
INTERPRETIVE AND NON-INTERPRETIVE TECHNIQUES FOR
INSTRUCTION SET SIMULATION

Tomás Balderas-Contreras

Facultad de Ciencias de la Computación
Universidad Autónoma de Puebla

Puebla, Pue. MÉXICO

Hugo Garćıa-Monroy

Departamento de Aplicación de Microcomputadoras
Instituto de Ciencias

Universidad Autónoma de Puebla
Puebla, Pue. MÉXICO

ABSTRACT

Complete machine simulators have been used for long
time to aid in the development process of computer sys-
tems, as well as to gather behavioral and performance
information. An important component of this kind of
programs takes each instruction from a target binary
program and executes it on a different host machine.
This paper describes the most important techniques
that have been developed to implement this component
and some of the most powerful simulators.

1 INTRODUCTION

During the last decades computer scientists, engineers
and manufacturers have been so interested in the behav-
ior and performance of computer systems components,
configurations, system software and application pro-
grams. Specifically, there have been performance stud-
ies about operating systems, memory hierarchies, mul-
tiprocessors, database management systems, computer
communications networks, user-level applications, dis-
tributed systems and workloads (one or more executing
applications along with all of the operating system ac-
tivity that occurs during the execution). Several tech-
niques to estimate performance and investigate behav-
ior have been developed (Heidelberger and Lavenberg
1984, Herrod 1998). All of them can be classified, not
strictly, into one of the following categories:

Analytical methods. These are inexpensive approx-
imate mathematical models of complex systems.
They are based on queuing networks and proba-
bility theory. Their goals are to predict perfor-
mance and behavior and provide some valuable in-
formation. However, in order they to be tractable,
it is necessary to make some simplifying assump-
tions about the whole system, reducing the accu-
racy of the resulting data and the applicability of
the model.

System measurements. These techniques perform
experimental studies on an existing system or on
a prototype of such system. Obviously, their low-
level results are the most accurate and fast to ob-
tain. However, it is expensive to build a prototype,
and also, it is difficult to modify a system to esti-
mate the effects of such modifications on its per-
formance and behavior. As a result, it is the least
flexible approach.

System simulation. In general these techniques con-
sist of the design and development of a computa-
tional model of a system or process and the driving
of experiments on it. A trace-driven simulator is a
model which is driven by a sequence of measure-
ments taken from an existing system. An stochastic
discrete event simulator is a queuing model driven
by a sequence of random numbers and it is mostly
an statistical approach. These models can include
the broad range of features of the real system that
would make an analytical model intractable. It is
also less expensive and less time-consuming than
building a prototype of a given design.

A well-known hybrid approach between system mea-
surements and simulation is complete machine simu-
lation, also called system level simulation and virtual
machine (Herrod 1998). A complete machine simulator
is a program which has all of the functionality of an spe-
cific computer system but runs, although not strictly,
on a completely different computer system. This kind
of program reproduces all of the hardware found in a
typical computer. It can model, for example, a central
processor and a memory hierarchy to execute programs
stored in memory, it can simulate a disk to store pro-
grams and data and it can reproduce a network inter-
face to communicate with other machines. As a result,
the simulator can execute an unmodified operating sys-
tem and its application programs. We have concluded,
as a consequence of our studies, that all of the simula-
tors share the following features.

• A model of the processor’s state (general purpose
and control registers).

• Simulation of a memory hierarchy (main physical
memory at least).

• Simulation of instruction processing (machine cy-
cle).

• Collection of behavioral information (instruction
and memory use profiles).

It is possible to add extra features to build a complete
and more accurate system.

There are many significant advantages in the use of
this technique. It permits both the validation of present
designs and a prediction of the behavior of future de-
signs in such an accurate way. It is possible to de-
velop operating systems and application programs for
a computer system in development process, as well as
it is possible to make use of a software substitute of an
unavailable expensive computer system. Since a com-
plete simulator consists of several models of hardware
components we can replace one of such models with a
modified compatible one to study the effects of design
modifications in the performance of the overall system,
this means a great flexibility. Finally, the code attached
to the hardware models can collect detailed and accu-
rate information regarding the execution of such mod-
els. For example, an execution profiler can increment a
counter each time an specific instruction in main mem-
ory is executed, as a consequence the simulator has a
great visibility into itself.

Unfortunately, the important benefits described
above are shadowed by a significant disadvantage. A
virtual machine could be much slower than the corre-
sponding actual hardware implementation. The more
detailed a simulation model is, the slower its execution
will be. Due to this weakness it is important to de-
sign efficient simulation techniques to improve the per-
formance of the simulator. In this paper we describe
existing systems and their approaches to implement ef-
ficient and relatively fast simulation. We focus on the
existing methods to simulate the execution of programs
whose binary instructions are defined by an specific in-
struction set. We are interested in the way a simulator
fetches an instruction, decodes it and simulate its effects
on the state of the simulated processor, in other words,
we are interested in the interpretation methods used by
a series of instruction set simulators. The simulators we
consider in this paper are some of the most represen-
tative, they are g88, SimICS and Embra, additionally,
we describe the techniques we employed in the devel-
opment of SPARCSim, our own SPARC architecture
simulator. It is not important, for now, the existence

of any other component of the virtual processor (such
as data and instruction caches, memory management
unit or translation look-aside buffer). We concentrate
on the implementation techniques and a little bit on the
results of the methods.

The rest of this paper is organized as follows. Sec-
tion 2 explains the main concepts about interpreters an
threaded code. Section 3 contains information about
g88. Section 4 summarizes SimICS. We describe Embra
in section 5. Our own system, SPARCSim, is discussed
in section 6. Some interesting details and a performance
small talk is given in section 7. We finally conclude in
section 8.

2 INTERPRETERS AND THREADED
CODE

An interpreter is a computer program which performs
the following tasks (Gries 1971).

• Translates a sequence of sentences written in a
source language into a sequence of instructions de-
fined by the internal form specified by the inter-
preter (there are several internal forms proposed,
such as polish notation and quadruples).

• Takes each of these internal instructions and ex-
ecutes it through the use of the corresponding
service routine chosen from a set of routines, or
through a substatement of a long case statement.

Although the execution of an interpreted program is
slower than the execution of a machine language pro-
gram generated by a compiler, interpreters have a sig-
nificant advantage. The interpreter can easily provide
powerful debugging facilities to the user, they may be
useful to find design flaws and for educational purposes.
Interpreters have also helped some object-oriented lan-
guages (such as Smalltalk, Objective C and Java) pro-
vide their key features, such as dynamic binding and
dynamic typing.

A technique that can be used to improve interpreters’
performance is known as threaded code (Bell 1973). In
the rest of this section we use SPARC assembly lan-
guage (SPARC International, Inc. 1992) to show a
piece of code needed to understand this technique. Let
us suppose that the integer register %g1 points to the
memory location containing the address of the begin-
ning of the service routine currently executing. That
the next memory locations contain the addresses of the
beginning of other service routines needed. Further-
more, let us suppose that each service routine has the
following four instructions as its last instructions.

inc 4, %g1

ld [%g1], %l0

jmp %l0

nop

The first of the previous instructions increments the
value of the register %g1, the instruction counter. The
next instruction gets the address of the beginning of the
next service routine to execute, such address is stored
into the local register %l0. Then an unconditional de-
layed control transfer to the first instruction of the next
service routine takes place. The last instruction is the
delay instruction.

As we can see, each service routine changes control
to the next routine to be executed. As a result, we
have interpretive code that does not require an inter-
preter at all, improving the execution time of a pro-
gram. Threaded code will play a crucial role in the
next sections of this paper.

3 DECODED INSTRUCTIONS AND G88

In this section we describe the first of the four simu-
lators mentioned above, the g88 simulator (Bedichek
1990). This is a complete machine simulator that mod-
els a workstation based on the MC88100 RISC proces-
sor and the MC88200 cache and memory management
unit integrated circuit (Tabak 1990). Its implemen-
tation runs on a workstation based on the MC68020
processor. Although it does not simulate some of the
features of the MC88100 processor, the whole system
can model many components with enough detail to run
an unmodified operating system and its applications
without any problem. Such components include the
MC88200, main memory and I/O devices, for example
a timer chip, a Zilog 8530 serial communications con-
troller, interrupt controllers, a DMA controller and a
simple disk simulator.

Threaded code plays an important role in the inter-
pretation process of this simulator. All of the binary
instructions that make up a program, which we call
from now on raw instructions, are translated into an
internal form, defined by the simulator, before their ex-
ecution. Each raw instruction is 4 bytes-long while the
corresponding decoded instruction is 16 bytes-long. A
decoded instruction is an structure which consists of a
pointer to the sequence of sentences that simulate the
execution of a raw instruction, called instruction han-
dler, and pointers to the operands, i.e. pointers to mem-
ory locations that simulate the 32 general purpose reg-
isters or to memory locations that contain immediate
values. The simulator has a pointer to the currently ex-
ecuting decoded instruction, called the decoded instruc-
tion pointer, to keep track of the execution flow. The
decoded instructions corresponding to the instructions

addu r4, r5, r6 and subu r2, r4, 1000 are shown
in figure 1. In addition to the code needed to execute
a raw instruction, the instruction handlers contain the
required sentences to increment the decoded instruction
pointer and jump indirectly to the next instruction han-
dler. The decoded instructions that make up an entire
program are stored in memory to avoid the need for
translating them again later.

Decoded instruction pointer

1000

.

.

.

.

.

.

.

.

.

r0

r1

r2

r3

r5

r4

r6

r31

.

.

.

Pointer to instruction handler for addu

Pointer to word modelling r4
Pointer to word modelling r5
Pointer to word modelling r6

Pointer to word modelling r2
Pointer to word modelling r4
Pointer to immediate value 1000

Pointer to instruction handler for subu

Simulated general
purpose registers file

Immediate
values pool

Decoded instruction page

Figure 1: Decoded Instructions

Now it is time to glance at the memory simulation
scheme used by g88 because it is closely related with
the interpretation approach. The simulated physical
memory is organized into a series of 4 KB-long pages.
When the simulator starts it allocates an array of null
pointers but no pages of memory are available yet. A
physical memory page is allocated until an access to
one of its addresses is needed, then a pointer to the
recently allocated page is placed in the corresponding
location of the array of pointers according to the re-
quired address. A simulated physical memory page can
contain up to 1024 raw instructions and can be associ-
ated a page containing the corresponding 1024 decoded
instructions. Such decoded instruction page is allocated
when the simulator attempts to execute the raw instruc-
tions. Figure 2 depicts the former comments. When
a decoded instruction page is allocated the simulator
fills its decoded instruction slots with a decode pseudo
instruction which, when executed, takes a raw instruc-
tion, translates it and replaces itself with the resulting
decoded instruction. Once the decoded pseudo instruc-
tion has been placed its execution begins. This process
continues for every raw instruction that has not been
translated and executed.

Note that when all of the raw instructions have been
translated, the set of decoded instructions and instruc-
tions handlers conform to the definition given above for
threaded code.

.

.

.

.

.

.

.

.

.

.

.

.

Simulated physical
memory page (4 KB)

Simulated physical
memory page (4 KB)

Simulated physical
memory page (4 KB)

Array of pointers to
simulated physical

memory pages

.

.

.

Decoded instruction
page (16 KB)

.

.

.

Decoded instruction
page (16 KB)

Figure 2: Organization of g88’s Simulated Physical
Memory

4 SIMICS’ INTERMEDIATE FORM

SimICS is one of the most important and advanced
simulators that have been developed (Magnusson 1997,
Magnusson and Montelius 1997). It simulates one or
more SPARC V8-compliant processors (SPARC Inter-
national, Inc. 1992) and runs, getting several interest-
ing measurements, on a 250 MHz UltraSPARC work-
station. This system executes instructions in a sequen-
tial way, one instruction at a time. This feature makes
SimICS fully deterministic. SimICS provides two alter-
natives to support realistic workload execution. It can
explicitly emulate system calls from an Unix-like oper-
ating system such as SunOS or, alternatively, it can run
an unmodified operating system. This is possible be-
cause SimICS can be extended with faithful-enough de-
vice models to build a full virtual computer system. A
SimICS-based complete machine simulator commonly
referred to as SimICS/sun4m (Magnusson et al. 1998)
contains models for an Ethernet interface, support for
serial communications through a console and disk stor-
age. It is also possible to evaluate different memory con-
figurations by adding new cache models to the memory
hierarchy.

To achieve performance tuning and to understand
program behavior SimICS provides a set of advanced
profilers. Such set includes the following profilers:

1. Instruction cache misses.

2. Write data cache misses.

3. Read data cache misses.

4. Translation look-aside buffer misses.

5. Branches to an instruction.

6. Branches from an instruction.

7. Count of instruction execution.

8. Flag for instruction execution.

Those profilers could be the foundations for more pow-
erful analysis tools built on top of them. As a singular
advantage, it is possible for the user to add a new pro-
filer module at run-time.

SimICS’ interpretation process is slightly different
than g88’s. Each SPARC instruction is translated to
an intermediate instruction which is 64 bit-long. Such
intermediate instruction has a 32-bit pointer to the cor-
responding service routine and a 32-bit parameter word
which contains register addresses and/or immediate val-
ues. Service routines perform their tasks, they use the
parameter word to read or write the register file, cal-
culate addresses and access memory and perform arith-
metic or logical operations. The last instructions of a
service routine correspond to the epilogue which per-
forms administrative tasks for the simulation (such as
event handling), fetches the pointer to the next service
routine along with its parameters and jumps to execute
such service routine. Figure 3 depicts the process.

target code

PC
nPC

parameter

parameter

parameter

.

.

.

.

.

.

64-bit
intermediate

code

add …
sub …
jmp …

.

.

.

i_PC

i_nPC

simulate
effects

fetch and
dispatch
service
routine

service
routine

Figure 3: SimICS’ Interpretation Process

SimICS’s core has been implemented in two differ-
ent ways. The scheme described above is used by a
hand-written version of the interpreter. Later imple-
mentations are built by a sophisticated metatool called
SimGen which designs the intermediate format and
generates the decoders, encoders and service routines
needed. To perform its task the metatool must be pro-
vided with a high-level specification of the target in-
struction set to simulate.

5 THE TRANSLATOR: EMBRA

The next simulator to discuss is called Embra
(Witchel and Rosenblum 1996). It simulates a MIPS
R4000/R4400 microprocessor along with a cache and
a memory system. Embra is part of a bigger com-
plete simulation environment known as SimOS (Her-

rod 1998). This system is binary-compatible with most
SGI’s workstations and can run the IRIX operating sys-
tem along with its application programs. Later versions
model DEC’s Alpha architecture. For each hardware
component to be simulated SimOS provides a number
of different simulation models (it contains three pro-
cessor simulation models: Embra, Mipsy and MXS).
Although all of these models provide the same basic
functionality, they are different to each other in the
level of detail at which they behave and in their speed
rate. It is possible to combine several different simu-
lation models to provide different simulation environ-
ment configurations, known as execution modes, each
with different speed-detail trade-offs. SimOS supports
three execution modes: positioning mode, rough char-
acterization mode and accurate mode. The user selects
the first mode to speed up a workload’s initialization
process. When it is done, it is possible to change to
a more accurate execution mode to obtain realistic be-
havioral information of a more interesting stage of the
workload’s execution, but at an slower speed rate. Fig-
ure 4 illustrates the SimOS system.

IRIX 5.3 (host OS)
MIPS R4x00 SGI machine

Embra/Mipsy/MXS

RAM Disk Other

IRIX 5.3 (target OS)

Host platform

SimOS
Target Hardware

Layer

Target OS

Unaltered
Applications

Figure 4: The SimOS Complete Machine Simulator

Embra’s simulation scheme differs greatly from the
approaches just discussed. Embra simulates the tar-
get processor’s state by using some data structures and
performs dynamic binary translation instead of inter-
pretation techniques. Each target instruction is trans-
lated by Embra into a sequence of host instructions that
simulates the effect of the target instruction over the
processor’s state. Embra translates each basic block
(a sequence of instructions which ends with a control
transfer instruction) and caches the resulting transla-
tion in an special data structure called the translation
cache, this avoids the need for later translation. Figure
5 sketches binary translation for an small basic block.

A simple implementation of Embra’s translator de-
pends on a dispatch loop which examines the current
value of the simulated program counter. If the instruc-
tion pointed to by this program counter has already

load r3, 16(r1)

add r4, r3, r2

jump 0x48074

Binary Code

store 0x48074, simPC
j dispatch_loop

load t1, simRegs[1]
load t2, 16(t1)
store t2, simRegs[3]

load t1, simRegs[2]
load t2, simRegs[3]
add t3, t1, t2
store t3, simRegs[4]

Translated Code

Figure 5: Binary Translation

been translated, the corresponding translated block is
executed. If it has not been translated yet, the en-
tire block the instruction belongs to is translated and
cached for future execution. The last instructions of a
translated block changes the value of the simulated pro-
gram counter and transfer control back to the dispatch
loop. Note that this approach needs the loop to dis-
patch the translated blocks, whereas each service rou-
tine in a threaded coded program dispatches the next
one.

6 SPARCSIM’S POINTERS

SPARCSim simulates the SPARC V8 instruction set. It
is mainly intended to be an educational tool for those
people interested in RISC architectures (Balderas and
Garćıa 1999). Figure 6 sketches the organization of the
system which can be divided into the following layers.

Kernel layer. This layer is made up of a set of mod-
ules written in C. It provides an assembler, a dis-
assembler, the instruction interpreter, a set of ser-
vice routines and a simple execution profiler. It
also contains the data structures needed to simu-
late the processor’s state, some useful tables and a
set of support routines. It can be ported to sev-
eral hardware and software platforms but it is not
functional by itself.

GUI layer. This layer invokes the kernel modules
needed to perform a user’s request. A GUI can
be built for every operating environment the ker-
nel is ported to. A first release of SPARCSim was
developed as an application for the NeXTSTEP
object-oriented operating environment running on
a Pentium II-based personal computer. The ker-
nel along with a command line-oriented interface
were also implemented in a SunUltra-10 worksta-
tion running the Solaris operating environment.

Message passing or procedure
calls

Objects defined by AppKit

Main
memory
interface

Register
file

interface

Program
instructions

interface

Statistic
information

interface

I/O system

KERNEL LAYERGRAPHICAL USER INTERFACE LAYER

Main memory
manipulation

routines
- load
- store

Register file
manipulation

routines
- read
- write

Program
instructions

manipulation
routines

- assemble
- disassemble
- execution

SUPPORT
ROUTINES

TABLES AND
DATA

STRUCTURES

CONTROLLER
OBJECT

Figure 6: Layer Organization of SPARCSim

SPARCSim is not a complete machine simulator
yet. It does not provide simulation models for TLB,
cache memories, virtual memory management or in-
put/output devices. As a consequence SPARCSim
can run neither an operating system nor an operating
system-intensive workload, but it can run a lot of inter-
esting user programs. We plan to extend the simulator,
in a near future, to support complete machine simula-
tion.

Since SPARCSim does not support virtual memory
management all of the addresses referred to by pro-
grams are effective addresses. Main physical memory is
simulated simply by allocating a long array of charac-
ters. Register file is simulated by a circular array of 32
bit-long integers, special care is taken when a read or
write operation is performed because the register file is
organized as a set of overlapped register windows.

SPARCSim’s current interpretation scheme is based
on a fetch-decode-execute loop which reads an instruc-
tion from the simulated memory, checks the kind and
the opcode of the instruction by using a case statement,
looks for a pointer to the appropriate service routine in
an internal table and then calls this service routine to
execute the instruction. Each service routine simulates
execution, modifies program counters and then returns
to the main loop. The main loop along with the case
statement, the search loop and the call/return overhead
slowdown the overall execution of a program. This situ-
ation motivates us to modify the interpretation process
to improve simulation performance.

According to the new scheme SPARCSim allocates
an array of pointers to an instruction simulation ser-
vice routine. The first pointer of this array is associ-
ated to the first four bytes of main memory, the sec-
ond pointer is associated to the next four bytes and so
on. SPARCSim, and the other simulators discussed,

take advantage of the fact that several RISC proces-
sors handle 4 bytes-long instructions (when all of the
instructions have the same length they can be fetched
by a single read, they can be easily decoded by hard-
ware or simulators and program counters are always
incremented by a fixed value), thus for each instruc-
tion in main memory there is a service routine pointer.
The simulator allows the user to write a byte, a half-
word (2 bytes) or a word (4 bytes) on main memory,
so does an store instruction. When this happens the
simulator calls the write memory procedure which cal-
culates the effective address of the word the modified
characters belong to and fetches it. If this word con-
tains a valid binary instruction then the write memory
procedure looks for, in an internal table, the pointer
to the appropriate service routine and places it on the
pointer array element corresponding to the word just
fetched. When the fetched word does not correspond to
a valid instruction the write memory procedure places
a pointer to an invalid instruction service routine. This
service routine modifies the program counters so that
the next instruction to be executed, i.e. this service
routine simulates a no-operation instruction. Addition-
ally, the invalid instruction service routine can incre-
ment an invalid instruction counter and store the ad-
dress of the invalid word for future references. Figure 7
depicts some binary instructions stored in a 4 MB-long
simulated main memory and their associated pointers
to the corresponding services routines. As we can see,
there is a one to one mapping between valid instructions
and pointers to simulation service routines and between
invalid instructions and invalid instruction service rou-
tines.

This approach transfers the fetch and decode stages
from the interpretation loop to the procedure devoted
to write data on main memory. Thus, to run a program
from an initial to a final address the main interpretation
loop simply fetches each pointer from the array, start-
ing at the position given by the initial address divided
by four and ending at the position given by the final
address divided by four. A service routine is indirectly
called when the corresponding pointer has been fetched
and it transfers control back to the main loop when its
execution has finished. The new approach resembles
the scheme used by g88 to cache decoded instructions
in a memory space attached to each simulated physical
memory page.

7 DETAILS AND PERFORMANCE
COMMENTS

In this section we mention some final interesting issues
about the systems just discussed. They concern imple-

0x00000000

0x00000004

0x00000008

0x0000000C

0x003FFFFC

0x003FFFF8

0x003FFFF4

.

.

.

.

.

.

.

.

.

EE 06 00 15

10 BF FF F1

81 E0 20 00

81 A8 0A 21

7F FF FF DC

A7 DA 56 70

05 FF FF 60

Simulated main
memory

Array of
pointers

to
service

routines

Service routine
for save

Service routine
for fcmps

Service routine
for ba

Service routine
for call

Service routine
for ld

Assembly language
instruction

Binary instruction

ld [%i0+%l5],%l7 0xEE060015

save %g0,0,%g0 0x81E02000

fcmps %f0,%f1 0x81A80A21

ba -15 0x10BFFFF1

call -36 0x7FFFFFDC

Address

0x00000000

0x00000004

0x0000000C

0x003FFFF8

0x003FFFFC

Service routine
for invalid
instruction

Service routine
for invalid
instruction

Figure 7: Binary Instructions and Their Pointers to
Service Routines

mentation details and performance measurements.
Developers report that when run on a 2.5-MIPS

MC68020-based workstation g88 simulator executes ap-
proximately 130000 MC88000 instructions per second
(Bedichek 1990), this tells us that the average number
of host instructions per service routine is 19 or 20. It is
also reported the way threaded code was implemented
on a C compiler for MC68020 instruction set and the
modifications to the assembly code required to produce
a correct program.

A comparison between native execution and simu-
lated execution of SPECint95 suite component pro-
grams shows a lost of performance ranging from 39 to
75. This performance lost can slow down considerably a
program execution, as an example SimICS executes the
vortex program of SPECint95 in 16.35 minutes while
the native hardware executes it in 13 seconds (Mag-
nusson et al. 1998). The number of host instructions
per service routine ranges from 10 to 30, this because
SPARC architecture has its own features that make it
a little bit more time-consuming to simulate.

It is possible to improve Embra’s simulation perfor-
mance with a technique called chaining (Witchel and
Rosenblum 1996). When two or more translated blocks
are always executed one after another at run time they
can be linked together by replacing each jump to the
dispatch loop instruction with a jump to the next block.
This reduces the overhead caused by the execution of
the dispatch loop.

Kernel portability was a major goal in the design
process of SPARCSim, its interpretation scheme differs
from threaded code due to the fact that implementing

threaded code is not easy for most of the C compilers.
We could have taken advantage of the ability of GCC
compiler to get the addresses of the labels defined by a
C program, store those addresses into a table and use
them along with the goto statement as in the following
piece of code.

main(void)

{

void *labels[3] = { && a, && b, && c };

int A, B, C;

A = 100;

B = 30;

C = 20;

goto *labels[2];

a: A = 3;

b: B = A + 10;

c: C = A * B + 100;

/* At this point A = 100, B = 30 and C = 3100 */

printf("A = %d\tB = \%d\tC = %d\n", A, B, C);

}

The reader should realize the great benefits this
scheme provides to the implementation of threaded
code. A threaded-coded implementation of SPARC-
Sim’s interpreter can be developed taking into account
that GCC is available for many platforms, unfortu-
nately its ability is not present in all of the C language
compilers and thus portability is not guaranteed at all.
On the other hand we could patch assembly code gen-
erated by the C compiler to implement threaded code,
however this approach has two main disadvantages, it
is both time consuming and not portable. SPARC-
Sim simulates SPARC architecture properly but at a
cost, there are special procedures to perform register file
operations, main memory accesses and arithmetic pro-
cessing. This special procedures are called by the ser-
vice routines that need them, thus introducing a certain
overhead to the simulation process. Despite this situa-
tion, current SPARCSim performance is acceptable for
its educational purposes (Balderas and Garćıa 1999).

Intermediate instructions for g88 and SimICS require
memory to be allocated to hold both a pointer and pa-
rameters. This is advantageous because service routines
would not need to process binary instructions to get
operands. On the other hand, every SPARCSim ser-
vice routine does need to extract operands from binary
instructions, this approach saves memory but intro-
duces an small overhead to instruction simulation. As a
consequence a memory space-execution speed trade-off
arises.

8 CONCLUSIONS

We have discussed interpretive and non-interpretive
simulation techniques in enough detail to motivate the
reader to research by himself about this such an inter-
esting topic. Our main focus was on the most pow-
erful simulators ever developed, their advantages and
their weaknesses. An interesting point is worth con-
sidering here, some simulator systems, such as SimICS
and SimOS, have been built on top of the same platform
they model and some other, such as g88 and SPARC-
Sim, have not. This situation allows the user realize
the great benefits any simulation environment may pro-
vide him with, it does not matter his particular condi-
tion. We mentioned the great influence threaded code
has had in the development of those systems. We also
talked a little bit about performance. As a conclusion of
those comments we can say that an efficient dispatch-
ing technique, such as threaded code, along with the
shortest service routines possible could produce better
and faster interpreters for instruction set simulation.

Computer architecture simulation, at any of its levels,
has received great interest from many people for many
years. The list of projects is very large and includes
simulators for RISC and CISC workstations, such as
the simulators described above, and even simulators for
video games consoles are nowadays available. The goal
of this document was to introduce the reader to some
of the methods employed to build these kind of tools.

ACKNOWLEDGEMENTS

Thanks to the referees for their comments, they were
useful to locate the points in the document where our
ideas were not clearly expressed, these people played a
central role to improve this document. Thanks, also, to
Maŕıa Auxilio Osorio Lama from FCC-UAP for letting
us to work, play, e-mail and develop an SPARCSim
prototype in Optima, her SunUltra-10 workstation.

REFERENCES

Balderas, T., and H. Garćıa. 1999. Desarrollo de un
sistema simulador de la arquitectura SPARC sobre el
sistema operativo Mach y el ambiente NeXTSTEP. In
Memorias del Segundo Encuentro Nacional de Com-
putación, ENC’99.

Bedichek, R. C. 1990. Some efficient architecture sim-
ulation techniques. In Proceedings of Winter ’90
USENIX Conference.

Bell, J. R. 1973. Threaded code. Communications of
the ACM 16(6):370–372.

Gries, D. 1971. Compiler construction for digital com-
puters. New York: John Wiley & Sons Inc.

Heidelberger, P., and S. S. Lavenberg. 1984. Com-
puter performance evaluation methodology. In Per-
formance evaluation for computers architects, ed.
C.M. Krishna, 20–45. California: IEEE Computer
Society Press.

Herrod, S. A. 1998. Using complete machine simulation
to understand computer systems behavior. Ph.D.
thesis, Department of Computer Science, Stanford
University, Stanford, California.

Magnusson, P. 1997. Efficient instruction cache simu-
lation and execution profiling with a threaded-code
interpreter. In Proceedings of the 1997 Winter Sim-
ulation Conference.

Magnusson, P., and J. Montelius. 1997. Performance
debugging and tuning using an instruction-set simu-
lator. Technical Report T97:02, Swedish Institute of
Computer Science, Kista, SWEDEN.

Magnusson, P., F. Dahlgren, H. Grahn, M. Karlsson,
F. Larsson, F. Lundholm, A. Moestedt, J. Nilsson,
P. Stenström, and B. Werner. 1998. SimICS/sun4m:
a virtual workstation. In USENIX Annual Technical
Conference.

SPARC International, Inc. 1992. The SPARC architec-
ture manual, version 8. New Jersey: Prentice-Hall,
Inc.

Tabak, D. 1990. RISC systems. New York: John Wiley
& Sons Inc.

Witchel, E., and M. Rosenblum. 1996. Embra: fast
and flexible machine simulation. In Proceedings of
the 1996 ACM SIGMETRICS Conference.

AUTHOR BIOGRAPHIES

TOMÁS BALDERAS CONTRERAS received his
B.S. degree in Computer Science from Universidad
Autónoma de Puebla. His current research interests
include computer architectures, operating systems, pro-
gramming languages and instruction set simulation.
His e-mail address is balderas@optima.cs.buap.mx.

HUGO GARCÍA MONROY is a researcher in the
Instituto de Ciencias and a professor in the Facultad de
Ciencias de la Computación at Universidad Autónoma
de Puebla. He received his B.S. degree in Computer
Science from the same institution. His current re-
search interests include operating systems, instruction
set and operating systems simulation, distributed com-
puting and computer architectures. His e-mail address
is gmonroy@servidor.unam.mx.

