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1 Problems

1. Given the following unit sample response sequences compute the Fourier transforms and skecth the
magnitude and phase functions:

(a) h(0) = 0.5; h(−1) = h(1) = 1; h(n) = 0 otherwise

(b) h(0) = 1; h(1) = −1; h(n) = 0 otherwise

(c) h(0) = 1; h(1) = −0.5; h(2) = 1; h(n) = 0 otherwise

Solution:

(a) Lets compute the filter’s transfer function as follows

H(ejω) =
∞∑

n=−∞
h(n)e−jωn

=
1∑

n=−1

h(n)e−jωn

= ejω +
1
2

+ e−jω

=
1
2

+ 2cos(ω)

=
1 + 4cos(ω)

2

Therefore, sequence’s Fourier transform is a real-valued function of ω and takes both positive
and negative values, as a consequence, we must add π to the resulting phase response when-
ever the magnitude response is negative. The expressions for magnitude response and phase
response are as follows

|H(ejω)| =
∣∣∣∣
1 + 4cos(ω)

2

∣∣∣∣

Arg[H(ejω)] =
{

0 H(ejω) > 0 −arccos(− 1
4 ) < ω < arccos(− 1

4 )
±π H(ejω) < 0 −π ≤ ω < −arccos(− 1

4 ) or arccos(− 1
4 ) < ω < π

We must express transfer function as a rational function in order to determine the coefficients
of both its numerator and denominator, which are needed to plot magnitude response and
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Figure 1: Magnitude response and phase response for sequence (a) in problem 1.1.

phase response in MATLAB. This is done below

H(ejω) =
2 + e−jw + 2e−2jω

2e−jω

Figure 1 depicts plots of both magnitude response and phase response.

(b) Lets compute the filter’s transfer function as follows

H(ejω) =
∞∑

n=−∞
h(n)e−jωn

=
1∑

n=0

h(n)e−jωn

= 1− e−jω

= 1− (
cos(−ω) + jsin(−ω)

)

= 1− (
cos(ω)− jsin(ω)

)

=
(
1− cos(ω)

)
+ jsin(ω)

This is a complex-valued function expressed as a sum of a real part and an imaginary part.
Next we use the definitions of the magnitude response in terms of the transfer function and its
complex conjugate and the phase response in terms of transfer function’s real and imaginary
parts

|H(ejω)| =
(
H(ejω)H∗(ejω)

) 1
2

=
(
(1− e−jω)(1− ejω)

) 1
2

=
(
1− e−jω − ejω + 1

) 1
2
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Figure 2: Magnitude response and phase response for sequence (b) in problem 1.1.

=
(
2− (ejω + e−jω)

) 1
2

=
(
2− 2cos(ω)

) 1
2

=
(
2
(
1− cos(ω)

)) 1
2

Arg[H(ejω)] = arctan
(

sin(ω)
1− cos(ω)

)

In this case, during the computation of the transfer function we got its rational function in
an intermediate step, so we got the coefficients for plotting. Figure 2 illustrates the plots for
these responses.

(c) Lets compute the filter’s transfer function as follows

H(ejω) =
∞∑

n=−∞
h(n)e−jωn

=
2∑

n=0

h(n)e−jωn

= 1− 1
2
e−jω + e−2jω

= 1− 1
2
(
cos(−ω) + jsin(−ω)

)
+

(
cos(−ω) + jsin(−ω)

)2

= 1− 1
2
(
cos(ω)− jsin(ω)

)
+

(
cos(ω)− jsin(ω)

)2

= 1− 1
2
cos(ω) +

1
2
jsin(ω) + cos2(ω)− 2jcos(ω)sin(ω)− sin2(ω)

= 1− sin2(ω) + cos2(ω)− 1
2
cos(ω) +

1
2
jsin(ω)− 2jcos(ω)sin(ω)
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= cos2(ω) + cos2(ω)− 1
2
cos(ω) + jsin(ω)

(1
2
− 2cos(ω)

)

= 2cos2(ω)− 1
2
cos(ω) + jsin(ω)

(1
2
− 2cos(ω)

)

= −cos(ω)
(1
2
− 2cos(ω)

)
+ jsin(ω)

(1
2
− 2cos(ω)

)

As we can see, what we have obtained is a complex-valued function of ω. Now we will use
the definitions to compute the magnitude response in terms of the transfer function and its
complex conjugate, as well as the phase response in terms of the transfer function’s real and
imaginary parts.

|H(ejω)| =
(
H(ejω)H∗(ejω)

) 1
2

=
[(
− cos(ω)

(1
2
− 2cos(ω)

)
+ jsin(ω)

(1
2
− 2cos(ω)

))

(
− cos(ω)

(1
2
− 2cos(ω)

)− jsin(ω)
(1
2
− 2cos(ω)

))] 1
2

=
[(

cos(ω)
(1
2
− 2cos(ω)

))2

+
(
sin(ω)

(1
2
− 2cos(ω)

))2
] 1

2

=
[
cos2(ω)

(1
2
− 2cos(ω)

)2 + sin2(ω)
(1
2
− 2cos(ω)

)2
] 1

2

=
[(1

2
− 2cos(ω)

)2(cos2(ω) + sin2(ω)
)] 1

2

=
[(1

2
− 2cos(ω)

)2
] 1

2

=
∣∣∣1
2
− 2cos(ω)

∣∣∣

Arg[H(ejω)] = arctan
(
− sin(ω)

(
1
2 − 2cos(ω)

)

cos(ω)
(

1
2 − 2cos(ω)

)
)

= arctan
(
− sin(ω)

cos(ω)

)

= −arctan
(
tan(ω)

)

= −ω

At first sight we have got a linear function of ω as phase response. However lets compute the
linear phase form of the transfer function

H(ejω) = −1
2
e−jω + e−jω

(
ejω + e−jω

)

= −1
2
e−jω + 2cos(ω)e−jω

=
(
2cos(ω)− 1

2
)

︸ ︷︷ ︸
amplitude function

e−jω

The amplitude function takes both positive and negative values, so we must take into account
to add π to the earlier linear phase. The correct expression for the phase response for the filter
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Figure 3: Magnitude response and phase response for sequence (c) in problem 1.1.

is as follows

Arg[H(ejω)] =
{ −ω −arccos( 1

4 ) < ω < arccos( 1
4 )

−ω ± π arccos( 1
4 ) < ω < π or − π < ω < −arccos( 1

4 )

Finally, the plots for magnitude response and phase response are shown in figure 3.

2. Determine and plot magnitude and phase responses of the first order recursive filter whose unit
sample response is given by:

h(n) = anu(n) ∀n ∈ Z
Consider the value a = 0.2

Solution: Lets compute the filter’s transfer function as follows

H(ejω) =
∞∑

n=−∞
h(n)e−jωn

=
∞∑

n=−∞
anu(n)e−jωn

=
∞∑

n=0

ane−jωn

=
∞∑

n=0

(
ae−jω

)n

=
1

1− ae−jω
since |a| = |0.2| < 1

=
1

1− a
(
cos(−ω) + jsin(−ω)

)
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=
1

1− a
(
cos(ω)− jsin(ω)

)

=
1(

1− acos(ω)
)

+ ajsin(ω)

=
1(

1− acos(ω)
)

+ ajsin(ω)

(
1− acos(ω)

)− ajsin(ω)(
1− acos(ω)

)− ajsin(ω)

=

(
1− acos(ω)

)− ajsin(ω)
(
1− acos(ω)

)2 + a2sin2(ω)

=

(
1− acos(ω)

)− ajsin(ω)
1− 2acos(ω) + a2cos2(ω) + a2sin2(ω)

=

(
1− acos(ω)

)− ajsin(ω)
1− 2acos(ω) + a2

=
1− acos(ω)

1− 2acos(ω) + a2
− j

asin(ω)
1− 2acos(ω) + a2

As we can see, what we have obtained is a complex-valued function of ω. Now we will use the
definitions to compute the magnitude response and the phase response in terms of the transfer
function’s real and imaginary parts.

|H(ejω)| =

[(
1− acos(ω)

1− 2acos(ω) + a2

)2

+
(
− asin(ω)

1− 2acos(ω) + a2

)2
] 1

2

=

[ (
1− acos(ω)

)2

(
1− 2acos(ω) + a2

)2 +
a2sin2(ω)(

1− 2acos(ω) + a2
)2

] 1
2

=

[
1− 2acos(ω) + a2cos2(ω) + a2sin2(ω)(

1− 2acos(ω) + a2
)2

] 1
2

=

[
1− 2acos(ω) + a2

(
1− 2acos(ω) + a2

)2

] 1
2

=

[
1

1− 2acos(ω) + a2

] 1
2

=
(

1
1.04− 0.4cos(ω)

) 1
2

Arg[H(ejω)] = arctan

(
− asin(ω)

1− 2acos(ω) + a2

/
1− acos(ω)

1− 2acos(ω) + a2

)

= arctan
(
− asin(ω)

1− acos(ω)

)

= −arctan
(

asin(ω)
1− acos(ω)

)

= −arctan
(

0.2sin(ω)
1− 0.2cos(ω)

)

Finally, the plots for magnitude response and phase response are depicted in figure 4.
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Figure 4: Magnitude response and phase response for the first order recursive filter.

3. Determine the convolution of the sequences x1(n) and x2(n) in the frequency domain by using their
Fourier transforms.

x1(n) = x2(n) =





1 n = 0
1 n = 1
1 n = 2
0 elsewhere

Solution: In order to determine the convolution of the sequences we must compute their Fourier
transforms, which in this case turns out to be the same for both sequences. The procedure is the
following

X1(ejω) = X2(ejω)

=
∞∑

n=−∞
x1(n)e−jωn

=
2∑

n=0

x1(n)e−jωn

= 1 + e−jω + e−2jω

= 1 +
(
cos(−ω) + jsin(−ω)

)
+

(
cos(−ω) + jsin(−ω)

)2

= 1 +
(
cos(ω)− jsin(ω)

)
+

(
cos(ω)− jsin(ω)

)2

= 1 + cos(ω)− jsin(ω) + cos2(ω)− 2jcos(ω)sin(ω)− sin2(ω)
= 1− sin2(ω) + cos2(ω) + cos(ω)− jsin(ω)− 2jcos(ω)sin(ω)
= cos(ω)− jsin(ω)

(
1 + 2cos(ω)

)

Once we have computed Fourier transform for both sequences we can use it to obtain the convolution
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in frequency domain of the original sequences. Convolution, therefore, is given by

X1(ejω)X2(ejω) =
(
cos(ω)− jsin(ω)

(
1 + 2cos(ω)

))2

= cos2(ω)− 2jcos(ω)sin(ω)
(
1 + 2cos(ω)

)− sin2(ω)
(
1 + 2cos(ω)

)2

= cos2(ω)− 2jcos(ω)sin(ω)
(
1 + 2cos(ω)

)− sin2(ω)
(
1 + 4cos(ω) + 4cos2(ω)

)

2 Computer Projects

1. Find magnitude and phase responses for the filter

h(0) = 1 = h(7); h(1) = 2 = h(6);h(2) = 3 = h(5);h(3) = 4 = h(4)

Solution: This is an even-symmetric sequence whose transfer function is the following polynomial
in e−jω. The coefficients of the polynomial are the values of h(n) for every n.

H(ejω) = 1 + 2e−jω + 3e−2jω + 4e−3jω + 4e−4jω + 3e−5jω + 2e−6jω + e−7jω

We use the coefficients of the filter’s transfer function in the following code which uses the freqz
MATLAB function to compute and plot magnitude response and phase response for all frequencies
in the interval [−2π, 2π]

w = -2*pi:0.01:2*pi;

% Coefficients for problem 2.1

num = [1 2 3 4 4 3 2 1];

den = [1];

h = freqz(num, den, w);

subplot(2, 1, 1);

plot(w/pi, abs(h)); grid

title(’Magnitude Spectrum’)

xlabel(’\omega/\pi’); ylabel(’Magnitude’)

subplot(2, 1, 2);

plot(w/pi, angle(h)); grid

title(’Phase Spectrum’)

xlabel(’\omega/\pi’); ylabel(’Phase, radians’)

The plots produced by this program are depicted in figure 5.

2. For the following difference equation determine magnitude response and phase response of the filter

y(n) = x(n)− x(n−N), N = 5

Solution: In this case we must first determine the values of unit sample response in order to find
the coefficients which are given to the freqz function. If we set {x(n)} = {δ(n)} we will only get
nonzero values of y(n) in n = 0 and n = 5. The unit sample response is therefore

h(n) =





1 n = 0
−1 n = 5

0 otherwise
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Figure 5: Magnitude response and phase response for the filter in problem 2.1.

The transfer function corresponding to the difference equation above turns out to be

H(ejω) = 1− e−5jω =
(
1− cos(5ω)

)
+ jsin(5ω)

Magnitude response and phase response are as follows

|H(ejω)| =
(
2
(
1− cos(5ω)

)) 1
2

Arg[H(ejω)] = arctan
(

sin(5ω)
1− cos(5ω)

)

The following code in MATLAB was used to get the plots of magnitude response and phase response
which are depicted in figure 6

w = -2*pi:0.01:2*pi;

% Coefficients for problem 2.2

num = [1 0 0 0 0 -1];

den = [1];

h = freqz(num, den, w);

subplot(2, 1, 1);

plot(w/pi, abs(h)); grid

title(’Magnitude Spectrum’)

xlabel(’\omega/\pi’); ylabel(’Magnitude’)

subplot(2, 1, 2);
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Figure 6: Magnitude response and phase response for the difference equation in problem 2.2.

plot(w/pi, angle(h)); grid

title(’Phase Spectrum’)

xlabel(’\omega/\pi’); ylabel(’Phase, radians’)

10


