Diseño y Análisis de Algoritmos Lógica

Dr. Jesús Ariel Carrasco Ochoa ariel@inaoep.mx
Oficina 8311

Contenido

- Lógica de proposiciones
- Operaciones entre proposiciones
- Lógica de predicados
- Modelos de razonamiento

Proposición

Un enunciado al que se le puede asignar un valor de verdad Falso o Verdadero

Ejemplos:

- Zacatlán está en Tlaxcala
- Brasil gano el mundial de futbol México 70

No son proposiciones

- Hola
- ¿Cómo te llamas?

Operaciones entre proposiciones

Dadas dos proposiciones p y q

Negación: $\neg p$

Es una proposición que toma el valor de verdad opuesto al de *p*

Disyunción: $p \lor q$

Es una proposición que es falsa si p y q son falsas y es verdadera en otro caso

Conjunción: $p \land q$

Es una proposición que es verdadera si p y q son verdaderas y es falsa en otro caso

Operaciones entre proposiciones

Dadas dos proposiciones p y q

Implicación: $p \rightarrow q$

Es una proposición que es falsa si *p es verdadera* y *q* es falsa y es verdadera en otro caso

Equivalencia: $p \leftrightarrow q$

Es una proposición que es verdadera si p y q tienen el mismo valor de verdad y es falsa en otro caso

Tablas de verdad

Es una tabla que indica los valores de verdad que toma una proposición dependiendo de los valores de verdad de sus componentes

p	q	$\neg p$	$\neg q$	$p \lor q$	$p \wedge q$	$p \rightarrow q$	$p \leftrightarrow q$
V	V	F	F	V	V	V	V
V	F	F	V	V	F	F	F
F	V	V	F	V	F	V	F
F	F	V	V	F	F	V	V

Equivalencia de proposiciones

Dos proposiciones p y q son equivalentes si siempre tiene el mismo valor de verdad y se denota como $p \Leftrightarrow q$

Una proposición que siempre es verdadera se denomina Tautología (T_0)

Una proposición que siempre es falsa se denomina Contradicción (F_0)

Nota:

Si $p \leftrightarrow q$ es una tautología entonces $p \Leftrightarrow q$

Propiedades de la lógica proposicional

Sean p, q, r tres proposiciones

$$\neg(\neg p) \Leftrightarrow p$$

$$\neg(p \lor q) \Leftrightarrow \neg p \land \neg q$$

$$\neg(p \land q) \Leftrightarrow \neg p \lor \neg q$$

$$p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$$

$$p \land (q \land r) \Leftrightarrow (p \land q) \land r$$

$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$

$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$

Propiedades de la lógica proposicional

Sean p, q, r tres proposiciones

$$p \lor p \Leftrightarrow p$$

$$p \land p \Leftrightarrow p$$

$$p \lor F_0 \Leftrightarrow p$$

$$p \land T_0 \Leftrightarrow p$$

$$p \land T_0 \Leftrightarrow p$$

$$p \lor \neg p \Leftrightarrow T_0$$

$$p \land \neg p \Leftrightarrow F_0$$

$$p \lor (p \land q) \Leftrightarrow p$$

$$p \land (p \lor q) \Leftrightarrow p$$

Dual de una proposición

Si p es una proposición que sólo incluyes los operadores $\neg \Lambda$ V entonces el dual de p denotado por p^d es la proposición que se obtiene sustituyendo cada Λ por V, cada V por Λ , cada T_0 por F_0 y cada F_0 por T_0

Ejemplo:

El dual de
$$(\neg p \land q) \lor (p \lor T_0)$$

Es $(\neg p \lor q) \land (p \land F_0)$

Principio de Dualidad

Si p q son dos proposiciones p $p \Leftrightarrow q$ entonces $p^d \Leftrightarrow q^d$

Reglas de Inferencia (modelos de razonamiento)

Modus Ponens

$$\frac{p \longrightarrow q}{p}$$

Modus Tollens

$$\frac{p \longrightarrow q}{\neg q}$$

Reglas de Inferencia (modelos de razonamiento)

Regla de conjunción

$$\frac{p}{q}$$

$$p \wedge q$$

Silogismo disyuntivo

$$\frac{p \vee q}{\neg p}$$

Reglas de Inferencia (modelos de razonamiento)

Silogismo

$$\frac{p \to q}{q \to r}$$

$$\frac{p \to r}{p \to r}$$

Contradicción

$$\frac{\neg p \to F_0}{p}$$

Predicados

Un propiedad que se aplica sobre una lista de argumentos (variables)

Ejemplo:

- x es un gato
 - o argumento x
 - propiedad "es una gato"

Predicados

Comúnmente se usa una notación compacta estilo función

Ejemplo:

• Gato(x) = x es un gato

Un predicado puede tener más de una variable

Ejemplo:

• Padre(x,y) = x es padre de y

Predicados

Al instanciar todas las variable de un predicado se obtiene una proposición

Ejemplo:

- Gato(Tomás) = Tomás es un gato
- Padre(Pedro,Juan) = Pedro es padre de Juan

El conjunto de valores que pueden tomar las variable se le llama universo del discurso

Todo predicado está asociado a un universo del discurso

Operaciones entre predicados

Dados dos predicados P(x) y Q(y)

Negación: $\neg P(x)$

Disyunción: $P(x) \lor Q(y)$

Conjunción: $P(x) \wedge Q(y)$

Implicación: $P(x) \rightarrow Q(y)$

Equivalencia: $P(x) \leftrightarrow Q(y)$

El resultado de estas operaciones es otro predicado

Cuantificadores

Dado un predicado P(x) un cuantificador es una expresión que indica cuantos elementos del universo del discurso de la variable x satisfacen al predicado

Cuantificador Universal: $(\forall x)P(x)$

Indica que todos los elementos del universo del discurso de x hacen verdadero a P(x)

Cuantificador Existencial: $(\exists x)P(x)$

Indica que al menos un elemento del universo del discurso de x hace verdadero a P(x)

Cuantificadores

En un predicado cada variable puede estar cuantificada de manera diferente y el orden de los cuantificadores es importante

Ejemplo:

 $(\forall x)(\exists y)P(x,y)$ indica que para todos los elementos del universo del discurso de x existe un elemento del universo del discurso de y tal que P(x,y) es verdadero

 $(\exists y)(\forall x)P(x,y)$ indica que existe un elemento del universo del discurso de y tal que para todos los elementos del universo del discurso de x, P(x,y) es verdadero

Cuantificadores

Considere el predicado $P(x,y) = x^2 - y^2 = 0$ si el universo del discurso de x y y son los números reales \mathbb{R} entonces:

 $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x^2 - y^2 = 0)$ indica que para todo número real x existe un número real y tal que se satisface la ecuación $x^2 - y^2 = 0$, lo cual es verdadero

 $(\exists y \in \mathbb{R})(\forall x \in \mathbb{R})(x^2 - y^2 = 0)$ indica que existe un número real y tal que para todo número real x se satisface la ecuación $x^2 - y^2 = 0$, lo cual es falso

Negación de cuantificadores

Cuantificador Universal:

$$\neg(\forall x)P(x) \Longleftrightarrow (\exists x)(\neg P(x))$$

La negación de que para todos los elementos del universo del discurso de x, P(x) sea verdadero es equivalente a que exista un elemento del universo del discurso de x para el cual la negación de P(x) es verdadera

Negación de cuantificadores

Cuantificador Existencial:

$$\neg(\exists x)P(x) \Longleftrightarrow (\forall x)(\neg P(x))$$

La negación de que exista un elemento del universo del discurso de x para el cual P(x) sea verdadero es equivalente a que para todos los elementos del universo del discurso de x la negación de P(x) es verdadera

Negación de cuantificadores

En general las negaciones se distribuyen hasta que afecten solamente a predicados no cuantificados sin operadores adicionales

Ejemplo:

$$\neg(\forall x)[(\exists y)[(\forall z)(P(x,y) \land Q(y,z))]]$$

$$\Leftrightarrow (\exists x)\neg[(\exists y)[(\forall z)(P(x,y) \land Q(y,z))]]$$

$$\Leftrightarrow (\exists x)(\forall y)\neg[(\forall z)(P(x,y) \land Q(y,z))]$$

$$\Leftrightarrow (\exists x)(\forall y)(\exists z)\neg(P(x,y) \land Q(y,z))$$

$$\Leftrightarrow (\exists x)(\forall y)(\exists z)(\neg P(x,y) \lor \neg Q(y,z))$$

$$\frac{(\forall x)[P(x) \to Q(x)]}{(\forall x)P(x)}$$

$$\frac{(\forall x)Q(x)}{(\forall x)Q(x)}$$

$$\frac{(\forall x)[P(x) \longrightarrow Q(x)]}{(\forall x) \neg Q(x)}$$
$$\frac{(\forall x) \neg P(x)}{(\forall x) \neg P(x)}$$

$$\frac{(\forall x)[P(x) \to Q(x)]}{P(a)}$$

$$\frac{Q(a)}{Q(a)}$$

$$\frac{(\forall x)[P(x) \longrightarrow Q(x)]}{\neg Q(a)}$$
$$\frac{\neg P(a)}{\neg P(a)}$$

$$\frac{(\forall x)P(x)}{(\forall x)Q(x)}$$
$$\frac{(\forall x)[P(x) \land Q(x)]}{(\forall x)[P(x) \land Q(x)]}$$

$$\frac{(\forall x)[P(x) \longrightarrow Q(x)]}{(\forall x)[Q(x) \longrightarrow R(x)]}$$
$$\frac{(\forall x)[P(x) \longrightarrow R(x)]}{(\forall x)[P(x) \longrightarrow R(x)]}$$

$$\frac{(\forall x)[P(x) \lor Q(x)]}{(\forall x) \neg P(x)}$$
$$\frac{(\forall x)Q(x)}{(\forall x)Q(x)}$$

$$\frac{(\forall x)[P(x) \lor Q(x)]}{\neg P(a)}$$

$$Q(a)$$

$$\frac{(\forall x)P(x)}{P(a)}$$

$$\frac{P(a)}{(\exists x)P(x)}$$

$$\frac{[(\exists x) \neg P(x)] \to F_0}{(\forall x)P(x)}$$

$$\frac{P(1)}{(\forall n \in \mathbb{N})[P(n) \longrightarrow P(n+1)]}$$
$$(\forall n \in \mathbb{N})P(n)$$

Diseño y Análisis de Algoritmos Lógica

Dr. Jesús Ariel Carrasco Ochoa ariel@inaoep.mx
Oficina 8311