Homework No. 1

Tomás Balderas Contreras
Instituto Nacional de Astrofísica, Óptica y Electrónica
Course: Digital Signal Processing

February 22, 2003

1 Problems

1. Find unit-sample response $h(n, 0)$ and $h(n, 1)$ for the first order recursive filter:

$$
y(n)= \begin{cases}a y(n-1)+x(n) & \text { for } n \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Solution: In order to find $h(n, 0)$ let $x(n)=\delta(n)$. So we get the following values for $y(n)$ in terms of n :

$$
\begin{aligned}
y(0) & =a y(-1)+\delta(0) \\
& =a \cdot 0+1 \quad \text { since } y(0)=0 \quad \forall n<0 \\
& =1 \\
y(1) & =a y(0)+\delta(1) \\
& =a \cdot 1+0 \\
& =a \\
y(2) & =a y(1)+\delta(2) \\
& =a \cdot a+0 \\
& =a^{2} \\
y(3) & =a y(2)+\delta(3) \\
& =a \cdot a^{2}+0 \\
& =a^{3} \\
& \vdots \\
y(k) & =a y(k-1)+\delta(k) \\
& =a \cdot a^{k-1}+0 \\
& =a^{k}
\end{aligned}
$$

Therefore we can conclude that $h(n, 0)=a^{n} u(n) \quad \forall n \in \mathbb{Z}$. If $0<a<1$ then $y(n)=h(n, 0)$ is an strictly decreasing sequence.

In order to find $h(n, 1)$ let $x(n)=\delta(n-1)$. So we get the following values for $y(n)$ in terms of n :

$$
\begin{aligned}
y(0) & =a y(-1)+\delta(-1) \\
& =a \cdot 0+0 \\
& =0 \\
y(1) & =a y(0)+\delta(0) \\
& =a \cdot 0+1 \\
& =1 \\
y(2) & =a y(1)+\delta(1) \\
& =a \cdot 1+0 \\
& =a \\
y(3) & =a y(2)+\delta(2) \\
& =a \cdot a+0 \\
& =a^{2} \\
& \vdots \\
y(k) & =a y(k-1)+\delta(k-1) \\
& =a \cdot a^{k-1}+0 \\
& =a^{k}
\end{aligned}
$$

Therefore we can conclude that $h(n, 1)=a^{n-1} u(n-1) \quad \forall n \in \mathbb{Z}$. Which is an strictly decreasing sequence as well.
2. Given the following sequences:

$$
x(n)= \begin{cases}n+1 & 0 \leq n \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
h(n)=a^{n} u(n) \quad \text { for all } n, a=0.98
$$

Determine and illustrate the convolution.
Solution: The convolution of these sequences is computed by the following expression:

$$
y(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k)
$$

Lets calculate the values of y in terms of n :

$$
\begin{aligned}
y(0) & =\sum_{k=-\infty}^{\infty} x(k) h(-k) \\
& =x(0) h(0)
\end{aligned}
$$

$$
\begin{aligned}
& =1 \cdot 1 \\
& =1 \\
y(1) & =\sum_{k=-\infty}^{\infty} x(k) h(1-k) \\
& =x(0) h(1)+x(1) h(0) \\
& =1 \cdot 0.98+2 \cdot 1 \\
& =2.98 \\
y(2) & =\sum_{k=-\infty}^{\infty} x(k) h(2-k) \\
& =x(0) h(2)+x(1) h(1)+x(2) h(0) \\
& =1 \cdot 0.98^{2}+2 \cdot 0.98+3 \cdot 1 \\
& =5.9204 \\
& \vdots \\
y(n) & =\sum_{k=-\infty}^{\infty} x(k) h(n-k) \\
& =0.98^{n} u(n)+2 \cdot 0.98^{n-1} u(n-1)+3 \cdot 0.98^{n-2} u(n-2)
\end{aligned}
$$

Therefore

$$
x(n) * h(n)=0.98^{n} u(n)+2 \cdot 0.98^{n-1} u(n-1)+3 \cdot 0.98^{n-2} u(n-2)
$$

is the convolution sequence and is depicted in figure 6 .
3. Test the stability of the first order recursive filter:

$$
y(n)=a y(n-1)+x(n)
$$

using zero initial conditions.
Solution: The unit sample response for this system is $h(n)=a^{n} u(n) \forall n \in$ \mathbb{Z}. In order to test stability we must determine if

$$
S=\sum_{k=-\infty}^{\infty}|h(k)|=\sum_{k=0}^{\infty}\left|a^{n}\right|
$$

is finite. If $|a| \geq 1$ then S is increasing and unbounded, on the other hand if $|a|<1$ then the expression above is equivalent to:

$$
S=\frac{1}{1-a}, \quad|a|<1
$$

which is finite. Hence $y(n)$ is finite as long as $|a|<1$.
4. For each of the following transformations, determine whether the system is stable, causual, linear, and time invariant.
a) $G_{1}\{x(n)\}=a x\left(n-n_{0}\right)+b x\left(n-n_{1}\right), a, b, n_{0}$ and n_{1} are constants
b) $G_{2}\{x(n)\}=x(n) x\left(n-n_{0}\right)$

Solution: First we test the properties for G_{1}. To test if the transformation is linear then let $x_{1}(n)$ and $x_{2}(n)$ be two different squences such that

$$
y_{1}(n)=G_{1}\left\{x_{1}(n)\right\}=a x_{1}\left(n-n_{0}\right)+b x_{1}\left(n-n_{1}\right)
$$

and

$$
y_{2}(n)=G_{1}\left\{x_{2}(n)\right\}=a x_{2}\left(n-n_{0}\right)+b x_{2}\left(n-n_{1}\right)
$$

then

$$
\begin{aligned}
G_{1}\left\{\alpha x_{1}(n)+\beta x_{2}(n)\right\}= & a\left[\alpha x_{1}\left(n-n_{0}\right)+\beta x_{2}\left(n-n_{0}\right)\right]+ \\
& b\left[\alpha x_{1}\left(n-n_{1}\right)+\beta x_{2}\left(n-n_{1}\right)\right] \\
= & a \alpha x_{1}\left(n-n_{0}\right)+b \alpha x_{1}\left(n-n_{1}\right)+ \\
& a \beta x_{2}\left(n-n_{0}\right)+b \beta x_{2}\left(n-n_{1}\right) \\
= & \alpha\left[a x_{1}\left(n-n_{0}\right)+b x_{1}\left(n-n_{1}\right)\right]+ \\
& \beta\left[a x_{2}\left(n-n_{0}\right)+b x_{2}\left(n-n_{1}\right)\right] \\
= & \alpha y_{1}(n)+\beta y_{2}(n)
\end{aligned}
$$

Therefore G_{1} is a linear system.
We need to find $h(n)$ in order to determine if the system is stable, causual and time invariant. We have two cases, if $n_{0} \neq n_{1}$ then

$$
h(n)= \begin{cases}a & n=n_{0} \\ b & n=n_{1} \\ 0 & \text { otherwise }\end{cases}
$$

and if $n_{0}=n_{1}$ then

$$
h(n)= \begin{cases}a+b & n=n_{0}=n_{1} \\ 0 & \text { otherwise }\end{cases}
$$

To prove that the system is stable we must determine if

$$
S=\sum_{k=-\infty}^{\infty}|h(k)|
$$

is finite. In both cases $S=a+b$, where a, b are finite constants and thus S is finite too. Therefore G_{1} is satable.
A system is causual if and only if $h(n)=0 \forall n<0$. In this case if $n=n_{0}$ or $n=n_{1}$ and if any of n_{0} and n_{1} was less than zero then $h(n)$ would be non-zero for $n<0$. So in order for the system to be causual both n_{0} and n_{1} must be greater than or equal to zero.

To test time invariance let α be any constant and $y(n)=G_{1}\{x(n)\}$ then

$$
G_{1}\{x(n-\alpha)\}=a x\left(n-\alpha-n_{0}\right)+b x\left(n-\alpha-n_{1}\right)=y(n-\alpha)
$$

Therefore G_{1} is time-invariant.
Now we will consider G_{2} and test if it satisfies all of the criteria. Lets start with the superposition principle. Let $x_{1}(n)$ and $x_{2}(n)$ be any two sequences such that

$$
y_{1}(n)=G_{2}\left\{x_{1}(n)\right\}=x_{1}(n) x_{1}\left(n-n_{0}\right)
$$

and

$$
y_{2}(n)=G_{2}\left\{x_{2}(n)\right\}=x_{2}(n) x_{2}\left(n-n_{0}\right)
$$

then

$$
\begin{aligned}
G_{2}\left\{\alpha x_{1}(n)+\beta x_{2}(n)\right\}= & {\left[\alpha x_{1}(n)+\beta x_{2}(n)\right]\left[\alpha x_{1}\left(n-n_{0}\right)+\beta x_{2}\left(n-n_{0}\right)\right] } \\
= & \alpha^{2} x_{1}(n) x_{1}\left(n-n_{0}\right)+\alpha \beta x_{2}(n) x_{1}\left(n-n_{0}\right)+ \\
& \alpha \beta x_{1}(n) x_{2}\left(n-n_{0}\right)+\beta^{2} x_{2}(n) x_{2}\left(n-n_{0}\right) \\
\neq & \alpha x_{1}(n) x_{1}\left(n-n_{0}\right)+\beta x_{2}(n) x_{2}\left(n-n_{0}\right) \\
= & \alpha y_{1}(n)+\beta y_{2}(n)
\end{aligned}
$$

Therefore the transformation G_{2} is not linear.
Now lets compute the unit sample response $h(n)=G_{2}\{\delta(n)\}$. Depending on the value of n_{0} we have the following three cases:
a) $n_{0}<0$

If $n<n_{0}$ then $G_{2}\{\delta(n)\}=0$
If $n=n_{0}$ then $G_{2}\{\delta(n)\}=\delta\left(n_{0}\right) \delta(0)=0 \cdot 1=0$
If $n>n_{0}$ then $G_{2}\{\delta(n)\}=0$
Hence $h(n)=0 \forall n \in \mathbb{Z}$
b) $n_{0}=0$

If $n<0$ then $G_{2}\{\delta(n)\}=0$
If $n=0$ then $G_{2}\{\delta(n)\}=\delta(0) \delta(0)=1 \cdot 1=1$
If $n>0$ then $G_{2}\{\delta(n)\}=0$
Hence $h(n)=\delta(n) \forall n \in \mathbb{Z}$
c) $n_{0}>0$

If $n<n_{0}$ then $G_{2}\{\delta(n)\}=0$
If $n=n_{0}$ then $G_{2}\{\delta(n)\}=\delta\left(n_{0}\right) \delta(0)=0 \cdot 1=0$
If $n>n_{0}$ then $G_{2}\{\delta(n)\}=0$
Hence $h(n)=0 \forall n \in \mathbb{Z}$

Now we must test if the system is stable, i.e. if

$$
S=\sum_{k=-\infty}^{\infty}|h(k)|
$$

is finite. If $n_{0} \neq 0$ then $S=0$ and when $n_{0}=0$ then $S=1$. In each case S is finite and therefore G_{2} is stable no matter the value of n_{0}.
Since in every case $h(n)=0 \forall n<0$ then the system is causual as well.
Finally, lets test time-invariance. Let α be any constant, then

$$
G_{2}\{x(n-\alpha)\}=x(n-\alpha) x\left(n-\alpha-n_{0}\right)
$$

so G_{2} is time-invariant.
5. For the following difference equations determine and sketch the unit sample response sequence and plot the digital filter structures:
a) $y_{1}(n)=x(n)-x(n-N), N=4$
b) $y_{2}(n)=a y(n-1)+x(n)+x(n-1)$, for $a<1$

Solution: Lets determine $h(n)$ for $y_{1}(n)$ using zero initial condition.
If $n<0$ then $\delta(n)=0$ and $\delta(n-4)=0$, so $y_{1}(n)=0$
If $n=0$ then $y_{1}(0)=\delta(0)-\delta(-4)=1-0=1$
If $n=1$ then $y_{1}(1)=\delta(1)-\delta(-3)=0-0=0$
If $n=2$ then $y_{1}(2)=\delta(2)-\delta(-2)=0-0=0$
If $n=3$ then $y_{1}(3)=\delta(3)-\delta(-1)=0-0=0$
If $n=4$ then $y_{1}(4)=\delta(4)-\delta(0)=0-1=1$
If $n>4$ then $\delta(n)=0$ and $\delta(n-4)=0$, so $y_{1}(n)=0$
Therefore we can conclude that

$$
h(n)= \begin{cases}1 & n=0 \text { or } n=4 \\ 0 & \text { otherwise }\end{cases}
$$

Now lets determine $h(n)$ for $y_{2}(n)$ using zero initial conditions
If $n<0$ then $y_{2}(n)=0$
If $n=0$ then $y_{2}(0)=a \cdot 0+1+0=1$
If $n=1$ then $y_{2}(1)=a \cdot 1+0+1=a+1$
If $n=2$ then $y_{2}(2)=a(a+1)+0+0=a^{2}+a$
If $n=3$ then $y_{2}(3)=a\left(a^{2}+a\right)+0+0=a^{3}+a^{2}$
If $n=4$ then $y_{2}(4)=a\left(a^{3}+a^{2}\right)+0+0=a^{4}+a^{3}$

Figure 1: Digital filter structures.

If $n=k$ then $y_{2}(k)=a^{k}+a^{k+1}$
In this case we found that

$$
h(n)= \begin{cases}a^{n}+a^{n+1} & n>1 \\ 1 & n=0 \\ 0 & \text { otherwise }\end{cases}
$$

The digital filter structures corresponding to these difference equations are shown in figure 1.

2 Computer Projects

2.1 Discrete time sequences

1. Generate and plot unit sample sequence having $N=30$ elements.

Figure 2: Unit sample sequence plotted in MATLAB.

Solution: The following piece of code is used to generate and plot unit sample sequence in MATLAB:

```
N = input('Length of unit sample sequence: ');
x = -N/2:1:N/2;
y = [zeros(1, N/2) 1 zeros(1,N/2)];
stem(x, y);
xlabel('n');
ylabel('d(n)');
```

And the resulting plot is depicted in figure 2.
2. Generate and plot unit step sequence having $N=30$ elements.

Solution: This time the code used to generate unit step sequence in MATLAB is the following:

```
N = input('Length of unit step sequence: ');
x = -N/2:1:N/2 - 1;
y = [zeros(1, N/2) ones(1, N/2)];
stem(x, y);
xlabel('n');
ylabel('u(n)');
```

And the plot is shown in figure 3.
3. Generate and plot sinusoidal sequence having $N=30$ elements and given value $\omega=\frac{\pi}{3}$.
Solution: The code in MATLAB used to generate the sequence shown in figure 4 is the following:

```
N = input('Length of the sinusoidal sequence: ');
x = -N/2:1:N/2;
y = sin(pi/3 * x);
stem(x, y);
xlabel('n');
ylabel('sin(pi/3*n)');
```


Figure 3: Unit step sequence plotted in MATLAB.

Figure 4: Sinusoidal sequence plotted in MATLAB.

Figure 5: Plot of the sequence $x(n)=r^{n}$ for different values of r.
4. Generate and plot real-valued sequence

$$
x(n)=r^{n}
$$

having $N=30$ elements for $r=0.98$. Repeat for same negative value $r=-0.98$.
Solution: Figure 5 shows the plots generated from the following code in MATLAB:

```
N = input('Length of the sequence: ');
r = 0.98; % altarnatively r = 0.98
x = 0:1:N;
y = r. `x;
stem(x,y);
xlabel('n');
ylabel('r^n');
```


2.2 Convolution

Compute and plot the convolution of the sequences given in problem 2, section 1.

Solution: Figure 6 shows the sequence $x(n)$, the unit sample response $h(n)$ and the result of convolution $x(n) * h(n)$. The code which computes and plots convolution for this example is the following:

```
% Auxiliary sequences used to build h(n)
a = 0.98 * [ones(1, 24)];
b = [0:1:23];
% Builds the unit sample response sequence
h = a. `b;
% Builds the input sequence
x = [1 2 3];
% Computes convolution
c = conv(x, h);
n = length(c) - 1;
% Plots the convolution sequence
stem(0:1:n, c);
xlabel('n');
ylabel('Amplitude');
```


Figure 6: An input sequence, unit sample response and convolution sequences.

