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Abstract— The KASUMI block cipher is found at the core
of both the f8 data confidentiality algorithm and the f9 data
integrity algorithm, which play an important role in the
security architecture of modern third generation (3G) cellular
communications networks. This paper describes a technique
to design and implement the KASUMI block cipher using a
principle based on the iteration over a minimum number of
hardware components. The features of the technique include
strategies to reduce and simplify KASUMI’s regular Feistel
structure, the use of frequency division and the exploitation of
the facilities provided by the implementation technology: Field
Programmable Logic Array (FPGA). The result is a digital
system that reaches a higher throughput with fewer resources.

I. INTRODUCTION

The recent advances in the field of cellular communica-
tions have led to the appearance of the third generation of
cellular communications technology (3G). 3G is concerned
with the transmission of both data and voice at data rates
never seen before in any other cellular system and the
provision of sophisticated and advanced services. In addition,
3G also allows cellular networks to access IP-based networks
like Virtual Private Networks and the Internet. The most
successful and promising kind of 3G network is called
Universal Mobile Telecommunications System (UMTS) and
has been in use for some years. UMTS’ security architecture
specifies that both its data confidentiality algorithm and
its data integrity algorithm be based on a block cipher
called KASUMI [2]. This paper presents an efficient FPGA
implementation of this cipher that follows the principle of
reusing components.

A. The KASUMI block cipher

KASUMI’s specifications were developed by the Third
Generation Partnership Program (3GPP) consortium [1]
based on previous work carried out for MISTY [6], an
algorithm that has proven its security against the most ad-
vanced cryptanalysis techniques and is suitable for hardware
implementation. KASUMI has a Feistel structure compris-
ing eight rounds, operates on 64-bit data blocks, and the
processing is controlled by a 128-bit encryption keyK.
Additionally, KASUMI has the following features derived
from its Feistel nature: input plaintext is the input to the first
round, ciphertext is the last round’s output, the encryption key
is used to generate a set of round keys{KLi, KOi, KIi}
for each roundi, each round computes a different function as

long as the round keys are different, and the same algorithm
is used both for encryption and decryption.

Figure 1 shows the structure and components of the
KASUMI block cipher. For odd rounds the round-function is
computed by applying the FL function followed by the FO
function. For even rounds the FO function is applied before
FL. FL, shown in figure 1d, is a 32-bit function made up
of simple AND, OR, XOR and left rotation operations. FO,
depicted in figure 1b, is also a 32-bit function having a three-
round Feistel organization which contains one FI block per
round. FI, see figure 1c, is a non-linear 16-bit function having
itself a four-round Feistel structure; it is made up of two nine-
bit substitution boxes (S-boxes) and two seven-bit S-boxes.
Figure 1c shows that data in the FI function flow along two
different paths: a nine-bit long path (thick lines) and a seven-
bit path (thin lines). Notice that in Feistel structures, such as
the ones used in this algorithm, each round’s output is twisted
before being applied as input to the following round. After
completing eight rounds KASUMI produces a 64-bit long
ciphertext block corresponding to the plaintext input block.

B. Related work

Several principles to implement a Feistel block cipher
in hardware are described in [3]. The first choice is to
implement only a small numberN of rounds and then iterate
over them, feeding back the output of theN th round to the
input of the first round until the required number of rounds
have been executed. Improvements to this technique include
the addition of inner- and outer-round pipeline registers. The
second scheme consists in unrolling the whole number of
rounds and adding inner- and outer-round pipeline stages
to the design. While the first strategy is aimed to be used
when area restrictions are strong, the second strategy is used
to reach the maximum throughput possible without space
restrictions.

The following proposals implement KASUMI using FP-
GAs and the reuse approach. The highest performance pro-
posal in [4] implements a FO module having a four-stage
inner-round pipeline and the rest of the logic needed to
perform only one round. Eight iterations over these compo-
nents, as well as 32 cycles, are needed in order to complete
the block ciphering process. The system may process four
blocks each iteration due to its pipelined design. The proposal
in [5] that uses the reuse approach implements the logic
to perform an odd round followed by an even round and
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Fig. 1. The KASUMI block cipher.

has registers in between the rounds to implement an outer-
round pipeline scheme. The mapping of S-boxes to FPGA’s
embedded memory blocks with registered outputs introduces
additional inner-round pipeline stages and thus increases
the latency to 40 cycles. Two architectures that exploit the
iteration and reuse principle are described in [7]. The first
architecture includes logic to implement a single round with
very few components, in such a way that 7 cycles are needed
to perform a round and 56 cycles to complete the ciphering
process for one block. The second architecture requires 4
cycles per round and 32 cycles to complete the processing
for one block.

The goal of the design described in this document is to
reach a good balance between high performance and small
area by using the strategy of iteration over a simplified round
logic. The rest of this paper is organized as follows: section II
describes the architecture proposed and the techniques used
in its design; section III provides information concerning
the implementation in the FPGA platform and a comparison
of the results obtained with those reported for the other
proposals; section IV discusses some future work directions;
finally, section V concludes.

II. DESIGN STRATEGIES

This section describes the main techniques used to design
the system’s architecture, and shows the resulting datapaths
for each component.

A. Joining two FO function components

The first strategy considers a pair of consecutive rounds,
an odd round followed by an even round, manipulates the
structure of this pair without altering its effects, adds compo-
nents that balance the structure and discovers a design pattern
that repeats so often. This pattern then turns into the basic
building block that is implemented once and then reused until
completion of the ciphering process. The development of this
strategy is depicted, step by step, in figure 2. Figures 2a–2c
show exactly the same two-round sequence in three different
ways. In figure 2d both FO black boxes are replaced by a
parallel description for FO function, which is equivalent to
that shown in figure 1b. Figure 2eshows the result of splitting
the 32-bit XOR gate located between the two FO function
blocks into two 16-bit XOR gates and “unfolding” the
datapath comprising the upper FO function block’s output,
the two 16-bit XOR gates and the lower FO function block
in figure 2d. Notice that both the 32-bit R0 input and the
32-bit R2 output are now split into two 16-bit lines, and
that the components to the left of the lower FO function in
figure 2d appear to the right in figure 2e as a consequence of
the unfolding action. Figure 2f shows the result of doing a
joint of the two FO function blocks, in order to highlight the
parallelism between each pair of FI function blocks. Some
16-bit XOR gates with one zero input are added along the
datapath in certain places so that the datapath can be divided
in three structurally similar sections. Figure 2g shows the
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Fig. 2. Sequence of steps to design a reusable datapath for the FO function.



result of this step: the sections between dashed lines are
structurally identical to each other due to the additional XOR
gates, which do not modify the datapath’s behavior. The
sections just described contain the design pattern to be used
as the basic component for the system, this component takes
three cycles to perform the operations corresponding to two
consecutive FO functions, one for the odd round and the other
for the even round. Figure 2h shows the basic FO module,
called superFO, and the surrounding logic needed to provide
the appropriate inputs each cycle. A three-state finite state
machine issues the signals that control the multiplexors, and
the two positive edge-triggered registers delay the R2 output
one cycle, this is required because R2 is computed during
the second cycle.

B. Optimizations in the FI function

Figure 2h shows that two FI blocks are required to carry
out each section of the superFO module. As can be noticed
in figure 1c, an FI function contains two seven-bit S-boxes
and two nine-bit S-boxes. Therefore, this datapath that takes
three cycles to complete the FO functions for two rounds
requires a total number of eight S-boxes. It is possible to
map the S-boxes to four128 × 7 ROMs and four512 × 9
ROMs. However, a decrease by two in the number of ROMs
required is achieved by implementing S-boxes as dual-port
ROMs. The use of this technique exploits the principle of
reuse even further because the same S-box is now able to
meet two requests at the same time.

Consider two instances of the FI block depicted in figure
1c; next replace each pair of S9 S-boxes located in the
same position in both FI blocks by a single dual-port S-
box, and repeat this procedure with the rest of the pairs
of S9 S-boxes and the pairs of S7 S-boxes. The result is
the datapath illustrated in figure 3, which only contains two
dual-port S9 S-boxes and two dual-port S7 S-boxes, and
combines two FI functions into one. As before, the thick lines
highlight the flow of nine-bit long signals and the thin lines
indicate the flow of seven-bit long signals. There are several
notes that must be pointed out concerning this design. First,
the four dual-port ROMs used to implement the S-boxes
are intended to be mapped to embedded memory blocks
inside FPGAs during the implementation phase. Second, the
common situation is that these embedded memory blocks are
synchronous, and since this dual-port FI datapath is required
to provide its results within the range of one clock cycle, the
upper S-boxes are designed to be negative edge-triggered,
and the lower S-boxes are designed to be positive edge-
triggered, as indicated in figure 3. Third, there are plenty of
registers throughout the design depicted in figure 3, they are
colored in grey and their purpose is to synchronize input data
with the values provided by the upper and lower S-boxes.

C. Assembling the components

An improved superFO module which includes the dual-
port FI component is depicted in figure 4. The dual-port FI
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module outputs its results at every positive clock edge, so the
additional registers are needed to delay data, synchronizing
them with dual-port FI’s outputs. Figure 5 shows the com-
plete datapath that performs the operations corresponding
to two consecutive rounds. This architecture takes three
cycles to complete two rounds, performs the block ciphering
process in 12 cycles, and requires that two sets of round keys
({KL1,KO1,KI1} and{KL2, KO2,KI2}), corresponding
to two rounds, be available during three cycles. The control
for this datapath consists of a 12-state finite state machine
that sets the multiplexors’ select inputs properly.
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D. The key scheduler

The key scheduler has the responsibility of providing each
round with the set of round keys it needs to perform its task.
The key scheduler for this project must provide the reusable
datapath with two sets of round keys, one for each round, and
maintain these sets of keys during three cycles. The module
depicted in figure 6 meets the requirement of providing two
sets of round keys since it contains two replicas of the
components used to generate a set of round keys. Adding
logic to keep the output values during three cycles is too
much expensive; therefore, an alternative solution is used.
The key scheduler is synchronized with a clock signal whose
frequency is one third the frequency of the overall system’s
clock. A divide-by-three frequency divider, implemented as
a three-state finite state machine, generates the appropriate
clock signal for this module. The key scheduler receives the
encryption keyK as an array of eight 16-bit input values
(K1,K2, . . . , K8), which are used to generate the two sets
of round keys, and issues these same values rotated to the left
twice every positive clock edge. The key scheduler module
is reused in this project by feeding the rotated outputs back
to the inputs.

TABLE I

SYNTHESIS RESULTS CONCERNING AREA COMPLEXITY.

Category Amount of Total amount of Percentage
elements used elements available of use

Slices 566 3072 18%
Slice Flip Flops 546 6144 8%
4-input LUTs 1014 6144 16%
SRAMs 6 32 18%
GCLKs 1 4 25%

III. IMPLEMENTATION

FPGA is the chosen implementation platform due to its
proven advantages, such as fast prototyping and advanced
reconfigurability. The resources used to implement the design
just described are: the VHDL hardware description language,
an FPGA platform from Xilinx and the Xilinx Synthesis
Technology (XST) software synthesis tools. The device of
choice is the XCV300E-8-BG432 belonging to the Virtex-
E family of devices. The main reason for choosing this
family is that the designs reported in the related papers are
implemented on Virtex-E devices, so in order to make a fair
comparison the design reported here is implemented on a
Virtex-E device as well.

Virtex-E devices introduce large blocks of SelectRAM
(SRAM) memories. Each of these blocks is a fully syn-
chronous dual-port (True Dual Port) 4096-bit RAM with
independent control signals for each port. The data widths of
the two ports can be configured in an independent fashion.
The device considered in this document has 32 SelectRAM
blocks, which provide a total amount of 131072 bits of
embedded memory to hold whatever is convenient.

Table I shows the results of the synthesis process, carried
out with the goal of optimizing speed. Table II summarizes
the most important information concerning the published
works and our own design.

A. Synthesis results

Notice in table I that the number of resources belonging
to the reconfigurable fabric, i.e. slices, flip-flops and LUTs,
that are occupied by the design does not surpass 20% in each
category. While the fully unrolled KASUMI block cipher
requires a total number of 96 S-boxes the design described in
this document requires only four dual-port S-boxes, which is
a significant saving no matter if the S-boxes are implemented
as combinational logic or as embedded block memories.
Table I reports that 6 SelectRAM blocks are used instead
of four because two memory blocks are needed to hold each
S9 S-box. A S9 S-box requires storage for 4608 bits, which
can not be provided by a single 4096-bit SelectRAM memory
block. XST reports an estimated operational clock frequency
of 41.625 MHz for the whole design. From this information
it is possible to compute the throughput, which turns out to
be 222 Mbps.



TABLE II

COMPARISON WITH OTHER IMPLEMENTATIONS.

Proposal Latency Area Frequency Throughput Hardware efficiency Number of Number of
(cycles) (slices) (MHz) (Mbps) (kbps/slice) S-boxes SRAMs

Work in [7] 56 368 68.13 77.86 211.58 2 N/A †
32 370 58.06 116.12 313.84 4 N/A †

Work in [5] 40 749 35.35 70.70 94.39 24 24
Work in [4] pipeline 1100 33 234 212.73 12 N/A †
This work 12 566 41.625 222 392.22 4 6

†: N/A = Information not available

B. Comparison

The use of SelectRAM blocks removes complexity from
the reconfigurable fabric. Among the two designs that use
memory blocks, our architecture uses the least number of
them. Table II shows that the design with the highest through-
put in [4] is the one that consumes the greatest number
of resources, being almost twice more expensive than our
architecture in terms of area complexity, measured in number
of slices. In addition, the proposal in [4] has a throughput
which is slightly higher than our design’s throughput, which
in turns is much higher than the throughput reported for the
rest of the three proposals. The two architectures described
in [7] are the cheapest ones in terms of area because they
reuse small basic components. However, in spite of their high
clock frequencies, they do not achieve higher performances
due to their large latencies. The higher the number of cycles
needed for completion the lower the throughput, as indicated
by the following expression:

throughput =
block size× clock frequency

latency
.

Our simplified architecture has the lowest latency, only 12
cycles, and, at the same time, a short critical path which
contrasts with those for the design in [4], which implements
a complete FO function, and the architecture in [5], which
implements two fully unrolled rounds.

In [4], an additional design using the reuse approach with
a performance of 110 Mbps fitting in 560 slices is proposed.
The pipelined architecture, issuing a ciphertext block each
clock cycle, is reported here to show that our simplification
strategy produces a highly competitive alternative.

IV. FUTURE WORK

Future work includes the integration of the architecture
as a coprocessor in a CPU that is used within UMTS
components such as mobile stations and Radio Network
Controllers (RNC).

V. CONCLUSIONS

An efficient and novel hardware architecture for the KA-
SUMI block cipher that exploits reutilization of components
was described. The design strategies used for this design are:

the simplification of the logic for a two-round sequence, the
use of dual-port embedded memory blocks to implement
S-boxes and the division of clock frequency to meet the
requirements imposed to the key scheduler and keep it
simple. The results of the implementation process show that
the architecture’s design is a good balance between high
performance and low area complexity.
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