
An Efficient Hardware Implementation of the KASUMI
Block Cipher for Third Generation Cellular Networks

Tomás Balderas-Contreras
Instituto Nacional de Astrofı́sica, Óptica y

Electrónica
Luis Enrique Erro #1 72840

Tonantzintla, Puebla. MEXICO

balderas@inaoep.mx

René A. Cumplido Parra
Instituto Nacional de Astrofı́sica, Óptica y

Electrónica
Luis Enrique Erro #1 72840

Tonantzintla, Puebla. MEXICO

rcumplido@inaoep.mx

ABSTRACT
Third generation cellular network technology (3G) allows
the transmission of information and voice at data rates never
experienced before. 3G networks will revolutionize personal
communications and information exchange between business
partners in a more overwhelming fashion than 2G and 2.5
networks did. This revolution must be supported by a means
to guarantee secure transmissions and transactions. The 3G
UMTS (Universal Mobile Telecommunication System) net-
works include robust algorithms for confidentiality and in-
tegrity, both of them based on the KASUMI block cipher.
This paper presents a FPGA implementation of KASUMI
based on three design principles: the reuse of simple compo-
nents to implement the whole cipher with fewer resources,
the use of dual-port synchronous memories to implement
the algorithm’s substitution boxes (S-boxes), and the use of
a simple key scheduler synchronized with a divide-by-two
clock divider. The design achieves higher levels of perfor-
mance with fewer resources, which is a must in order to
succeed when producing components for the 3G cellular net-
work market.

Categories and Subject Descriptors
E.3 [Data Encryption]: standards; C.3 [Special-Purpo-
se and Application-Based Systems]: real-time and em-
bedded systems

General Terms
Design, Performance, Security

Keywords
Block Cipher, KASUMI, FPGA

1. INTRODUCTION
The KASUMI block cipher was adopted by the 3rd Gener-
ation Partnership Program (3GPP) [1] as the cornerstone

of several operations involved in the security architectures
defined for the following cellular communication networks:
the 3G UMTS standard, the 2G GSM (Global System for
Mobile communications) standard, and the 2.5 GPRS (Gen-
eral Packet Radio Service) standard. In UMTS, KASUMI
is the main component of both the f8 confidentiality algo-
rithm and the f9 integrity algorithm [2]. KASUMI also lies
at the core of the A5/3 and GEA3 encryption/decryption
algorithms for GSM and GPRS, respectively [4].

KASUMI’s specifications were developed based on previous
work carried out for MISTY, an algorithm that has proven
its high security levels against the most advanced crypt-
analysis techniques and is suitable for hardware implemen-
tation [9]. KASUMI has a Feistel structure comprising eight
rounds, operates on 64-bit data blocks, and a 128-bit encryp-
tion key K controls its processing [3]. Additionally, KA-
SUMI has the following additional features derived from its
Feistel nature: input plaintext blocks are the input to the
first round, ciphertext blocks are the last round’s output,
the encryption key K is used to generate a set of round keys
{KLi, KOi, KIi} for each round i, each round computes
a different function as long as the round keys are different,
and the same algorithm is used both for encryption and de-
cryption.

Figure 1 shows the structure and components of the KA-
SUMI block cipher. For odd rounds the round-function is
computed by applying the FL function followed by the FO
function. For even rounds the FO function is applied be-
fore FL. FL, shown in figure 1d , is a 32-bit function made
up of simple AND, OR, XOR and left rotation operations.
FO, depicted in figure 1b, is also a 32-bit function having a
three-round Feistel organization which contains one FI block
per round. FI, see figure 1c, is a non-linear 16-bit function
having itself a four-round Feistel structure; it is made up
of two nine-bit substitution boxes (S-boxes) and two seven-
bit S-boxes. Figure 1c shows that data in the FI function
flow along two different paths: a nine-bit long path (thick
lines) and a seven-bit path (thin lines). Notice that in Feis-
tel structures, such as the one used in this algorithm, each
round’s output is twisted before being applied as input to
the following round. After completing eight rounds KA-
SUMI produces a 64-bit long ciphertext block corresponding
to the plaintext input block.



KO1 KI1KL1

FOFL

KO2 KI2

FO

KL2

FL

KO3 KI3KL3

FOFL

KO4 KI4

FO

KL4

FL

64

3232

KO5 KI5KL5

FOFL

KO6 KI6

FO

KL6

FL

KO7 KI7KL7

FOFL

KO8 KI8

FO

KL8

FL

64

L0 R0

L8 R8

KOi,1

KIi,1FIi1

KOi,2

KIi,2FIi2

KOi,3

KIi,3FIi3

32

32

1616

9 7

S9

S9

S7

S7

16

16

KIij1

KIij2

AND

OR

<<<1

<<<1

KLi1

KLi2

16 16

32

32

a. Feistel structure b. FO function c. FI function d . FL function

Figure 1: The KASUMI block cipher.

This document is organized as follows: section 2 describes
each of the design techniques employed, section 3 provides
implementation details, results, and a comparison with sim-
ilar works, section 4 gives some comments concerning the
use of the architecture in the field, and section 5 concludes.

2. ARCHITECTURE DESIGN
The goal of the proposed architecture is twofold: to address
the requirement of high performance imposed by market,
and to provide network manufacturers and operators with
a compact design that integrates into network components
with small penalties regarding power consumption and sili-
con area. This section describes the design techniques em-
ployed to achieve the goal.

The reutilization approach conceived for this project is il-
lustrated in figure 2. Consider the parallel version of the
FO module depicted in figure 2a, it can be noticed that the
upper section and the lower section have some components
in common. The first technique consists in the addition of
components in each section, which do not modify the func-
tionality of the module, in order to make the two sections
structurally identical. Figure 2b shows that two XOR gates
with zero input have been included along the module’s dat-
apath. The datapath in figure 2c is the result of inserting
an additional FI module in the lower section, and two mul-
tiplexers as well. Notice that at this step the datapath’s
organization has two sections having exactly the same num-
ber and kind of components, differing only in their input
values. The simplified datapath in figure 2d implements
only one of these sections, two iterations over this datapath
are required in order to carry out the processing of a FO

function module, and the input values of the components
are selected depending on the iteration in process by means
of multiplexers. The datapath performs an iteration every
clock cycle; consequently, two cycles are needed to carry out
the FO function module.

Consider now two parallel instances of the FI function mod-
ule depicted in figure 1c. The second technique merges these
two FI modules into one in order to use the least number
of S-boxes possible, these S-boxes are then mapped to the
memory blocks (SRAMs) embedded in the FPGA platform.
Figure 3 depicts the result of the combination technique.
Notice that instead of having four S9 S-boxes and four S7
S-boxes, the new module contains only two dual-port S9 S-
boxes and two dual-port S7 S-boxes. This dual-port module
is required to work during a clock cycle; that is why the
upper S-boxes are synchronized with the negative edge of
the clock pulse, whereas the lower S-boxes are synchronized
with the positive edge of the clock pulse. The additional reg-
isters are used to synchronize input data with the S-boxes’
outputs. The simplified FO module in figure 2d already
includes the dual-port FI module.

In order to perform a whole round, some logic must be added
to the FO module just described. The datapath in figure 4
includes the FO module, two FL modules, of which only one
is used per round, some registers for data synchronization,
and multiplexers for data selection. This module requires
16 clock cycles to carry out the ciphering process, and that
each set of round keys is available during two clock cycles.

The key scheduler module generates the set of round keys



FI2FI1

FI3

KO1 KO2

KI1

KO3

KI3

KI2

32

32

16 16

16 16

Upper section

Lower section

FI1

KO1

KI1

16 16

FI2

KO2

KI2

FI3

KO3

KI3

32

16 16

32

0

0

a b

FI1

KO1

KI1

16 16

FI2

KO2

KI2

0

FI3

KO3

KI3

32

16 16

0

FI2 KI2

32

1 0

1 0

0

1

1616

32

KO1 KO3

10 1 0 0 1 10

0

0 KO2

01

KI2
clk

dpFI

10

KI1 KI3

clkclk

0 1

1616

32

A B C D

F

E

G

a b c d

f

e

g

c d

Figure 2: Steps to design a reusable FO module.



16

16

16 16

9 7

79

9 7

79

clk clk

clk clk

KI12
clk

KI22
clk

KI11
clk

KI21
clk

S9

S9

clk

clk

clk

clk

S7

S7

Figure 3: The dual port FI module.

012

A B

64

32 32

0 1 2

clkclk

C

D

10

1 0

clk clk

64

32 32

KO
KI

KL FL

FL

clk
KL

FO
clk

a b

c

d

Figure 4: Datapath for the round logic.

<<< 5<<< 1

KL1 KO1 KL2 KI2 KI1

<<< 8

KO2 KI3

<<< 13

KO3

K1 K2 K3 K4 K5 K6 K7 K8

C1 C2 C3 C4 C5 C6 C7 C8

O8 O1 O2 O3 O4 O5 O6 O7

D8 D1 D2 D3 D4 D5 D6 D7

Figure 5: The key scheduler.

for each round. As mentioned above, it is a requirement
that this component keeps each set of values active during
two clock cycles in order for them to be available during the
processing period of the round logic. Figure 5 shows the
organization proposed for the key scheduler, which receives
the encryption key K as an array of eight 16-bit subkeys
Ki, along with an array of constants Ci. The module syn-
chronously outputs both of the arrays rotated once to the
left, these outputs are in turn fed back to the input ports.
In order to keep the design simple and to meet its require-
ment, the scheduler is synchronized with a divide-by-two
clock frequency divider.

3. IMPLEMENTATION
The design is implemented using the VHDL language, the
Xilinx Synthesis Technology (XST) tools, and a Virtex-E
FPGA platform [11] in order to make fair comparisons with
related works. Table 1 shows the results yielded by the
synthesis process for a XCV300E-8-BG432 FPGA. Notice
that the percentages of use of the massive elements in the
FPGA do not surpass 20% for this device, which contains
few resources and is one of the smallest of its family. This
fact is an indication of the compactness of the design.

Table 2 shows that the design described in this document
achieves the second highest throughput and, at the same
time, is one of the most economical designs in terms of area
in hardware. The design reduces dramatically the number
of S-boxes needed, by a factor of 24, to only four; six SRAM
blocks are used though. Since each S9 S-box is 512 × 9 =
4608-bit long, and each SRAM block can only store 4096
bits, then two SRAM blocks are used to hold each S9 S-box.
S7 S-boxes fit well in a SRAM block.

It is possible to perform a more aggressive simplification of
the KASUMI datapath; however, this is not advantageous
due to more cycles will be needed to complete the ciphering
process, which has such a negative effect on performance.
Notice in table 2 that the implementations with longer la-
tencies have also lower performances.

4. POTENTIAL USES
The design is suitable to be included into mobile handsets
because it is compact enough to save silicon space and has
low power consumption, the two most important aspects
that need to be consider when designing components for a
mobile device such a cell phone or a PDA. The architecture
might be implemented either in a smart card (USIM) or as



Table 1: Synthesis results
Category Amount of Total amount of Percentage

elements used elements available of use

Slices 488 3072 15%
Slice Flip Flops 566 6144 9%
4-input LUTs 898 6144 14%
SRAMs 6 32 18%
GCLKs 1 4 25%

Table 2: Comparison with other implementations using the reuse approach
Proposal Latency Area Frequency Throughput Number of Number of

(cycles) (slices) (MHz) (Mbps) S-boxes block SRAMs

Work in [6] 8 650 20 110 12 N/A †
Work in [8] 40 749 35.35 71 24 24

56 368 68.13 78 2 N/A †
Work in [10] 32 370 58.06 117 4 N/A †

8 588 33.14 266 12 N/A †
This work 16 488 41.14 165 4 6

†: N/A = Information not available

a functional unit of a low power processor for embedded
systems.

The Radio Network Controller (RNC) module [5], which is
located in the radio access network and controls a set of
base stations (Node Bs), also implements its own KASUMI
ciphering module. In this case, the architecture’s perfor-
mance allows the RNC to cope with the multiple encryp-
tion/decryption requests from the different users of the net-
work. Several architectures for the RNC may be proposed,
since it is a non-standardized component of the network, as
well as different ways to organize the KASUMI components
in order to achieve higher performances.

5. CONCLUSIONS
Network operators and component manufacturers have great
expectations towards the deployment and use of 3G net-
works in the upcoming years. The huge number of poten-
tial subscribers and the advanced services to provide im-
pose great challenges in terms of guaranteeing confidential-
ity and integrity of both data and signaling. An efficient
and compact hardware design of the KASUMI algorithm
was described in this document, along with the results of
its implementation in FPGA technology. The design tech-
niques used (a reutilization approach, the use of dual-port
embedded memory blocks and the inclusion of a divide-by-
two clock divider) have proved to be very useful; these tech-
niques might be utilized to design high performance compact
implementations of Feistel-like block ciphers. Not only does
this proposal achieve a good performance, the second high-
est throughput, but is one of the most economical designs
in terms of area. The architecture meets the needs of any
manufacturer looking for a high performance ciphering ar-
chitecture which is compact enough to save space and has
low power consumption.

6. ACKNOWLEDGEMENTS
This work was sponsored by the scholarship number 171498
granted by CONACyT, the Mexican Council for Science and
Technology.

7. REFERENCES
[1] 3rd Generation Partnership Program. 3GPP Home

Page. http://www.3gpp.org

[2] 3rd Generation Partnership Program. Document 1: f8
and f9 Specification 35.201. Release 5. Version 5.0.0.

[3] 3rd Generation Partnership Program. Document 2:
KASUMI Specification. Technical Specification 35.202.
Release 5. Version 5.0.0.

[4] 3rd Generation Partnership Program. Document 1:
A5/3 and GEA3 Specifications. Technical
Specification 55.216. Release 6. Version 6.2.0.

[5] K. Ito, et al. Radio Network Control System, in
FUJITSU Scientific & Technical Journal, 2002, 38(2),
pp. 174–182.

[6] H. Kim, Y. Choi, M. Kim and H. Ryu. “Hardware
Implementation of the 3GPP KASUMI Crypto
Algorithm”, in Proc. of the 2002 International
Technical Conference on Circuits/Systems, Computers
and Communications ITC-CSCC-2002, 2002, pp.
317–320.

[7] P. Kitsos, M. D. Galanis and O. Koufopavlou.
“High-Speed Hardware Implementations of the
KASUMI Block Cipher”, in Proc. of the 2004 IEEE
International Symposium on Circuit and Systems
ISCAS’04, 2004.

[8] K. Marinis, N. K. Moshopoulos, F. Karoubalis and K.
Z. Pekmestzi, “On the Hardware Implementation of
the 3GPP Confidentiality and Integrity Algorithms”,
in Proc. of the 4th International Conference on
Information Security ISC 2001, 2001, pp. 248–265.

[9] M. Matsui, “New Block Encryption Algorithm
MISTY”, in Proc. of the 4th International Fast
Software Encryption Workshop FSE’97, 1997, pp.
54–68.



[10] A. Satoh and S. Morioka, “Small and High-Speed
Hardware Architectures for the 3GPP Standard
Cipher KASUMI”, in Proc. of the 5th International
Conference on Information Security ISC 2002, 2002,
pp. 48–62.

[11] Xilinx, Inc., Virtex-E 1.8 V Field Programmable Gate
Arrays. v2.6. Product Specification, 2002.


