of slices required by

our design and the number of slices occupied by the other proposal is very small: 22

slices.

Assume that the throughput of the hybrid architecture reported in [20] (Type 2),

and illustrated in table 5.2, is correct. In that case the conclusion is that the second

iterative design proposed in this document, the one with a latency of 12 clock cycles,

has a very competitive performance consuming fewer hardware resources. It is a good

tradeoff between high performance and low area complexity.

Now consider the two simplified architectures proposed in [29] and illustrated in

figure 3.3. Table 5.2 indicates that their performance is lower than our first reuse-

based architecture’s performance, even though they have higher clock frequencies and

consume fewer slices. This is a clear indication that the design of architectures having

long latencies should be avoided, privileging instead tradeoffs between short latency
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and a reasonable number of hardware resources. The iterative designs in [20] and [24]

do not do better either; as well as being more expensive in terms of FPGA resources,

their performance is poorer, almost 1.5 times lower in the first case and 2.3 times

lower in the second case.

The higher clock frequencies of the third iterative design and the pipelined design

proposed here are explained by the short critical path of these architectures. There

are very few logic components between each pair of registers, including the negative

edge-triggered and the positive edge-triggered, located throughout the datapath of

both the cipher and the key scheduler. The difference between the clock frequencies

of these two designs is due to the long feedback signal paths and the two multiplexers

added to the L0 and R0 input ports in the third reuse-based architecture, which are

required to enable the reuse of the ciphering datapath.

The pipelined architecture proposed here is superior to the pipelined designs in

[21] and [24] because the optimizations performed on the Feistel structure and the

mapping of the S-boxes to embedded memory blocks produce a short critical path

that increases the overall clock frequency and, as indicated by the expression (3.2),

the throughput, which is the highest reported so far. Also, our design is almost 2.5

times cheaper in terms of FPGA resources, or slices, than the architecture reported

in [21], which is a consequence of a lack of optimization efforts and the inclusion of

pure combinational S-boxes in that proposal.



Chapter 6

The extended processor core

This chapter describes the extensions made to a MIPS-based processor core to sup-

port block ciphering according to the KASUMI algorithm. The information provided

includes a thorough description of the components of the new functional unit and

the four instructions added to the instruction set, an accurate timing analysis and

implementation results for a FPGA platform.

6.1 The base processor core

The first task is to select the most suitable processor core to extend according to very

specific requirements. The following is a description of such requirements:

Availability of the source code. The goal of this project is not only to propose

the organization and operation of the functional unit, but also to actually carry

out the integration process. That is why it is strictly necessary to have the

source code of the core.

Functionality. The processor core to use should have been employed previously to

solve practical problems.

Simplicity. A high performance processor like those designed for the workstation

market is so complex to be used in an embedded environment like the one con-

sidered in this project. Therefore, the processor core to use shall not contain

87
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complexities like Memory Management Units (MMUs), complex branch predic-

tion and prefetching algorithms, an elaborated memory hierarchy and floating

point execution units.

A commercial or open source processor core can be classified into one of two categories:

extendible or configurable.

The designer is able to add functionality to an extensible core when its source

code, written in a hardware description language, is available. In some cases a front-

end application allows to specify the values for some parameters in the source code.

In addition to extending the processor model, the designer must modify the compiler

and other system software tools in order for them to know about the new extensions.

Some examples are: MIPS32 M4KTMfor MIPS and LEON2 for SPARC V8.

Configurable cores allow designers to specify the necessary functionality and re-

move the unneeded features by means of advanced software tools. It is also possible

to extend their functionality in a similar way as for extensible cores. In both cases the

designer configures the processor by means of software, which at the end generates

the source code for the core as well as its compiler, simulator and debugger. Some

examples are: ARCTM700 from ARC International and Xtensa from Tensilica Inc.

Due to budget limitations it was not possible to use a commercial configurable

core since the start of the project, so the first important decision was to employ an

open source extensible core. The use of a very complex core to carry out the job is

feasible, but the time needed to understand the core’s internals and conceive a way

to extend it increases noticeably. Therefore, the simplicity of the source code is a

key factor to make the final decision. The core chosen for this project that meets

the requirements is the MyRISC core [34], which models a MIPS processor with the

following features:

• Implements the R2000 32-bit instruction set.

• Its five-stage pipeline structure is identical to that described in [18].

• Does not include a memory hierarchy, although it is possible to add it.
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6.2 The KASUMI functional unit

Figure 6.1 shows the organization of the extended MyRISC core proposed. The part

above the thick horizontal line corresponds to the initial RISC processor core as it is

distributed. The components lying below the thick line correspond to the KASUMI

extension, which carries out the processing corresponding to two rounds.

A detailed description of the components of the functional unit is provided next.

Figure 6.1 illustrates that the modules that store and generate data operands are

located in the processor’s Instruction Decode (ID) stage, whereas the modules that

perform encryption operations belong to the Execute (EX) stage.

6.2.1 The extended register file

The new functional unit contains ten 32-bit registers that store the data it processes.

Extended instructions move data from/to integer registers to/from a register within

this new register file. Figure 6.2 shows the organization of this data unit.

Registers 0 and 1 store the plaintext block the KASUMI functional unit works

with; after the ciphering process the registers store the ciphertext block produced.

The 32 most significant bits of the block are stored in register 0, whereas register 1

stores the 32 least significant bits. The 128-bit encryption key K is split into four 32-

bit parts and stored in registers 2 to 5. Registers 6 to 9 store the ciphering constants

used along with the encryption key to generate the set of round keys KLi, KOi, KIi

for each round i. There is no need to preload the array of constants since these values

are automatically stored every time the RESET signal is asserted.

Any of the first six registers within the extended register file can be synchronously

written by specifying its address and the value to store, in the same way as for integer

registers. Registers 0 and 1 can be written in parallel to store the ciphertext block

produced by the block ciphering modules. These two kinds of writing can not be

accomplished simultaneously.

The array that stores the encryption key K (registers 2 to 5) is synchronously

rotated upwards to compute the appropriate round keys for the next two rounds.

This is also true for the array that stores the ciphering constants (registers 6 to 9).
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Figure 6.2: The organization of the extended KASUMI register file.

The only kind of writing allowed to occur at the same time as the rotation of the

arrays is the parallel writing of registers 0 and 1.

The register file asynchronously outputs the contents of the ten internal registers.

An additional output issues the contents of a specific register indicated by an input

address line in an asynchronous fashion as well.

6.2.2 The forwarding unit

This module allows the KASUMI functional unit to use correct and up-to-date values

of the plaintext block and the encryption key. The extended processor allows different

instructions that modify the first six registers to be executing along the pipeline. The

forwarding unit receives values from the KASUMI register file and from different

pipeline stages and determines if the values stored in registers are old, in which case

the unit outputs the new values before they are actually written in the extended

register file. This unit makes its decision based on input control signals and register

address lines coming from either the stages in the integer pipeline or the modules

comprising the KASUMI functional unit.

The forwarding unit outputs the plaintext block sent to the extended register
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file most recently, or the ciphertext block computed most recently, directly to the

ID/EX pipeline register. The outputs corresponding to the encryption key are used

to generate the next two sets of round keys.

6.2.3 The key generation unit

The KASUMI functional unit attached to the processor core carries out two rounds of

the whole ciphering process. The key generation unit outputs two sets of round keys

({KL1, KO1, KI1} and {KL2, KO2, KI2}) and stores them into the ID/EX pipeline

register to be issued to the ciphering datapath during the next clock cycle.

This unit receives as inputs the four 32-bit words comprising the encryption key

K from the forwarding logic and the four 32-bit words storing the ciphering con-

stants from the extended register file. The round keys are generated according to the

procedure illustrated in table 2.1.

6.2.4 The ciphering datapath

This module is parallel to the EX stage of the processor’s datapath and performs

the encryption process using the block issued by the forwarding unit and the round

keys computed by the key generation unit. It carries out two rounds of the KASUMI

algorithm in four steps: K1, K2, K3 and K4, where each step takes one clock cycle to

complete. In spite of this multicycle operation, the ciphering datapath is not intended

to work in a pipelined fashion. This means that an instruction that uses the ciphering

datapath is not allowed to enter the K1 module until the previous instruction has left

the K4 module. In the KASUMI functional unit illustrated in figure 6.1 synchronous

registers are indicated by grey boxes.

At this point of the project it is possible to take advantage of the work carried

out previously, so the basic two-round datapath in figure 6.3 is used to implement

the ciphering datapath attached to the processor core and shown in figure 6.1.

When the ciphering process reaches the K3 module it commands the KASUMI

register file to rotate the arrays storing the encryption key and the ciphering constants,

by means of a control signal indicated by a dashed line in figure 6.1, in order for the
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dpFI
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Figure 6.3: Pipelined datapath for the two-round sequence.
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next two sets of round keys to be available in the next two clock cycles, when a new

instruction enters K1.

During the K4 step the corresponding module bypasses the computed ciphertext

block to the forwarding unit to override the block stored in registers and make the

new one available as the plaintext block to process in the next clock cycle. A control

signal indicated by a dashed line in figure 6.1 is also bypassed to help the forwarding

unit to determine the correct value of the block.

When the ciphering instruction leaves the K4 module it enters the pipeline’s mem-

ory access stage (MEM) where, in the case of KASUMI instructions, the ciphertext

block just computed is actually written into registers 0 and 1 within the extended

register file. Meanwhile, a new KASUMI ciphering instruction can start with the K1

step.

6.3 The extended instructions

This section describes the four instructions added to the MIPS instruction set that

exploit the KASUMI functional unit. Information concerning instruction formats and

the effects on the processor’s state is provided.

6.3.1 The kxor1 instruction

MNEMONIC: kxor1 KRd, Rs, Rt.

DESCRIPTION: Carries out the operation Rs⊕Rt, where Rs and Rt are integer

registers. This instruction uses the integer EX and MEM pipeline stages and

saves the result in the extended KASUMI register file at the entry addressed by

the four least significant bits of KRd during the integer WB stage.

FORMAT: This instruction is encoded using the R-format, i.e. the op field equals

0000002. The value assigned to the funct field is 1010 = 0010102, which con-

veniently sets the processor’s control signals to appropriately drive the flow of

data along the datapath to accomplish the instruction. The value of the shamt

field is discarded. Figure 6.4 summarizes this information.
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31 2625 2120 1615 1110 6 5 0
000000 Rs Rt KRd X 001010

R-format:

Figure 6.4: Format of the kxor1 instruction.

31 2625 2120 1615 1110 6 5 0
000000 Rs KRt KRd X 001011

R-format:

Figure 6.5: Format of the kxor2 instruction.

6.3.2 The kxor2 instruction

MNEMONIC: kxor2 KRd, Rs, KRt

DESCRIPTION: Carries out the operation Rs ⊕ KRt, where Rs is an integer

register and KRt is a register in the extended KASUMI register file. This

instruction uses the integer EX and MEM pipeline stages and saves the result

in the extended KASUMI register file at the entry addressed by the four least

significant bits of KRd during the integer WB stage.

FORMAT: This instruction is encoded using the R-format, i.e. the op field equals

0000002. The value assigned to the funct field is 1110 = 0010112, which con-

veniently sets the processor’s control signals to appropriately drive the flow of

data along the datapath to accomplish the instruction. The value of the shamt

field is discarded. Figure 6.5 summarizes this information.

6.3.3 The kxor3 instruction

MNEMONIC: kxor3 Rd, Rs, KRt

DESCRIPTION: Carries out the operation Rs ⊕ KRt, where Rs is an integer

register and KRt is a register in the extended KASUMI register file. This

instruction uses the integer EX and MEM pipeline stages and saves the result

in the integer register addressed by Rd during the integer WB stage.
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31 2625 2120 1615 1110 6 5 0
000000 Rs KRt Rd X 110010

R-format:

Figure 6.6: Format of the kxor3 instruction.

FORMAT: This instruction is encoded using the R-format, i.e. the op field equals

0000002. The value assigned to the funct field is 5010 = 1100102, which con-

veniently sets the processor’s control signals to appropriately drive the flow of

data along the datapath to accomplish the instruction. The value of the shamt

field is discarded. Figure 6.6 summarizes this information.

6.3.4 The k2rnd instruction

MNEMONIC: k2rnd

DESCRIPTION: This instruction carries out the operations corresponding to a

sequence of an odd round and an even round of the KASUMI block cipher. It

does not need explicit operands; it uses the outputs of the forwarding logic and

the key generation unit. A sequence of four k2rnd instructions performs the

whole KASUMI algorithm.

k2rnd is a multicycle instruction whose execution phase is actually made up of

four cycles: K1, K2, K3 and K4. Only after a k2rnd instruction has finished

with cycle K4, the next k2rnd instruction will enter K1.

During the MEM stage this instruction issues the computed block to the ex-

tended register file in order for it to be stored in registers 0 and 1. Since this

operation is synchronous, the block is actually written when the instruction

enters the WB stage.

FORMAT: This instruction is encoded using the I-format with op = 4410 = 1011002.

The rest of the instruction fields, i.e. Rs, Rt and the immediate value, are

discarded. See figure 6.7.
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31 2625 2120 1615 0
101100 X X X

I-format:

Figure 6.7: Format of the k2rnd instruction.

6.4 Details about the execution of extended in-

structions

Figure 6.8 illustrates the pipelined execution of the instructions making up the en-

cryption process. The operands of the instructions are carefully chosen to show how

the extended processor deals with special execution conditions.

The first six kxor1 instructions load the plaintext block and the encryption key

into the extended registers. The next four k2rnd instructions perform the encryption

process using the operands stored by the previous instructions.

Notice that the address of the target register in instruction 1, which is 0, equals the

address of the first source register in instruction 2. For integer instructions this would

cause a data hazard and the bypassing of the value computed by instruction 1 in the

EX stage to the ID stage of instruction 2 during the third clock cycle. However, for

the instructions in figure 6.8 the bypassed value is ignored by the integer forwarding

logic since the target register of instruction 1 is an extended register, not an integer

register as the source register of instruction 2. This situation is called a false data

hazard and is handled by the processor by appropriately setting a control signal. The

same situation occurs during cycles 4 and 5.

A true data hazard occurs during the eighth cycle because the first k2rnd instruc-

tion needs to compute the two sets of round keys and, at this time, the encryption

key K has not been completely stored. However, the forwarding logic in the KA-

SUMI functional unit overcomes this problem. This module receives the bypassed

data signals from the kxor1 instructions in the EX, MEM and WB stages of the

integer pipeline and issues them to the key generation unit to produce the round keys

needed in the next cycle. The KASUMI forwarding logic ignores any bypassed signal

issued by an instruction different from kxor1 and kxor2.
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Figure 6.8 shows how the pipeline is stalled to prevent a k2rnd instruction from

entering K1 before a previous k2rnd instruction leaves K4. It does not make sense to

allow the pipelined execution of the two instructions due to, for instance, the block

the instruction 8 is going to work with is not ready when the instruction 7 enters K2.

Notice in figure 6.8 that the overlapped execution of a k2rnd instruction (10) and

an integer instruction (11) is allowed. This situation does not produce structural

hazards since the integer MEM and WB stages do not share any module with the

corresponding MEM and WB stages in the extended functional unit. When a k2rnd

instruction, e.g. the instruction 7 in figure 6.8, enters K1 a no-operation integer

instruction enters EX in the integer portion of the processor’s pipeline.

The number of cycles elapsed since instruction 7 starts execution until instruction

10 leaves the execution stage is 16 cycles. A total number of 26 cycles are needed

to carry out the whole ciphering process including the storage of the plaintext block

and the encryption key into the extended register file.

6.5 Comparison with an implementation in soft-

ware

This section highlights the advantages of the integration approach just described by

demonstrating that the number of instructions needed to implement the KASUMI

block cipher in software, using the standard MIPS32 instruction set, is much higher

than the number of extended instructions needed. As a consequence, the number of

clock cycles a non-extended MIPS processor requires is much higher than the number

of cycles the extended MIPS processor invests.

The C code for KASUMI included in [5] is made up of five functions: FI(), FO(),

FL(), KeySchedule() and Kasumi(). This code is suitable to carry out a thorough

study concerning the number of instructions executed by a compiled program. The

source code is compiled using the C cross-compiler provided by the Software Develop-

ment Environment (SDE) for MIPS-based products toolkit from MIPS Technologies

[26], which is actually a built of GNU’s C compiler. The compiler is instructed, with

the -Os option, to enable all the optimizations intended to reduce code size and gen-
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FI( )

Length: 34 instructions

Number of load instructions: 4

lhu: 4

Number of store instructions: 0

Number of arithmetic and logic instructions: 29

Number of control transfer instructions: 1

Number of function calls: 0

Number of loops: 0

Number of if-then-else structures: 0

Total number of instructions executed by the function: 34

Table 6.1: Instruction analysis for the FI() function.

erate the shortest executable program. This executable program is then disassembled

using the objdump utility, which displays information from object files and is part of

the GNU’s set of binary utilities (Binutils).

The result of the study is summarized in tables 6.1–6.5. The instructions making

up each module are counted, special constructs like loops, control transfer statements

and function calls are identified and a precise counting of executed instructions is

carried out for each of these constructs. The last entry of the tables provides the exact

number of instructions the MIPS processor executes for the corresponding function.

The number of instructions required to perform the KASUMI algorithm is given

by adding the counts for the top level modules Kasumi() and KeySchedule(), i.e.

1540 + 915 = 2455 instructions.

The proposal described in this document only requires ten instructions to perform

the block ciphering process. It also requires a few load instructions to transfer the

values employed to compute the plaintext block and the encryption key from memory

to the integer registers. A few more instructions may be needed if it is necessary to

move the ciphertext block to the integer register file and from there to memory. Con-

sidering these facts, a few tens of instructions would be required to have a ciphertext

block stored in the system’s memory. The new approach proposed allows to reduce

the number of instructions required by two orders of magnitude at the expense of the

addition of a compact functional unit.
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FO()

Length: 51 instructions

Number of load instructions: 9

lhu: 6

lw: 3

Number of store instructions: 3

sw: 3

Number of arithmetic and logic instructions: 35

Number of control transfer instructions: 4

Number of function calls: 3

Call 1: FI()

Number of instructions executed: 34

Call 2: FI()

Number of instructions executed: 34

Call 3: FI()

Number of instructions executed: 34

Total number of instructions executed: 102

Number of loops: 0

Number of if-then-else structures: 0

Total number of instructions executed by the function: 153 instructions

Table 6.2: Instruction analysis for the FO() function.

FL()

Length: 24 instructions

Number of load instructions: 2

lhu: 2

Number of store instructions: 0

Number of arithmetic and logic instructions: 21

Number of control transfer instructions: 1

Number of function calls: 0

Number of loops: 0

Number of if-then-else structures: 0

Total number of instructions executed by the function: 24

Table 6.3: Instruction analysis for the FL() function.
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Kasumi()

Length: 70 instructions

Number of load instructions: 14

lbu: 8

lw: 6

Number of store instructions: 14

sb: 8

sw: 6

Number of arithmetic and logic instructions: 36

Number of control transfer instructions: 6

Number of loops: 1

Loop 1:

Number of iterations: 4

Length of the body of the loop: 18 instructions

Number of function calls: 4

Call 1: FL()

Number of instructions executed: 24

Call 2: FO()

Number of instructions executed: 153

Call 3: FO()

Number of instructions executed: 153

Call 4: FL()

Number of instructions executed: 24

Total number of instructions executed by the four functions: 354

Length of the body of the loop including the four functions: 372 instructions

Total number of instructions executed by the loop: 1488

Number of instructions outside the loop: 52 instructions

Number of if-then-else structures: 0

Total number of instructions executed by the function: 1540 instructions

Table 6.4: Instruction analysis for the Kasumi() function.
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KeySchedule()

Length: 138 instructions

Number of load instructions: 23

lbu: 2

lhu: 10

lw: 11

Number of store instructions: 21

sh: 10

sw: 11

Number of arithmetic and logic instructions: 90

Number of control transfer instructions: 4

Number of loops: 3

Loop 1:

Number of iterations: 8

Length of the body of the loop: 9 instructions

Total number of instructions executed by the loop: 72

Loop 2:

Number of iterations: 8

Length of the body of the loop: 14 instructions

Total number of instructions executed by the loop: 112

Loop 3:

Number of iterations: 8

Length of the body of the loop: 88 instructions

Total number of instructions executed by the loop: 704

Total number of instructions executed by the three loops: 888

Number of instructions outside de loops: 27 instructions

Number of if-then-else structures: 0

Total number of instructions executed by the function: 915 instructions

Table 6.5: Instruction analysis for the KeySchedule() function.
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Category ID K1 K2 K3 K4

Number of Slices 2113 174 137 100 37

Number of Slice Flip Flops 2015 303 239 174 65

Number of 4 input LUTs 3885 109 125 125 64

Number of BRAMs 0 6 6 6 0

Maximum Frequency (MHz) 100.725 96.339 96.339 96.339 Not found

Table 6.6: Synthesis results for the components of the KASUMI functional unit.

6.6 Synthesis results

Table 6.6 summarizes the information provided by the XST tools concerning the num-

ber of hardware resources in the FPGA consumed by the different modules making up

the KASUMI functional unit. The column labeled ID refers to the set of components

that constitute the instruction decode stage, both the logic elements located in the

integer portion and those located in the extended functional unit.

The synthesis process was carried out using a XCV1000E-8BG560 Virtex-E device,

which contains 12288 slices, 24576 slice flip-flops, 24576 four-input LUTs and 96

SelectRAM+ memory blocks. Notice that the percentage of use of hardware resources

for every module listed in table 6.6 is low, not surpassing 17% in the case of the

number of slices required and 15% in the case of the number of four-input LUTs in

the reconfigurable fabric.

Concerning clock frequency, this is rather high for each of the five modules within

the functional unit. The four modules in the ciphering datapath have a very short

critical path and a clock frequency of 96.339 MHz, which is only slightly lower than

that for the set of elements in the ID stage. This seems to be a consequence of the

dual-edge triggered design of the K1, K2 and K3 steps in an effort to balance the

duty cycle of the clock signal. The advantage of a dual-edge triggered design is the

possibility of achieving the same data throughput with one half of the clock frequency.



Chapter 7

Conclusions

This dissertation proposed a novel solution approach to the problem of efficiently

implementing the f8 confidentiality algorithm, the f9 integrity algorithm and the

KASUMI block cipher, which are essential components to guarantee high levels of

security in UMTS third generation cellular networks. This approach consists of three

phases. First, the design of a high performance hardware module that can be used

to perform the KASUMI algorithm, the most performance demanding component of

both f8 and f9 . Second, the addition of this functional unit to the microarchitecture

of a RISC processor core intended to be used in embedded environments. Third,

the extension of the instruction set of the processor to exploit the capabilities of the

new hardware. This scheme was successfully completed and, as a consequence, the

objectives posed initially were achieved.

The experimentation work performed and the thorough study of the compiled code

of the block ciphering algorithm conducted led to deduce the following conclusions

that demonstrate the superiority of the new proposal above the others:

• Replacing a long sequence of arithmetic and logical instructions by dedicated

hardware reduces code size by two orders of magnitude and, consequently, the

number of clock cycles needed for completion of the ciphering process. This situ-

ation significantly increases the performance of the confidentiality and integrity

algorithms.

• The addition of a specialized hardware module for encryption avoids requesting

105
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that service from an external, and perhaps expensive, coprocessor. This advan-

tage eliminates performance losses caused by long latencies when accessing the

system’s bus to communicate with external entities.

• The use of a custom functional unit for the KASUMI algorithm takes advan-

tage of hardware resources more efficiently than implementing the algorithm in

software. The length of the internal registers and datapaths that make up the

KASUMI functional unit are defined exactly as the block cipher requires and

no unnecessary operation is carried out.

• The integration scheme proposed is the best alternative when the security func-

tions must coexist with other operations. The functional unit for encryption

does not interfere with a number of other custom modules the processor core

may contain for different purposes.

• A tight coupling between the main processing module and dedicated extended

hardware is required to achieve higher performance and to eliminate long laten-

cies due to long communication paths. This work remarks the importance of

building specialized processing units that are directly attached to a processor

core, i.e. both components are implemented within the same silicon area and

interact with each other. There are two options to fulfill this requirement:

– To build the processor core and the dedicated functional units within a

rigid ASIC.

– To map the specialized units to a reconfigurable fabric attached to a pro-

cessor core.

• This work profited from the advantages of the FPGA devices to build hard-

ware prototypes of the designs in a very short-term, as well as from advanced

electronic design automation (EDA) tools like an integrated development envi-

ronment for VHDL and the Xilinx Synthesis Technology tools.

The solution described in this document keeps the flexibility provided by software

and reaches a level of performance very close to that of a solution implemented in
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hardware. The following is a list of the contributions the development of this project

has yielded:

• A set of design strategies aimed to implement in hardware Feistel-like encryption

algorithms in an efficient manner, in particular the KASUMI block cipher.

• Four different hardware architectures that perform the KASUMI algorithm, one

of them reaching the highest throughput reported so far.

• The design of a high performance multicycle functional unit with a short critical

path and the definition of extensions to the MIPS32 instruction set that exploits

this component.

• An strategy to integrate the functional unit for block ciphering into the mi-

croarchitecture of a MIPS-based processor core. It is possible to perform a sim-

ilar procedure to extend other RISC processors, Very Long Instruction Word

(VLIW) processors or Digital Signal Processors (DSP).

There is still room for experimentation and some interesting ideas are worth to

be considered as future activities. This is a list of such pending tasks:

• Integration of functional units to optimize other processes required by UMTS

mobile stations or RNCs.

• Experimentation with a different core with a different pipeline organization and

instruction set, e.g. ARCTM700, Xtensa and LEON2.

• Determination of how the extended processor core can interact with other com-

ponents within the mobile station and the RNC to design a complete system

having the extended core as one of its main processing units.

• To modify an existing compiler for a general purpose programming language,

e.g. C, that generates MIPS32 instructions so it supports the instructions de-

fined in this dissertation. A first step towards this goal is to include support for

the extended instructions in an assembler.
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7.1 Productivity

Through the different phases of this project the preliminary results obtained were

reported in a number of research papers submitted to technical conferences and other

documents [9, 10, 11, 12].



Appendix A

Software implementation of f8 and

f9

This appendix presents two assembly language programs, written using the extensions

to the MIPS instruction set described in chapter 6, that implement the f8 confiden-

tiality algorithm and the f9 integrity algorithm. The first program encodes the third

test set specified in [6] for f8 and the second program the first test set specified for

f9 . The following sections provide information about the tests, block diagrams il-

lustrating the processes performed, identical to those in figures 2.8 and 2.6, and the

assembly language that implement the tests.

A.1 Implementation of the Test Set 3 for f8

This test contains three instances of the KASUMI block cipher. The test is fully

specified by the information provided by table A.1: the values for the algorithm’s

parameters, the confidentiality key, the plaintext stream intended to encrypt and the

input and output of each KASUMI block. Figure A.1 illustrates the structure of the

algorithm for this particular test.

The following program carries out the operations required for the test. For the

sake of simplicity the algorithm’s parameters are preloaded in the integer register

file and the program only computes the keystream. Therefore, the code presented
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Key = 5ACB1D644C0D51204EA5F1451010D852

Count = FA556B26

Bearer = 03

Direction = 1

Length = 128 bits

Plaintext = AD9C441F890B38C4 57A49D421407E8

Initial A = FA556B261C000000

Key issued = 0F9E4831195804751BF0A41045458D07

Modified A = 3E5A6D0A3D1C82A5

Key now = 5ACB1D644C0D51204EA5F1451010D852

BLKCNT KASUMI input Keystream end/dec data

0 3E5A6D0A3D1C82A5 365568B78ACD43EC 9BC92CA803C67B28

1 080F05BDB7D1C148 F6BED6AC4E0BCD5F A11A4BEE5A0C25

Table A.1: Test Set 3 for the f8 algorithm.

starts by transferring the initial plaintext block and the modified confidentiality key

to the extended register file, then the three blocks are performed. In the listing each

assembly instruction is followed by the corresponding machine instruction and its

representation in hexadecimal form.

Values in the register file:

COUNT||BEARER||DIRECTION||0...0:

$1 : 11111010010101010110101100100110 0xfa556b26

$2 : 00011100000000000000000000000000 0x1c000000

CK:

$3 : 01011010110010110001110101100100 0x5acb1d64

$4 : 01001100000011010101000100100000 0x4c0d5120

$5 : 01001110101001011111000101000101 0x4ea5f145

$6 : 00010000000100001101100001010010 0x1010d852

BLKCNT:

$7 : XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

KM:

$10 : 01010101010101010101010101010101 0x55555555

.text

; Sets the initial plaintext block to COUNT||BEARER||DIRECTION||0...0

kxor1 k0, $1, $0 00000000001000000000000000001010 0x0020000a

kxor1 k1, $2, $0 00000000010000000000100000001010 0x0040080a
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BLKCNT=1BLKCNT=0

KASUMI KASUMI

KASUMI

FA556B261C000000

CK CK

3E5A6D0A3D1C82A5

365568B78ACD43EC F6BED6AC4E0BCD5F

CK KM

Figure A.1: A block diagram of the f8 algorithm for the Test Set 3.

; Modifies the initial cipher key (CK XOR KM)

kxor1 k2, $3, $10 00000000011010100001000000001010 0x006a100a

kxor1 k3, $4, $10 00000000100010100001100000001010 0x008a180a

kxor1 k4, $5, $10 00000000101010100010000000001010 0x00aa200a

kxor1 k5, $6, $10 00000000110010100010100000001010 0x00ca280a

; Performs the first KASUMI process

k2rnd 10110000000000000000000000000000 0xb00000000

k2rnd 10110000000000000000000000000000 0xb00000000

k2rnd 10110000000000000000000000000000 0xb00000000

k2rnd 10110000000000000000000000000000 0xb00000000

; Restores the cipher key CK

kxor2 k2, $10, k3 00000001010000110001000000001011 0x0143100b

; Sets BLKCNT = 1

xori $7, $0, 1 00111000000001110000000000000001 0x38070001

; Restores the cipher key CK (cont.)

kxor2 k3, $10, k4 00000001010001000001100000001011 0x0144180b

kxor2 k4, $10, k4 00000001010001000010000000001011 0x0144200b

kxor2 k5, $10, k5 00000001010001010010100000001011 0x0145280b

; Saves the ciphertext block computed in the integer register file

kxor3 $1, $0, k0 00000000000000000000100000110010 0x00000832

kxor3 $2, $7, k1 00000000111000010001000000110010 0x00e11032
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; Performs the second KASUMI process

k2rnd 10110000000000000000000000000000 0xb0000000

k2rnd 10110000000000000000000000000000 0xb0000000

k2rnd 10110000000000000000000000000000 0xb0000000

k2rnd 10110000000000000000000000000000 0xb0000000

; no-operations

xor $0, $0, $0 00000000000000000000000000100110 0x00000026

xor $0, $0, $0 00000000000000000000000000100110 0x00000026

xor $0, $0, $0 00000000000000000000000000100110 0x00000026

; XORs the output of the previous KASUMI process with the value BLKCNT = 1

kxor2 k0, $1, k0 00000000001000000000000000001011 0x0020000b

kxor2 k1, $2, k1 00000000010000010000100000001011 0x0041080b

; Performs the third KASUMI process

k2rnd 10110000000000000000000000000000 0xb0000000

k2rnd 10110000000000000000000000000000 0xb0000000

k2rnd 10110000000000000000000000000000 0xb0000000

k2rnd 10110000000000000000000000000000 0xb0000000

Figure A.2 illustrates a simplified timing diagram of the extended processor ex-

ecuting the previous program, captured during simulation from a VHDL waveform

analyzer. The diagram is split into four sections of 1050 ns each. The signals shown

are the inputs to the ID stage corresponding to the instruction to decode (In Instr)

and the value of the program counter (In IP), the overall clock and reset signals, and

the subregisters in the ID/EX pipeline register that provide the K1 module with a

plaintext block (l0 and r0).

The first instruction enters ID at 100 ns from start and then a new one enters

every 100 ns. The l0 and r0 registers are updated one clock cycle before registers

0 and 1 in the extended register file are due to the action of the forwarding unit.

Notice this effect at 6150 ns in figure A.2(f), where the l0 and r0 pipeline registers

hold the correct output of the last KASUMI block before it is actually written into

the extended register file, which occurs at 6250 ns.
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Key = 2BD6459F82C5B300952C49104881FF48

Count = 38A6F056

Fresh = 05D2EC49

Direction = 0

Length = 189 bits

Message = 6B227737296F393C 8079353EDC87E2E8 05D2EC49A4F2D8E0

Input Kasumi input Kasumi Output Accumulated XOR

38A6F05605D2EC49 38A6F05605D2EC49 89E0A6D036C17090 89E0A6D036C17090

6B227737296F393C E2C2D1E71FAE49AC 45C16C0142460205 CC21CAD174877295

8079353EDC87E2E8 C5B8593F9EC1E0ED E24CFA7D8471E4DD 2E6D30ACF0F69648

05D2EC49A4F2D8E2 E79E163420833C3F DFD3DCB9499275BA F1BEEC15B964E3F2

New Key: 817CEF35286F19AA3F86E3BAE22B55E2

final step: F1BEEC15B964E3F2 F63BD72C702EBC7A

MAC-I: F63BD72C

Table A.2: Test Set 1 for the f9 algorithm.

A.2 Implementation of the Test Set 1 for f9

This test is made up of five instances of the KASUMI block cipher. Table A.2 shows

the information needed to carry it out, including the value for each parameter, the

message for which the integrity will be verified, the integrity key and the input and

output for each KASUMI block. Figure A.3 illustrates the structure of the algorithm

for this test.

The assembly language program listed next assumes that its parameters, the mes-

sage and the integrity key are available in the integer register file. The first action it

performs is to transfer the integrity key and the first plaintext block to the extended

register file to carry out the first instance of the KASUMI algorithm. Before carrying

out the rest of the four KASUMI ciphering processes, the program modifies the first

two registers in the extended register file using the previous instance’s output and

the incoming 64-bit block. After performing the operations corresponding to the last

instance of KASUMI, the MAC value is available in register 0 of the extended register

file.

Values in the register file:

COUNT:
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KASUMI KASUMI

KASUMI

KASUMI KASUMIIK IK IK IK

38A6F05605D2EC49 6B227737296F393C 8079353EDC87E2E8 05D2EC49A4F2D8E2

IK KM

F63BD72C702EBC7A

Figure A.3: A block diagram of the f9 algorithm for the Test Set 1.

$1 : 00111000101001101111000001010110 0x38a6f056

FRESH:

$2 : 00000101110100101110110001001001 0x05d2ec49

MESSAGE:

$3 : 01101011001000100111011100110111 0x6b227737

$4 : 00101001011011110011100100111100 0x296f393c

$5 : 10000000011110010011010100111110 0x8079353e

$6 : 11011100100001111110001011101000 0xdc87e2e8

$7 : 00000101110100101110110001001001 0x05d2ec49

$8 : 10100100111100101101100011100000 0xa4f2d8e0

IK:

$9 : 00101011110101100100010110011111 0x2bd6459f

$10 : 10000010110001011011001100000000 0x82c5b300

$11 : 10010101001011000100100100010000 0x952c4910

$12 : 01001000100000011111111101001000 0x4881ff48

Accumulator:

$13 : XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

$14 : XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

KM:

$15 : 10101010101010101010101010101010 0xaaaaaaaa

.text

; Sets the initial plaintext block to COUNT||FRESH

kxor1 k0, $1, $0 00000000001000000000000000001010 0x0020000a

kxor1 k1, $2, $0 00000000010000000000100000001010 0x0040080a
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; Sets the initial integrity key (IK)

kxor1 k2, $9, $0 00000001001000000001000000001010 0x0120100a

kxor1 k3, $10, $0 00000001010000000001100000001010 0x0140180a

kxor1 k4, $11, $0 00000001011000000010000000001010 0x0160200a

kxor1 k5, $12, $0 00000001100000000010100000001010 0x0180280a

; Performs the first KASUMI process

k2rnd 10110000000000000000000000000000 0xb0000000

k2rnd 10110000000000000000000000000000 0xb0000000

k2rnd 10110000000000000000000000000000 0xb0000000

k2rnd 10110000000000000000000000000000 0xb0000000

; no-operation

xor $0, $0, $0 00000000000000000000000000100110 0x00000026

xor $0, $0, $0 00000000000000000000000000100110 0x00000026

xor $0, $0, $0 00000000000000000000000000100110 0x00000026

; The result of the last KASUMI process is added to the accumulator

kxor3 $13, $0, k0 00000000000000000110100000110010 0x00006832

kxor3 $14, $0, k1 00000000000000010111000000110010 0x00017032

; The result of the last KASUMI process is added to the first 64-bit long block of MESSAGE

kxor2 k0, $3, k0 00000000011000000000000000001011 0x0060000b

kxor2 k1, $4, k1 00000000100000010000100000001011 0x0081080b

; Performs the second KASUMI process

k2rnd 10110000000000000000000000000000 0xb0000000

k2rnd 10110000000000000000000000000000 0xb0000000

k2rnd 10110000000000000000000000000000 0xb0000000

k2rnd 10110000000000000000000000000000 0xb0000000

; no operation

xor $0, $0, $0 00000000000000000000000000100110 0x00000026

xor $0, $0, $0 00000000000000000000000000100110 0x00000026

xor $0, $0, $0 00000000000000000000000000100110 0x00000026

; The result of the last KASUMI process is added to the accumulator

kxor3 $13, $13, k0 00000001101000000110100000110010 0x01a06832

kxor3 $14, $14, k1 00000001110000010111000000110010 0x01c17032

; The result of the last KASUMI process is added to the next 64-bit long block of MESSAGE

kxor2 k0, $5, k0 00000000101000000000000000001011 0x00a0000b

kxor2 k1, $6, k1 00000000110000010000100000001011 0x00c1080b

; Performs the third KASUMI process

k2rnd 10110000000000000000000000000000 0xb0000000

k2rnd 10110000000000000000000000000000 0xb0000000
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k2rnd 10110000000000000000000000000000 0xb0000000

k2rnd 10110000000000000000000000000000 0xb0000000

; no operation

xor $0, $0, $0 00000000000000000000000000100110 0x00000026

xor $0, $0, $0 00000000000000000000000000100110 0x00000026

xor $0, $0, $0 00000000000000000000000000100110 0x00000026

; The result of the last KASUMI process is added to the accumulator

kxor3 $13, $13, k0 00000001101000000110100000110010 0x01a06832

kxor3 $14, $14, k1 00000001110000010111000000110010 0x01c17032

; The result of the last KASUMI process is added to the next 64-bit long block of MESSAGE

kxor2 k0, $7, k0 00000000111000000000000000001011 0x00e0000b

kxor2 k1, $8, k1 00000001000000010000100000001011 0x0101080b

; Performs the fourth KASUMI process

k2rnd 10110000000000000000000000000000 0xb0000000

k2rnd 10110000000000000000000000000000 0xb0000000

k2rnd 10110000000000000000000000000000 0xb0000000

k2rnd 10110000000000000000000000000000 0xb0000000

; Modifies the integrity key

kxor2 k2, $15, k3 00000001111000110001000000001011 0x01e3100b

; no-operation

xor $0, $0, $0 00000000000000000000000000100110 0x00000026

; Modifies the integrity key (cont.)

kxor2 k3, $15, k4 00000001111001000001100000001011 0x01e4180b

kxor2 k4, $15, k4 00000001111001000010000000001011 0x01e4200b

kxor2 k5, $15, k5 00000001111001010010100000001011 0x01e5280b

; The result of the last KASUMI process is added to the next 64-bit long block of MESSAGE

kxor2 k0, $13, k0 00000001101000000000000000001011 0x01a0000b

kxor2 k1, $14, k1 00000001110000010000100000001011 0x01c1080b

; Performs the fifth KASUMI process

k2rnd 10110000000000000000000000000000 0xb0000000

k2rnd 10110000000000000000000000000000 0xb0000000

k2rnd 10110000000000000000000000000000 0xb0000000

k2rnd 10110000000000000000000000000000 0xb0000000

Figure A.4 illustrates the timing diagram of the extended core executing the pro-

gram listed previously. This diagram is longer than that in figure A.2 because it

implements five instances of the KASUMI block cipher instead of three. However,
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the two diagrams are rather similar and the conclusions mentioned for the diagram

in figure A.2 are applicable to that in figure A.4 as well. Notice that the output of

the last instance of KASUMI is ready at 10.35 µs after the start of the execution.



APPENDIX A. SOFTWARE IMPLEMENTATION OF F8 AND F9 121

(a
)

(b
)

F
ig

u
re

A
.4

:
T

im
in

g
d
ia

gr
am

of
th

e
ex

te
n
d
ed

co
re

ex
ec

u
ti

n
g

a
p
ro

gr
am

im
p
le

m
en

ti
n
g

th
e

te
st

se
t

1
fo

r
f9

.



APPENDIX A. SOFTWARE IMPLEMENTATION OF F8 AND F9 122

(c
)

(d
)

F
ig

u
re

A
.4

:
T

im
in

g
d
ia

gr
am

of
th

e
ex

te
n
d
ed

co
re

ex
ec

u
ti

n
g

a
p
ro

gr
am

im
p
le

m
en

ti
n
g

th
e

te
st

se
t

1
fo

r
f9

.
(c

on
t.

)



APPENDIX A. SOFTWARE IMPLEMENTATION OF F8 AND F9 123

(e
)

(f
)

F
ig

u
re

A
.4

:
T

im
in

g
d
ia

gr
am

of
th

e
ex

te
n
d
ed

co
re

ex
ec

u
ti

n
g

a
p
ro

gr
am

im
p
le

m
en

ti
n
g

th
e

te
st

se
t

1
fo

r
f9

.
(c

on
t.

)



APPENDIX A. SOFTWARE IMPLEMENTATION OF F8 AND F9 124

(g
)

(h
)

F
ig

u
re

A
.4

:
T

im
in

g
d
ia

gr
am

of
th

e
ex

te
n
d
ed

co
re

ex
ec

u
ti

n
g

a
p
ro

gr
am

im
p
le

m
en

ti
n
g

th
e

te
st

se
t

1
fo

r
f9

.
(c

on
t.

)



APPENDIX A. SOFTWARE IMPLEMENTATION OF F8 AND F9 125

(i
)

(j
)

F
ig

u
re

A
.4

:
T

im
in

g
d
ia

gr
am

of
th

e
ex

te
n
d
ed

co
re

ex
ec

u
ti

n
g

a
p
ro

gr
am

im
p
le

m
en

ti
n
g

th
e

te
st

se
t

1
fo

r
f9

.
(c

on
t.

)



Appendix B

List of acronyms

1G First generation cellular communications technology

2G Second generation cellular communications technology

2.5G Advanced second generation cellular communications technology

3G Third generation cellular communications technology

3GPP Third Generation Partnership Project

AMPS Advanced Mobile Phone Services

ARIB Association of Radio Industries and Businesses

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction set Processor

AuC Authentication Center

AV Authentication Vector

BRAM Block SelectRAM+

126
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CBC Cipher Block Chaining

CDMA Code-Division Multiple Access

CK Ciphering Key

CLB Configurable Logic Block

CN Core Network

CS Circuit-Switched

DES Data Encryption Standard

DLL Delay Lock Loop

DSP Digital Signal Processor

EDA Electronic Design Automation

EDGE Enhanced Data rates for Global Evolution

ESB Embedded System Block

ETSI European Telecommunications Standards Institute

EX Execution stage

FDD Frequency Division Duplex

FIFO First-in First-Out

FPGA Field Programmable Gate Array

FU Functional Unit
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GGSN Gateway GPRS Support Node

GPRS General Packet Radio Service

GRAN Generic Radio Access Network

GSM Global System for Mobile communications

HE Home Environment

HLR Home Location Register

HSCSD High-Speed Circuit-Switched Data

ID Instruction Decode stage

IF Instruction fetch stage

IK Integrity Key

IM IP-Multimedia

IMSI International Mobile Subscriber Identity

IMT-2000 International Mobile Telecommunications-2000

IOB Input/Output Block

IP a. Internet Protocol, b. Intellectual Property

ISA Instruction Set Architecture

ITU International Telecommunications Union

IV Initialization Vector

Kbps Kilobits per second
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KEU KASUMI Execution Unit

KM Key Modifier

LC Logic Cell

LUT Lookup Table

MAC-I Message Authentication Code for Integrity of signaling data

Mbps Megabits per second

ME Mobile Equipment

MEM Memory access stage

MIPS Microprocessor without Interlocked Pipeline Stages

MMU Memory Management Unit

MSS Mobile Satellite Service

NMT Nordic Mobile Technology

OFB Output Feedback

PCI Peripheral Component Interconnect

PDC Personal Digital Cellular

PLMN Public Land Mobile Network

PS Packet-Switched

PSTN Public Switched Telephone Networks
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PVN Private Virtual Network

QoS Quality of Service

RISC Reduced Instruction Set Computer

RNC Radio Network Controller

ROM Read-Only Memory

S-box Substitution box

SGSN Serving GPRS Support Node

SIM Subscriber Identity Module

SIMD Single Instruction Multiple Data

SN Serving Network

SPARC Scalable Processor Architecture

TDD Time Division Duplex

TACS Total Access Communications System

UIA UMTS Integrity Algorithm

UMTS Universal Mobile Telecommunications System

UMTS AKA UMTS Authentication and Key Agreement

USIM UMTS Subscriber Identity Module

UTRA Universal Terrestrial Radio Access
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UTRAN UMTS Terrestrial Radio Access Network

VHDL Very High Speed Integrated Circuit Hardware Description Language

VLIW Very Long Instruction Word

VLR Visitor Location Register

WB Write back stage

WCDMA Wideband Code-Division Multiple Access

XMAC-I Message Authentication Code for Integrity of signaling data

XST Xilinx Synthesis Technology
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