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a b s t r a c t

Learning from imbalanced data, where the number of observations in one class is significantly rarer than in

other classes, has gained considerable attention in the data mining community. Most existing literature fo-

cuses on binary imbalanced case while multi-class imbalanced learning is barely mentioned. What’s more,

most proposed algorithms treated all imbalanced data consistently and aimed to handle all imbalanced data

with a versatile algorithm. In fact, the imbalanced data varies in their imbalanced ratio, dimension and the

number of classes, the performances of classifiers for learning from different types of datasets are different.

In this paper we propose an adaptive multiple classifier system named of AMCS to cope with multi-class

imbalanced learning, which makes a distinction among different kinds of imbalanced data. The AMCS in-

cludes three components, which are, feature selection, resampling and ensemble learning. Each component

of AMCS is selected discriminatively for different types of imbalanced data. We consider two feature selection

methods, three resampling mechanisms, five base classifiers and five ensemble rules to construct a selection

pool, the adapting criterion of choosing each component from the selection pool to frame AMCS is analyzed

through empirical study. In order to verify the effectiveness of AMCS, we compare AMCS with several state-

of-the-art algorithms, the results show that AMCS can outperform or be comparable with the others. At last,

AMCS is applied in oil-bearing reservoir recognition. The results indicate that AMCS makes no mistake in

recognizing characters of layers for oilsk81-oilsk85 well logging data which is collected in Jianghan oilfield of

China.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Classification is one of the crucial issues in the field of machine

learning. Classical classifiers such as Decision Tree, Naïve Bayes, Ar-

tificial Neural Network (ANN), K-Nearest Neighbor (KNN) and Sup-

port Vector Machine (SVM) operate under the assumption that data

sample contains a faithful representation of the population of in-

terest, which means a balanced sample distribution is required [1].

When facing skewed class distribution, the traditional classifiers of-

ten come up to a disappointed performance [2–4]. Imbalanced data

refers to such a dataset in which one or some of the classes contain

much more samples in comparison to the others. The most preva-

lent class is called the majority class, while the rarest class is called
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inority class. Imbalanced situation often occurs in real word appli-

ations like fraud detection, disease diagnoses, financial risk analysis,

tc. [5,6]. When addressing imbalanced data problems, people tend to

are more about the minority class, for the reason that the cost of mis-

lassifying minority samples are much higher than the others [2,6,7].

aking cancer diagnoses for example, the number of cancer patients

s much less than healthy people, if cancer patients are diagnosed as

ealthy people, they will exceed the best therapy time, which may

ause a serious medical incidence [6]. So does oil-bearing recognition

hat is studied in this paper. Oil-bearing recognition refers to recog-

ize the characters of each layer in the well [8,9], the class distribu-

ion of logging data is skewed and cost of misclassifying oil layer is

uch higher than other misclassification situations. Therefore, oil-

earing recognition is a typical imbalanced data classification prob-

em.

Imbalanced learning is a well-studied problem, dozens of sam-

ling methods [10,11], cost sensitive algorithms [17,18], one-class

lassifiers [53,54,57] have been proposed in literature. More re-

ently, ensemble learning becomes a popular solution of addressing

http://dx.doi.org/10.1016/j.knosys.2015.11.013
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mbalanced data. A common way for constructing ensemble learn-

ng model for imbalanced data is based on sampling methods, that

s, employing sampling methods as a pre-process to generate sev-

ral balanced datasets and training different base classifiers inde-

endently. The main idea of constructing ensemble learning model is

o learn from data by multiple classifiers, thus a designed ensemble

earning model can also be viewed as Multiple Classifier System(MCS)

47].Since ensemble learning has been proved to be the most efficient

ay to tackle imbalanced learning problems [1,15,16,47,12], we aim to

ocus on constructing ensemble model in this paper.

Though various MCSs have been proposed, most of them model

ifferent types of data consistently and train a universal ensemble

lassifier to address all imbalanced data. In fact, using a specific en-

emble classifier to tackle all kinds of imbalanced data is inefficient.

he learning quality of a model can be affected by the choices of sam-

ling methods, base classifiers, and final ensemble rules. For exam-

le, when the samples of minority class are extremely rare (saying

e just have 1 or 2 minority samples), under-sampling methods may

ot be valid since we need to abandon tremendous number of ma-

ority samples to construct a balanced training set. The same concern

hould be highlighted when deciding which base classifier to use. In

any previous work, the authors tested several base classifiers such

s SVM, Naïve Bayes, CART in their model, but just the overall perfor-

ances of different classifiers have been pointed out [15,25,40,47].

owever, performances of different classifiers may vary in character-

stics of datasets. For example, CART may perform well in datasets

ith high Imbalance Ratio(IR), but come up to a disappointed perfor-

ance when classifying low dimension datasets. More specifically, IR,

he number of features, the number of classes are all crucial factors

hat have to be considered when applying base classifier into the en-

emble model. Therefore, in this paper, we divide imbalanced data

nto eight types based on their IR, dimension (the number of fea-

ures) and the number of classes. We attempt to conduct an adaptive

nsemble algorithm that is able to learn from different types of im-

alanced data by different yet most efficiency algorithms constructed

rom a union ensemble paradigm.

While most MCSs take sampling methods as pre-processing, few

iterature has considered another common pre-processing technique,

hat is, feature selection. Feature selection is often separated as an-

ther issue for imbalanced learning, as is discussed [5,49] and [50].

hese studies focus on developing novel feature selection algorithms,

hile the contribution of feature selection for imbalanced data classi-

cation is not clearly discussed. It is obvious that removing irrelevant

nd redundant features reduces the noise in the training space and

ecrease the time complexity [20,21]. For imbalanced case, samples

f minority class are more easily to be ignored as noise, if we remove

he irrelevant features in the feature space, the risk of treating minor-

ty samples as noise may also be reduced. [47,14] employed feature

election algorithm as a pre-processing procedure before carrying out

lassification, which gained good results. This motivates us to employ

oth feature selection and sampling method as pre-processes before

raining MCS.

Multi-class classification has been pointed out as a hard task

or classification [40,19], due to that multi-class classification might

chieve a lower performance than binary classification as the bound-

ries among the classes may overlap. This issue may become more

omplex when facing imbalanced data. In [40] the authors studied

wo ways of extending binary classification algorithms into multi-

lass case: One-versus-one approach (OVO) and One-versus-all ap-

roach (OVA). The conclusion, as they suggested, is OVO approaches

ain better accuracy than OVA approaches. However, when consid-

ring computational complexity, OVO approaches may sacrifice too

uch on time cost when the number of classes increases. In their

mpirical study, OVA approaches also outperformed OVO approaches

n some cases, which implies that there is no dogmatic approach

hat suit for all kinds of imbalanced data. It should be noted that the
 s
raining of the OVA approach is inherently imbalanced, as the set of

ll data points from all other classes is likely to outnumber the repre-

entatives of the target class, for each sub-classifier [19]. Taking this

nto account, OVA approach may not suitable for high IR datasets.

he third option of addressing multi-class imbalanced data is stan-

ard ad-hoc learning algorithms (algorithms that are natural for ad-

ressing multiple class learning problems), such as KNN, Naïve Bayes

ased ensemble algorithms. In our study, we specifically focus on

ulti-class imbalanced data. In order to build adaptive ensemble al-

orithm for different kinds of imbalanced data, OVO, OVA approaches

nd ad-hoc approaches will all be considered and we expect to find

riteria to select the best approach for each type of data.

We argue that the above mentioned concerns are crucial is-

ues that need to be clarified. Therefore, in our study, we attempt

o build an adaptive ensemble learning algorithm for multi-class

mbalanced data, which is called Adaptive Multiple Classifier Sys-

em(AMCS). For adaptive learning, Three widely-accepted ensem-

le frameworks are considered, that are, Adaboost.M1 [46], Under-

ampling Balanced Ensemble(USBE) [15,47] and Over-Sampling Bal-

nced Ensemble(OSBE) [16]. For the later two frameworks, five dif-

erent ensemble rules (such as Max, Min, Product etc. shown in Table

) to fuse sub-classifiers are optional. Moreover, as feature selection

ight avail to reduce the risk of treating minority samples as noise,

n all the ensemble frameworks feature selection is employed as a

re-processing, for which both wrapper and filter feature selection

echniques are considered. In empirical study, we first test the three

nsemble frameworks with different ensemble rules and base clas-

ifiers, then conclude the adaptive criteria for different types of im-

alanced data. Finally, we apply AMCS to oil-bearing reservoir recog-

ition adaptively base on the characteristic of Jianghan well-logging

ata. Four significant contributions of our study are as follows:

(1) We present a comprehensive categorization of several recent

works related to imbalanced data classification and highlight

the need for an adaptive algorithm to solve different kinds of

imbalanced data. To do so, we categorize imbalanced data into

eight types based on their IR, dimension and the number of

classes. For each type of data, the order of choosing feature

selection algorithm, ensemble framework, base classifier and

ensemble rule can be viewed as a route of framing a MCS, our

algorithm can choose the best route for different types of data.

(2) The proposed ensemble method AMCS employs both feature

selection and sampling method as pre-processes, in which fea-

ture selection may be an option when there is no irrelevant or

redundant feature exits.

(3) We focus only on multi-class imbalanced data problems,

which may be ignored by many previous studies. Since most

classical performance metrics such as AUC are binary metrics,

we enable a novel multi-class AUC metric called AUCarea to

evaluate models by setting probabilistic outputs for both base

classifiers and ensemble classifiers.

(4) The goodness of this novel adaptive methodology and the cri-

teria of choosing routes to form AMCS are studied by means

of thorough experimental analyses. Each node of the route is

selected in a selection pool. The selection pool contains two

feature selection methods, three ensemble frameworks, five

base classifiers and five ensemble rules. In empirical study, all

the possible routes for eight types of data are tested, the best

routes for each type of data is selected as AMCS. The superior

of AMCS compared with several existing methods is tested us-

ing various benchmarks and a real-world case of oil reservoir

recognition.

The remainder of this paper is organized as follows. Literature

elated to imbalanced data are categorized in Section 2. The main

ramework of AMCS is described in Section 3, where the two feature

election methods, three ensemble frameworks and five ensemble
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rules which we use to form AMCS are introduced. Section 4 presents

the classical performance measures and the new metric AUCarea, in

which the superiority of AUCarea for measuring the performance of

algorithms for multi-class classification task is clarified. In the empir-

ical study of Section 5, we first test all possible choices of constructing

AMCS for different types of imbalanced data and discuss the adaptive

criteria, then the AMCS is compared with several state-of-the-art al-

gorithms via various metrics including AUCarea. In Section 6 we ap-

ply AMCS to oil-bearing reservoir recognition. At last, conclusions are

placed in Section 7.

2. Related work

Methods addressing the class imbalance problems can be catego-

rized into three groups: data-level methods, algorithmic-level meth-

ods and ensemble methods.

2.1. Data level approaches

Data level approaches focus on re-sizing the training datasets in

order to balance all kinds of classes. Two main ideas of re-sizing are

over-sampling and under-sampling. Over-sampling methods elimi-

nate class imbalance by creating new minority class samples while

under-sampling methods re-balance imbalanced class distribution

by reducing the number of majority class samples. Dozens of over-

sampling and under-sampling algorithms have been proposed pre-

viously. The most famous over-sampling algorithm is called SMOTE

proposed by Chawla [10]. More recently, other under-sampling meth-

ods based on SMOTE have been discussed, such as bSMOTE [22] and

V-synth [23]. For under-sampling methods, Random Under-Sampling

(RUS) has been utilized in many previous work [1,25,12].Dehmeshki

proposed a data filtering technology [11] to categorize the major-

ity samples into safe region, borderline region and noise region, just

samples from safe region are used as training samples. [26] presented

a novel under-sampling method based on ant colony optimization al-

gorithm.

2.2. Algorithmic level approaches

Algorithmic level approaches focus on modifying existing classi-

fication algorithms to strengthen their ability of learning from mi-

nority class [8,9]. Most of algorithms in this family are based on SVM

and Neural Network. Ando [36] proposed a straightforward yet ef-

fective class-wise weighting scheme called SNN based on k-Nearest

neighbor density model to cope with class imbalance issue. The main

concern of SNN is to employ an adjusted k-radius to compensate the

sparseness of the minority class. In [38] a wavelet support vector ma-

chine (WSVM) is presented. Concerning imbalanced scenarios, a filter

feature selection technique is performed to remove the redundant

and irrelevant information. Datta and Das [19] emphasized that the

classical SVM moves the separating hyper-plane towards the minor-

ity class as majority class is more likely to dominate the region of

overlap. By this motivation, they proposed a Near-Bayesian Support

Vector Machine (NBSVM) that utilizes Bayesian posterior probabili-

ties to achieve the boundary shift as well as the unequal regulariza-

tion costs. Pérez-Godoy et al. [44] compared the performance of three

types of modified RBF Networks(RBFN) in imbalanced data classifica-

tion, that are, clustering based RBFN, incremental RBFN, evolutionary

based RBFN, among which both Least Mean Square and the Singular

Value Decomposition are considered in weights training phase.

Cost sensitive algorithms attempt to increase the learning ability

of classifiers by assigning larger misclassifying cost for minority class

samples. López et al. [17] proposed an algorithm to deal with large-

scale imbalanced data using a fuzzy rule and cost-sensitive learn-

ing techniques. Krawczyk et al. [18] constructed a fusion algorithm

based on cost-sensitive decision tree ensembles, in which the choice
f cost matrix is estimated by ROC analysis. Nguyen et al. [55] intro-

uced two empirical cost-sensitive algorithms, one combined sam-

ling, cost-sensitive and SVM and the other treated the cost ratio as a

yper-parameter which needs to be optimized before training the fi-

al model. Another concept of learning from imbalanced data is treat-

ng minority samples as outliers and analogizing technologies of de-

ecting noises and outliers to model minority class, such as one-class

lassifier [53,54].

.3. Ensemble methods

Classifiers ensemble is regarded as a popular technology to tackle

mbalanced learning, mainly due to their ability to significantly im-

rove the performance of a single classifier [48]. Ensemble methods

an be viewed as building multiple classifier system that combines

variety of base classifiers, for each base classifier data-level ap-

roaches are often employed as a pre-processing. The most widely

sed MCS is boosting algorithm proposed by Schapire [13], which

as been applied in many well-known ensemble algorithms such as

MOTEBoost [16], RUSBoost [51], EasyEnsemble [25], EUSboost [1].

63] denoted that a typical MCS generally contain 3 processes, that

re, resampling, ensemble building, and fusion rule. Sun et al. [15]

roposed a novel ensemble strategy for imbalanced data classifica-

ion, this strategy converts an imbalanced dataset into multiple bal-

nced subset, for each subset a base classifier is trained, similar strat-

gy can be found in [12]. Krawczyk et al. [47] created an ensemble al-

orithm called PUSBE that contains sampling, pruning and boosting

echnologies. [52] first divided the data into non-overlapped region,

orderline region and overlapped region and then trained different

egions by different classifiers. The imbalance situation of different

mount of data at the overlapped region and non-overlapped region

s concerned. Zięba, and Tomczak [56] proposed a boosted SVM, in

hich an active strategy of selecting the borderline examples to train

ach SVM is designed. In this way, each training set used to construct

he basic classifier is more balanced and noiseless.

.4. Other issues related to class-imbalance learning

More recently, other significant problems related to data skewed

haracteristics have been taken into account, which include valida-

ion methods, performance metrics and data shift problems. Wallace,

nd Dahabreh [58] proposed a new metric named of stratified Brier

core to capture class-specific calibration in imbalanced scenarios.

he difference between the observed label and the estimated proba-

ility is measured to eliminate the underestimate of the probabilities

or minority class instances. López et al. [59] focused on the prob-

em of dataset shift which is defined as the case where training and

esting data follow different distributions. A new validation technique

as studied in [59] to avoid dataset shift issue when using k-ford

ross-validation. The new validation approach first picks a random

nassigned example, then finds its k-nearest unassigned neighbors

f the same class and assigns each of those neighbors to a different

old, by this mean, it guarantees a consistent data distribution inside

ach fold. Song [64] introduced three strategies to select the operat-

ng point used for ROC, which is more suitable for evaluating imbal-

nced data. In their study, they tried to reveal the shifted-decision

alue by maximizing/minimizing a function of sensitivity and speci-

city in the ROC space. In [65] the rule based learning for imbalanced

ata was achieved by letting the experts annotate some of the “hard”

earning examples. In their study, a specific method is proposed for

dentifying the examples which should be explained by an expert.

hen, ABCN2 algorithm is used to induce a new set of rules.

Instead of proposing new methods, Ronaldo et al. [37] conducted

series of experiments to assess the performances of some proposed

reatment methods like SMOTE [10], ADASYN [38] and MetaCost [39]
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Algorithm 1

FiltEX algorithm.

1 Choose a real number x uniformly at random in the range 0 ≤ x < 1

2 Perform a binary search for the index j for which
∑ j−1

i=1
wi ≤ x <

∑ j
i=1

wi

3 Return the example (xi, yi)
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or imbalanced data. These treatment methods are all based on sam-

ling technologies and cost sensitive learning. In their research, they

efined a value called “performance loss” to figure out whether all

he learning models are equally affected by class imbalanced. Besides,

hey also defined a metric called “performance recovery” to evaluate

ow much of the performance losses caused by imbalanced distribu-

ion can be recovered by the treatment methods. The results showed

ot all the treatment methods are suit for all basic algorithms. For ex-

mple, SMOTE are considered as the most common sampling method

or imbalance data, but it seems to harm the performance of SVM and

aïve Bayes. The same study was presented in [28], though some en-

emble models are dominating over the others in an overall scenario,

hey vary in different kinds of datasets. These studies inspired us that

pecified algorithm may not be an eternal solution for imbalanced

earning, which implies an adaptive learning must be taken into ac-

ount in order to provide a better solution.

. AMCS: Adaptive multiple classifier system

Multiple classifier system, or ensemble classifier, has been certi-

ed to be more robust and effective compared with individual clas-

ifier. For building a MCS, one common method is to perform a data

istribution shift on training space, which can be accomplished by

esampling samples from training space to construct sub-training

et for each base classifier. Data sampling approaches attempt to al-

eviate the problem of class imbalance by either removing exam-

les from the majority class (under-sampling) or adding examples

o the minority class (over-sampling) [51]. Another resampling idea

s applied in Adaboost [24] called FiltEX. In [47], the authors listed

hree issues have to be considered when building a MCS, that are:

hoice of base classifiers, choice of ensemble rules and choice of

runing classifiers. In our study, we argue that the choice of fea-

ure space may also play a crucial role when building MCS for im-

alanced data. Taking all these considerations into account, we at-

empt to build an Adaptive Multiple Classifier System(AMCS) that is

ble to select the base classifier, resampling method, ensemble rule

nd feature selection method adaptively based on different character-

stic of imbalanced data. The AMCS is discussed in this section. First,

e introduce three well-used resampling based ensemble framework

n Section 3.1, namely Adaboost, Under-Sampling Balanced Ensem-

le(USBE) and Over-Sampling Balanced Ensemble(OSBE). After that,

e describe two feature selection algorithms we considered in this

aper in Section 3.2. The five ensemble rules are presented in Section

.3. At last, the AMCS is shown in Section 3.4.

.1. Three types of multiple classifier system

(1) Adaboost.M1

Boosting is regarded as the most common and effective

method in ensemble learning. The first applicable approach

of boosting is Adaboost proposed by Schapire and Freund

[24].The basic Adaboost is implemented for binary classifi-

cation problems, Adaboost works by sequentially applying a

weak classifier to train the reweighed training dataset (gener-

ated by a distribution D) and taking majority vote as the en-

semble rule to fuse all weak hypotheses. In each iteration, the

sample distribution D is updated according to the hypothe-

sis generated in each iteration. The goodness of Adaboost lies

in, samples that failed to be assigned to the correct class gain

higher weights, so that in the next iteration the classifier will

focus more on learning those failed classified samples.

To solve different kinds of classification problems, Ad-

aBoost.M1, AdaBoost.M2 [46], AdaBoost.MR, AdaBoost.MH

[45] have been proposed as the extensions of basic Adaboost

algorithm, in which AdaBoost.M1, AdaBoost.M2 are used to

solve multi-class with single-label problems, the later two are
used to solve multi-class with multi-label problems. Since in

this paper we aim at multi-class data with single-label, so that

Adaboost.M1 algorithm is chosen as the first ensemble model.

The detail description of Adaboost.M1 can be found in [46].

Adaboost is designed for use with any learning algorithms, the

main concern is that the training samples now have varying

weights [24]. There are two main approaches to address these

weights: boosting by resampling and boosting by reweighting

[46]. As some classifiers cannot be generalized to use a given

distribution directly, we choose to use boosting by resampling

in our model. The resample algorithm is called FiltEX, which is

described in algorithm 1, the main idea can be found in [13].

(2) Under-Sampling Balanced Ensemble(USBE)

An USBE model refers to employing under-sampling methods

to build several roughly balanced training sets for multiple

base classifiers. The training procedure can be described as Fig.

1. One of the most common yet simply under-sampling tech-

niques is Randomly Under-Sampling (RUS). Unlike more com-

plex data sampling algorithms, RUS makes no trail to “intel-

ligently” select samples from the training space. Instead, RUS

simply select samples from the majority classes randomly un-

til a satisfied class distribution is achieved. In this paper, we

utilize RUS as the under-sampling method. Note that we are

facing multi-class dataset, the RUS method is employed in all

the classes that contain more than 1.5 times as number of sam-

ples as in the rarest class, by this way, we guarantee that the IR

of training set after RUS is less than 1.5 and do not abandon too

much information of majority classes.

(3) Over-Sampling Balanced Ensemble(OSBE)

Similar as USBE, an OSBE model can also be viewed as Fig. 1,

instead the over-sampling method is employed to build bal-

anced sub-training sets. The most widely-used over-sampling

method is SMOTE proposed by Chawla [10]. SMOTE gener-

ates synthetic samples by a linear interpolation between two

neighbors from minority class. Neighbors of minority class are

randomly chosen, and the number of additional samples de-

pends on the required over-sampling amount. Since SMOTE

makes no assumption on original data probability distribution

when generating additional samples, the constructed classi-

fiers may be unbiased ones. Therefore, for the third ensemble

framework, we choose SMOTE as the sampling technique. Sim-

ilar as RUS, SMOTE is employed in all the rare classes and gen-

erates new examples for those classes until the IR of training

set is less than 1.5.

.2. Feature selection based MCS

Samples of different classes may overlap, which makes it more

ifficult for classifiers to find the boundaries among different classes.

hen facing imbalanced data, the samples of minority class are

carce so that they might be treated as noise easily. In that case, if

he boundaries of different classes are ambiguous, the classifier may

ail to model the minority class samples. Feature selection is a pow-

rful method to solve this problem. We take the logging data which is

ollected from Jianghan oil field of China to illustrate this observation.

e select three features of logging data and plot the sample distribu-

ion, which is shown on the right side of Fig. 2, where the diamonds

re the oil layer samples and the circles are non-oil layer samples.

t is clear that the boundary between these two classes is ambigu-

us. On the left side of Fig. 2 we present a 2-D sample distribution by
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Fig 1. USBE model.
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Fig. 2. Sample distribution before and after removing irrelevant feature.
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removing one of the three features (CNL). It can be observed that the

boundary is much clearer.

When employing feature selection to imbalanced data, a main

challenge is the trade-off between removing the irrelevant features

and keeping useful features. Similar to re-sampling technologies, re-

move somewhat irrelevant features may also a risk of losing poten-

tially useful information because the original data distribution may

be altered by feature selection [15]. The feature selection algorithms

can be split as two types, wrapper methods and filter methods. From

our preliminary observation, the performances of different feature

selection algorithms vary in the choice of base classifier. For this rea-

son, instead of utilizing specific feature selection algorithm, we se-

lect two types of feature selection algorithms as optional in AMCS.

We choose FCBF algorithm [66] as filter method and a meta-heuristic

algorithm BPSO as wrapper method. Addressing feature selection

through a meta-heuristic method is one of a worthwhile way for fea-

ture selection. Particle Swarm Optimization (PSO) is a widely used

stochastic evolutionary algorithm for solving optimization problems,

which is devised by Kennedy and Eberhart in 1995 [32]. Unlike other

evolutionary algorithms (such as GA, DE, etc.), PSO does not contain

crossover and mutation operations, which can help us reduce the

complexity of our model. Basic PSO is proposed as an optimization
 t
echnique applied in real space [33], while Kennedy and Eberhart

roposed Binary Particle Swarm Optimization (BPSO) algorithm [34]

hat extending PSO to binary space case. A brief introduction of us-

ng BPSO as feature selection method can be found in supplementary

aterial.

.3. Ensemble rule

After training an MCS, for a new unseen sample, several individ-

al hypotheses can be obtained from each classifier. Thus, an ensem-

le rule that combining these hypotheses is required. In [15] and [67],

ve ensemble rules for combining the multiple classification results

f different classifiers are introduced, including Max Rule, Min Rule,

roduct Rule, Majority Vote Rule and Sum Rule. Consider a dataset S

hat contains D features, N samples and m classes, S = {s1, s2, . . . , sN}
here si = {xi1, xi2, . . . , xiD}, the class labels C = {C1,C2, . . . ,Cm}. Sup-

ose that there are K base classifiers in an MCS, for the ith classifier,

t classifies the new data as Cjwith the probability of pij. Moreover,

Cjdevotes the final probability of classifying the new data to class cj.

able 1 shows the detailed ensemble strategies and descriptions for

he five ensemble rules.
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Table 1

Five ensemble rules.

Rule Strategy Description

Max argmax
C1 ,C2 ,...,Cm

{RC1
, RC2 ,, . . . , RCm

}, RCj
= max

1≤i≤K
pi j Use the maximum classification probability of K base classifiers for each class label, the new data is

assigned to the class with maximum R

Min argmax
C1 ,C2 ,...,Cm

{RC1
, RC2 ,, . . . , RCm

}, RCj
= min

1≤i≤K
pi j Use the minimum classification probability of K base classifiers for each class label, the new data is

assigned to the class with maximum R

Product argmax
C1 ,C2 ,...,Cm

{RC1
, RC2 ,, . . . , RCm

}, RCj
= �K

i=1
pi j Use the maximum classification probability of K base classifiers for each class label, the new data is

assigned to the class with maximum R

Majority vote argmax
C1 ,C2 ,...,Cm

{RC1
, RC2 ,, . . . , RCm

} For the ith classifier, Cj gets a vote if pij is the largest probability of C, count all the votes of Cj in the K

classifiers as RCj
. The new data is assigned to the class with maximum R

RCj
= count

1≤i≤K
(argmax

C1 ,C2 ,...,Cm

pi j )

Sum argmax
C1 ,C2 ,...,Cm

{RC1
, RC2 ,, . . . , RCm

}, RCj
= sum

1≤i≤K
pi j Use the sum classification probability of K base classifiers for each class label, the new data is assigned

to the class with maximum R

Table 2

Five weighed ensemble rules.

Rule Strategy

Weighted max argmax
C1 ,C2 ,...,Cm

{RC1
, RC2 ,, . . . , RCm

}, RCj
= max

1≤i≤K
AUCareai · pi j

Weighted min argmax
C1 ,C2 ,...,Cm

{RC1
, RC2 ,, . . . , RCm

}, RCj
= min

1≤i≤K
AUCareai · pi j

Weighted

product

argmax
C1 ,C2 ,...,Cm

{RC1
, RC2 ,, . . . , RCm

}, RCj
= �K

i=1
AUCareai · pi j

Weighted

majority vote

argmax
C1 ,C2 ,...,Cm

{RC1
, RC2 ,, . . . , RCm

}, RCj
= count

1≤i≤K
(argmax

C1 ,C2 ,...,Cm

AUCareai · pi j )

Weighted sum argmax
C1 ,C2 ,...,Cm

{RC1
, RC2 ,, . . . , RCm

}, RCj
= sum

1≤i≤K
AUCareai · pi j
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Table 3

Description of 8 types of imbalanced data.

Type number Description∗

Type 1 High IR, High dimension, Large number of classes

Type 2 High IR, Low dimension, Large number of classes

Type 3 High IR, High dimension, Small number of classes

Type 4 High IR, Low dimension, Small number of classes

Type 5 Low IR, High dimension, Large number of classes

Type 6 Low IR, Low dimension, Large number of classes

Type 7 Low IR, High dimension, Small number of classes

Type 8 Low IR, Low dimension, Small number of classes

∗High IR refers to a dataset whose IR is not less than10(threshold1).
∗High dimension refers to a dataset whose number of features is not

less than 10(threshold2).
∗Large number of classes refers to a dataset whose number of classes is

not less than 6(threshold3).
∗Since there are no standard criteria of deciding the value of threshold1,

threshold2, threshold3 proposed in previous literature, the thresholds

used in this paper are obtained by our preliminary study.

Table 4

Confusion matrix of binary classification problem.

Predicted positive class Predicted negative class

Positive class TP FN

Negative class FP TN
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The ensemble rules described in Table 1 rely only on the posterior

robabilities outputing by K classifiers. The training performance of

ach base classifier, however, has not been taken into account. In fact,

classifier that outperforms others should be assigned a higher “con-

dence”, which represents our belief in the goodness of that classifier.

he “confidence” of a classifier can be defined as the training accuracy

f the classifier. By this mean, we can build a weighted ensemble rule

n which the weight represents our confidence on a specific classi-

er. For the choice of weights, we choose a novel performance metric

UCarea, which is introduced in the next section. The weighted en-

emble rule is defined as Table 2. The new weighted ensemble rules

re simply accomplished by multiply pij by AUCareai, AUCareai repre-

ents the value of AUCarea of base classifier i.

.4. The way of building AMCS

Conclude above, our MCS model can be simply described as Fig. 3.

or an imbalanced data, we first conduct feature selection to extract

he best feature set. Then, the data is split into K sub-training bins by

ampling method and each bin is for the use of training a base clas-

ifier. After training, we compute the AUCarea of each base classifier

ely on its performance on training data. To classify an unseen data X,

e obtain the probabilistic output P(c|X) of each base classifier, and

se the weighted ensemble rule described in Table 2 to fuse the out-

uts of all base classifiers.

As we argued previously, an adaptive MCS should choose the best

nsemble framework, base classifier, feature selection method and

nsemble rule according to the characteristic of the imbalanced data.

or this purpose, we divide the imbalanced data into 8 types based on

heir IR, dimension, and the number of classes, as is shown in Table

. We expect to form specific AMCS for different type of imbalanced

ata, the specific AMCS can be implemented by following one of the

oute in the network described in Fig. 4. Each route in Fig. 4 repre-

ents the choice of ensemble framework, the choice of feature selec-

ion method, the choice of base classifier and the choice of ensem-

le rule. In this study we select five base classifiers as options, which

re, C4.5, SVM, RBF-NN, DGC [68] and KNN. Note that Adaboost.M1
ramework has already employed majority vote as the ensemble rule,

e did not consider other choices of ensemble rules of Adaboost.M1.

The best combination of types and routes will be obtained through

mpirical study that we carry out in Section 5.

. Evaluation in imbalanced data

.1. Evaluation metric

The evaluation measure is a key factor for both assessing the clas-

ification performance and guiding the learning progress of classifier

9]. Accuracy is the most commonly used evaluation metric. However,

or imbalanced data classification problems, accuracy may not be a

ood choice because accuracy often has a bias toward majority class

27,28]. Performance metrics adapted into imbalanced data problems,

uch as Receiver Operating Characteristics (ROC) [30], G-Mean(GM),

nd F-measure(Fm) [9], are less likely to suffer from imbalanced dis-

ributions because they measure the classification performance of

ach class independently. In a binary classification problem, instances

an be labeled as positive or negative. For binary imbalanced datasets,

he minority class is usually considered as positive while the major-

ty class is considered as negative. The confusion matrix as is shown

n Table 4 records the results of correctly and incorrectly recog-

ized situations of each class. ROC, G-mean and F-measure can all be
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Fig 3. Architecture of AMCS.

Ensemble scheme Adaboost.M1

Filter(FCBF)wrapper(BPSO)

C4.5 SVM RBF-NN DGC KNN

Max Min Product Majority Vote SumMajority Vote

USBE

Filter(FCBF)wrapper(BPSO)

C4.5 SVM RBF-NN DGC KNN

Max Min Product Majority Vote Sum

OSBE

Filter(FCBF)wrapper(BPSO)

C4.5 SVM RBF-NN DGC KNN

Adaptive ensemble classification algorithm

Feature selection

Basic classifier

Ensemble rule

Fig 4. Adapting path of AMCS.
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obtained from Table 4:

GM =
√

TP

TP + FN
· TN

FP + TN
(1)

Fm =
(
1 + β2

)(
TP

TP+FP
· TPR

)
β2 TP

TP+FP
+ TPR

=
(
1 + β2

)(
TP

TP+FP
· TP

TP+FN

)
β2 TP

TP+FP
+ TP

TP+FN

(2)

ROC (Receiver Operating Characteristic) curve is recognized as

the most rational choice for imbalanced data, which depicts relative

trade-offs between the benefits and costs [29].ROC curve plots FP
TN+FP

(FPR) on the X-axis and plots TP
TP+FN (TPR) on the Y-axis, where differ-

ent pairs of (FPR, TPR)s can be obtained by changing the thresholds

of the classifier [30]. The threshold of a classifier presents the degree

to which an instance is a member of a class [29]. In practice, we of-

ten use the Area Under ROC Curve (AUC) as a scalar measure instead

of ROC curve, the larger AUC value is the better. As we can see, AUC,

F-measure and G-Mean are only able to be applied to binary classifi-

cation problems.
There are three ways to extend binary metrics into multi-class

ase, OVO approach [58], OVA [59] approach and directly extension

60,61]. OVO and OVA approaches aim to measure the overall per-

ormance by evaluating the performance of each class. Specifically,

VO approaches consider the classification performances between

ll pairs of classes while OVA approaches measure the classification

erformance between a single class against the rest of all classes.

ore directly extensions of AUC have been studied in [60–62] based

n Volume Under the ROC Surface(VUS). Though VUS represents a

heoretical justification of the classifiers, it is hard to visualize and

ompute. For C-classes cases, each point of ROC surface lies in an

· (C − 1) space, and the complexity of computing an n-points con-

ex hull is O(nD) [61]. Researches in [60,61] provide some methods

f estimating VUS through the maximum and minimum of VUS, in

hich a cost matrix is needed. The advantages of OVO and OVA ap-

roaches lie in the natural intuition and easy computation. In partic-

lar, through OVO approach we can clarify the mutual classification

istake between pair of classes, which is essential for applications
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Fig. 5. Polar diagram of three-classes case (AUC1,2=0.85, AUC2,3=0.8, AUC1,3=0.75).
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ike fault detection. In this study, we utilize a novel extension of AUC

y OVO approach proposed in [31] and actualize it as the evaluation

riterion.

For a dataset that contains C classes, we calculate AUC values for

ach pair of classes respectively. Finally we can get C2
C

AUC values. In

rder to obtain a scalar metric, we need a fusion strategy to integrate

ll the AUC values as the final metric. A natural fusion strategy is to

utput the average value of all the AUC values, but this approach has

defect. For different classifiers, each single AUC value may be dif-

erent, but the average value may remain the same, thus we cannot

stimate which hypothesis is better. In this paper, we choose a novel

ethod of fusing AUC values proposed in [31], the idea is as follows:

ll the AUC values are plotted in a polar coordinate, we calculate the

rea covered by the polar diagram as the final evaluation metric, the

arger the area is the better. This measure is named as AUCarea. An

UC polar diagram for a three-classes problem is shown in Fig. 5.

The way to compute AUCarea is described as Eq. (3) (the detail

nalysis can be found in [31]):

UCarea = 1

2
sin

(
2π

q

)((
q−1∑
i=1

ri × ri+1

)
+ (rq × r1)

)
(3)

ere q = C2
C (C is the number of classes), ri is the ith AUC value.

Considering most of metrics are ranged within [0,1], we normal-

zed AUCarea by AUCarea
Maximum_AUCarea

, where Maximum_AUCarea is calcu-

ated by Eq. (3) when setting all ris to 1. The normalized AUCarea can

e obtained by Eq. (4). In the following paper, we will use normal-

zed AUCareainstead of AUCarea proposed in [31] (but we simply call

ormalized AUCarea as AUCarea).

UCarea =
1
2

sin
(

2π
q

)((∑q−1
i=1

ri × ri+1

)
+ (rq × r1)

)
1
2

sin
(

2π
q

)
· q

=
(∑q−1

i=1
ri × ri+1

)
+ (rq × r1)

q
(4)
P

Another reason we believe AUCarea is better than average AUC

s that AUCarea is more sensitive when mutual mistakes of a pair of

lasses increase. In other words, it turns out that if there exists awful

UC, the value of AUCarea will decrease sharply. We compare average

UC with AUCarea to illustrate this issue. The average AUC(AVG_AUC)

an be computed through Eq. (5).

VG_AUC =
∑q

i=1
ri

q
(5)

Assuming that ri is changed to ri − l, then we can compute the

elatively change of AVG_AUC and AUCarea: �AVG_AUC = l
q and

AUCarea = l×(ri−1+ri+1)
q . Since single AUC values are larger than 0.5,

AUCarea would slightly larger than �AVG_AUC. This suggests that

f any single AUC decreased, AUCarea would decrease more than

VG_AUC. The above analysis illustrates that AUCarea is more sen-

itive when any pairs of classes gain poor AUC value. For imbalanced

ata, the AUCs between minority class and some other classes are of-

en poor. For this reason, AUCarea is superior to AVG_AUC.

.2. Posterior probability estimate

The five ensemble rules introduced in Table 2 require a poste-

ior probability of base classifiers for each unseen sample. Since ROC

urve also needs the learning models return posterior probability for

he prediction [29], we estimate the posterior probability both for

ase classifiers and AMCS.

Consider a dataset S that contains D features, N samples and

classes, S = {s1, s2, . . . , sN} where s1 = {x1, x2, . . . , xD}, the class la-

els C = {c1, c2, . . . , cm}.We denote the posterior probability for si be-

onging to cj as Pbase(cj|si) and Pen(cj|si) for base classifiers and en-

emble classifiers respectively. Since SVM, C4.5, RBF-NN and DGC

ll make their prediction based on posterior probability, there is

o need to estimate Pbase(cj|si) for them specifically (For DGC we

se the gravity as posterior probability). Here we only discuss the

base(cj|si) for KNN. Let nij represents the number of si’s neighbors that
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Table 5

Detailed information of test datasets.

Type Dataset Short name # Samples # Classes Class distribution IR # Features

Type 1 Zoo – 101 7 (41/20/5/13/4/8/9) 1:10 16

Soybean – 307 18 (10/40/20/6/4) 1:10 35

Autos – 159 6 (2/14/33/32/20/9) 1:16 25

Wine-Quality-Red WineQR 1599 11 (3/16/205/192/60/5) 1:68 11

Type 2 Yeast - 1484 10 (324/3/24/…/170/300/14/21) 1:23 8

Shuttle – 2175 7 (1194/2/4/236/86) 1:853 9

Abalone Aba. 4177 29 (15/57/115/391/689/…/6/9/2) 1:345 8

Type 3 Page-Blocks PageB 5472 5 (4913/329/87/115/28) 1:175 10

Lymphography Lym. 148 4 (2/42/56/2) 1:21 18

Thyroid – 720 3 (11/25/466) 1:37 21

Wine-Quality-White WineQW 4898 5 (2198/1457/880/175/163) 1:14 11

Type 4 Car – 1728 4 (1210/384/69/65) 1:18 6

Ecoli∗ – 358 4 (143/77/2/102) 1:72 7

Kr-vs-k∗ – 8425 4 (839/430/857/6299) 1:15 6

Type 5 Dermatology Derm. 366 6 (77/42/49/33/14) 1:6 34

Landsat – 2000 6 (461/224/397/211/237/410) 1:2 36

Penbased Pen. 1100 10 (80/79/41/73/80/73/74) 1:2 16

Type 6 Led7digit Led 500 7 (14/12/16/…/64) 1:5 7

Glass – 214 6 (70/76/17/13/9/29) 1:8 9

Mf-mor∗ – 2000 6 (200/200/../1000) 1:5 6

Type 7 Splice – 3190 4 (767/768/1655) 1:2 60

Mf-kar∗ – 2000 4 (200/200/800/800) 1:5 64

Wine – 178 3 (41/49/33) 1:2 13

Type 8 New_thyroid NewT 215 3 (150/35/30) 1:5 4

Contraceptive Contr. 1473 3 (440/233/357) 1:2 9

Hayes-Roth HayesR 160 3 (65/64/31) 1:2 5

Balance – 625 3 (49/288/288) 1:6 4

∗ The original Mf-mor contained 10 classes and each class has 200 samples, we merged the rest 5 classes as a majority class in our study.

The original Ecoli has 8 classes, we merged the rest 3 classes. Mf-kar has the same structure as Mf-mor, we merged 8 classes into 2 large

classes, 800 samples for each. The original Kr-vs-k contains 17 classes, we merged the 4–17 classes in order to construct an imbalanced

dataset
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1 For the limit of space we did not list all the experimental results for exploring best

routes of AMCS, to view the entire results, please go to https://github.com/liyijing024/

AMCS.
belongs to jth class,
∑C

j=1 ni j = k, then Pbase(cj|si) of KNN can be com-

puted by Pbase(c j|si) = ni j/k.

Assuming the number of base classifiers of ensemble classifier is

T, for each base classifier, the AUCarea and Pbase(cj|si) are computed.

The corresponding Pen(cj|si) can be defined as the mean of weighted

probability according to AUCarea and Pbase(cj|si), that is,

Pen

(
c j|si

)
=

T∑
t=1

(
AUCareat∑T

t=1 AUCareat

× Pbaset
(c j|si)) (6)

where AUCareat∑T
t=1 AUCareat

is the weight of tth base classifier.

5. Empirical analyses

The current section includes two phases. In the first phase we

aim to find the dominating routes of Fig. 4 to frame the AMCS for 8

types of imbalanced datasets. In the second phase we apply AMCS to

untested benchmarks and compare it against other six state-of-the-

art algorithms.

According to the previous aims, we divide this section into three

parts: in Section 5.1 we introduce the experimental framework and

imbalanced datasets used in our empirical study. Secondly, exper-

iments carried out in order to find the dominating routes to form

AMCS for different types of imbalanced datasets are presented in

Section 5.2. After that, comparisons among AMCS and the state-of-

the-arts are conducted in Section 5.3.

5.1. Experimental setup and datasets

In this study we utilize 27 multi-class imbalanced datasets from

KEEL datasets repository for multiple class imbalanced problems at

http://www.keel.es/datasets.php and UCI database [35] to test the

performance of AMCS. The detail information about these datasets

is summarized in Table 5, where IR is the sample ratio between the
ost affluent class and the rarest class. In Table 5 we also order all

he datasets based on the types they belong to. Besides, the second

olumn corresponding to the short name for some datasets, we will

se these short names in the rest of this paper.

All experimental studies were conducted by employing 5-fold

ross validation, where each fold follows the same distribution as

he original dataset. The relevant parameters in BPSO are the same

s the corresponding parameters set in [34], where inertia weight is

et to 0.729, learning factor c1, c2 are both set to 1.49445. Parameters

f FCBF are referenced [66]. The number of iterations of the three en-

emble models is 20. For the base classifiers, we set k of KNN equals

o 5 for those datasets that the rarest class contains at least 5 sam-

les, otherwise, k is set to be equal with the number of samples of

he rarest class. Besides, we employ MATLAB RBF-NN tool box and

ibsvm for RBF-NN and SVM.

.2. Analyzing the dominating components to form AMCS

To find the dominating feature selection algorithm, ensemble

ramework, base classifier and ensemble rule to frame AMCS for 8

ypes of imbalanced datasets, we select 16 datasets from Table 5, for

ach type 2 datasets are selected. We test all the 110 routes in Fig. 4

egarding to AUCarea, overall accuracy, accuracy refer to the most

ourish class(Maj. acc), accuracy refer to the rarest class(Min. acc),

verage G-mean and average F-measure(AVG-Fm) computed through

VO(AVG-GM). The main criterion of evaluating the best MCS as the

MCS is AUCarea. Table 6 lists the performances of algorithms using

GC and C4.5 as base classifiers1, where the best ensemble rules are

ointed out in the parentheses bellowing to the value of AUCarea. The

utperforming algorithms are highlighted in bold, from which we can

http://www.keel.es/datasets.php
https://github.com/liyijing024/AMCS
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Table 6

Performances of DGC and C4.5 based algorithms regarding to AUCarea.

Type Dataset BUD∗ FUD BOD FOD BAD FAD BUC FUC BOC FOC BAC FAC

Type 1 Soybean 0.9512 (5)∗ 0.9004 (1) 0.9401 (2,4,5) 0.9045 (1) 0.9534 (4) 0.9391 (4) 0.9174 (4,5) 0.9253 (4,5) 0.9365 (4,5) 0.9365 (4,5) 1.0000 (4) 1.0000 (4)

Zoo 0.9345 (all) 0.8542 (1) 0.9345 (all) 0.8316 (all) 0.9372 (4) 0.9524 (4) 0.4601 (4,5) 0.5853 (1) 0.9492 (4,5) 0.9492 (4,5) 1.0000 (4) 1.0000 (4)

Type 2 Yeast 0.5988 (5) 0.5874 (1) 0.5585 (2) 0.6354 (2) 0.6528 (4) 0.6495 (4) 0.598 (2,3) 0.5980 (2,3) 0.2776 (2,3) 0.2788 (2,3) 0.6916 (4) 0.6708 (4)

Ada 0.4408 (4) 0.6601 (3,5) 0.3993 (2) 0.3197 (2) 0.3789 (4) 0.2896 (4) 0.4413 (4,5) 0.4232 (4,5) 0.3732 (4,5) 0.2587 (4,5) 0.6022 (4) 0.4905 (4)

Type 3 Thyroid 0.8431 (1) 0.7478 (1) 0.8908 (2) 0.8911 (2) 0.9011 (4) 0.8204 (4) 0.8952 (4,5) 0.9472 (4,5) 0.8927 (1,4,5) 0.9411 (1,4,5) 0.9967 (4) 1.0000 (4)

lym 0.7952 (1,4) 0.7077 (3,5) 0.8012 (1) 0.8735 (1) 0.9735 (4) 0.9060 (4) 0.8426 (4,5) 0.9734 (4,5) 0.8802 (4,5) 0.7875 (1) 0.6983 (4) 1.0000 (4)

Type 4 Ecoli 0.7469 (1) 0.6734 (1) 0.8272 (1) 0.8491 (2) 0.8067 (4) 0.8757 (4) 0.9068 (4,5) 0.9068 (4,5) 0.8361 (4,5) 0.8671 (1) 0.8334 (4) 0.8751 (4)

Car 0.6709 (1) 0.7138 (1) 0.7359 (1) 0.7539 (1) 0.7803 (4) 0.8311 (4) 0.6572 (2,3) 0.7856 (4,5) 0.9224 (2,3) 0.8075 (2,3) 0.7700 (4) 1.0000 (4)

Type 5 Landsat 0.7377 (1) 0.8000 (2) 0.7279 (4) 0.8919 (4) 0.8706 (4) 0.8952 (4) 0.5149 (4,5) 0.9256 (2,3) 0.8284 (4,5) 0.9256 (4,5) 0.9256 (4) 0.5396 (4)

Pen 0.8814 (1,4) 0.5291 (1) 0.8827 (1) 0.8756 (1) 0.9041 (4) 0.9245 (4) 0.8825 (4,5) 0.3682 (4,5) 0.8793 (4,5) 0.5855 (4,5) 0.9807 (4) 0.5983 (4)

Type 6 Mf-mor 0.6737 (1) 0.2726 (1,5) 0.6618 (2) 0.6639 (2) 0.9086 (4) 0.7197 (4) 0.8704 (4,5) 0.4596 (4,5) 0.7498 (4,5) 0.7308 (4,5) 0.9931 (4) 0.9398 (4)

Led 0.6944 (1,3,5) 0.7011 (1,3,5) 0.8810 (all) 0.7251 (all) 0.7885 (4) 0.7948 (4) 0.6681 (1,4,5) 0.6481 (4,5) 0.6481 (4,5) 0.6481 (4,5) 0.8310 (4) 0.8646 (4)

Type 7 Wine 0.9087 (5) 0.2583 (all) 0.9264 (1) 0.7572 (4) 0.9699 (4) 0.8952 (4) 0.9699 (4,5) 0.7088 (4,5) 1.0000 (4,5) 0.7310 (4,5) 1.0000 (4) 0.8815 (4)

Splice 0.2818 (1,3,5) 0.2584 (2) 0.6929 (1) 0.2817 (4) 0.2292 (4) 0.3027 (4) 0.5054 (4,5) 0.5054 (4,5) 0.3376 (4,5) 0.3376 (4,5) 0.9552 (4) 0.9418 (4)

Type 8 NewT 0.9153 (all) 0.9887 (2) 0.9543 (all) 0.9167 (1,4,5) 1.0000 (4) 0.9167 (4) 1.0000 (4,5) 0.8815 (1,2,3) 0.9251 (4,5) 0.8968 (1,2,3) 1.0000 (4) 1.0000 (4)

HayesR 0.3577 (4) 0.4987 (5) 0.3793 (4) 0.3682 (5) 0.6682 (4) 0.6682 (4) 0.7539 (4,5) 0.5615 (2,3) 0.7543 (4,5) 0.5476 (4,5) 0.8760 (4) 0.8314 (4)

∗ “B” :BPSO, “F”:FCBF, “U”:USBE, “O”:OSBE, “A”:Adaboost, “D”:DGC, “C”:C4.5.So, BUD presents a MCS that employs BPSO as feature selection algorithm, USBE as the ensemble framework and DGC as base classifier. So do

other MCS like BOD, BAC, etc.
∗ The numbers in parentheses represent the best ensemble rule when conducing the corresponding algorithm, “1” denotes weighted max, “2” denotes weighted min, “3” denotes weighted product, “4” denotes weighted

majority vote, “5” denotes weighted sum, and “all” means five ensemble rules obtain the same results. The five ensemble rule are listed in Table 2.
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Fig. 6. Friedman test of base classifiers, where the horizontal axis is the type number of imbalanced dataset, the vertical axis represents the rank.
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Fig. 7. Friedman test of ensemble frameworks, the corresponding base classifiers is treating as baselines, denoted as BASE in the figure. The horizontal axis is the type number of

imbalanced dataset, the vertical axis represents the rank.
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Fig. 8. Friedman test of feature selection algorithms, the corresponding base classifiers is treating as baselines, denoted as BASE in the figure. The horizontal axis is the type number

of imbalanced dataset, the vertical axis represents the rank.
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To validate the properness of the results presented in Table 7, we

recall Friedman test to compare the overall performance of each com-

ponent of AMCS, as is shown in Figs. 6–8, the better algorithm gains

higher rank. In our Friedman test, six metrics mentioned previously

are all considered. Fig. 6 shows the average ranks of five base clas-

sifiers. The highest ranking base classifiers for Type 1, 2 and 8 are

the same as the corresponding dominating base classifiers in Table 7.

For Type 3,4,5,6, initial AMCSs do not select the highest ranking base

classifiers, but still the superiority base classifiers since the selected

classifiers earn a fairly ranking. However, for Type 7 the lowest rank-

ing base classifier SVM are selected by initial AMCS. Fig. 7 shows sig-

nificantly that Adaboost ensemble framework outperforms USBE and

OSBE for all types of imbalanced data, which is consistent with the

results shown in Table 7. Fig. 8 shows the ranks of two feature selec-

tion algorithms for all types of imbalanced data. For Type 3 and Type 4,

the dominating ranking algorithms are discrepant with the selected

feature selection algorithms of AMCS.

Since the initially selected algorithms of AMCS for Type 3–7

are different from the highest ranking algorithms, for the sake of

justice, we executed Wilcoxon paired signed-rank test to do pair-

wise comparisons between the algorithm selected by AMCS and the
orresponding highest ranking algorithm for Type 3–7 [41]. The re-

ults are presented in Table 9, the outperforming adapting routes are

isted in the last column, where the routes that are different from the

nitial AMCS are in bold. Therefore, we modify the initial AMCS based

n the Wilcoxon tests.

To summarize, the adapting routes of AMCS are as follows (For

daboost only majority vote is considered as the ensemble rule, so

e do not list the ensemble rule if Adaboost is employed):

• For High IR, High dimension, Large number of classes datasets, the

adapting route of AMCS is: FCBF as feature selection algorithm,

Adaboost as the ensemble framework, C4.5 as the base classifier.

• For High IR, Low dimension, Large number of classes datasets, the

adapting route of AMCS is:BPSO as feature selection algorithm,

Adaboost as the ensemble framework, KNN as the base classifier.

• For High IR, High dimension, Small number of classes datasets, the

adapting route of AMCS is: FCBF as feature selection algorithm,

Adaboost as the ensemble framework, C4.5 as the base classifier.

• For High IR, Low dimension, Small number of classes datasets, the

adapting route of AMCS is: BPSO as feature selection algorithm,

Adaboost as the ensemble framework, SVM as the base classifier.
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Table 9

Wilcoxon tests for Type 3–7.

Type Comparison R+ R− Hypothesis (α = 0.05) |Z| p-value Selected

Type 3 FCBF-Adaboost-C4.5 vs. BPSO-Adaboost-SVM 10.00 0.00 FCBF-Adaboost-C4.5< BPSO-Adaboost-SVM 1.826 0.068 FCBF-Adaboost-C4.5

Type 4 FCBF-Adaboost-KNN vs. BPSO-Adaboost-SVM 15.00 21.00 FCBF-Adaboost-KNN<BPSO-Adaboost-SVM 0.421 0.674 BPSO-Adaboost-SVM

Type 5 BPSO-Adaboost-KNN vs. BPSO-Adaboost-RBF 16.00 50.00 BPSO-Adaboost-KNN< BPSO-Adaboost-RBF 1.511 0.131 BPSO-Adaboost-RBF

Type 6 FCBF-Adaboost-SVM vs. FCBF-Adaboost-KNN 65.00 1.00 FCBF-Adaboost-SVM<FCBF-Adaboost-KNN 2.845 0.004 FCBF-Adaboost-SVM

Type 7 BPSO-Adaboost-C4.5 vs. BPSO-Adaboost-RBF 21.00 3.50 BPSO-Adaboost-C4.5<BPSO-Adaboost-RBF 2.201 0.028 BPSO-Adaboost-C4.5
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• For Low IR, High dimension, Large number of classes datasets, the

adapting route of AMCS is: BPSO as feature selection algorithm,

Adaboost as the ensemble framework, RBF as the base classifier.

• For Low IR, Low dimension, Large number of classes datasets, the

adapting route of AMCS is:FCBF as feature selection algorithm, Ad-

aboost as the ensemble framework, SVM as the base classifier.

• For Low IR, High dimension, Small number of classes datasets, the

adapting route of AMCS is:BPSO as feature selection algorithm,

Adaboost as the ensemble framework, C4.5 as the base classifier.

• For Low IR, Low dimension, Small number of classes, the adapting

route of AMCS is: BPSO as feature selection algorithm, Adaboost

as the ensemble framework, SVM as the base classifier.

When testing the adapting rule for AMCS, we also find some com-

rehensive findings for imbalanced learning. Firstly, for all types of

mbalanced datasets, AMCS always choose Adaboost as the ensemble

ramework, which implies over-sampling and under-sampling may

ot always be a good choice. Secondly, FCBF is chosen for all the three

ypes of datasets that are high dimensional datasets. So as a sug-

estion, filter feature selection method may be better than wrapper

ethod for high dimensional datasets. Lastly, as a guideline of choos-

ng base classifier, C4.5 and KNN are better than other three classifiers

hen classifying high IR datasets and SVM outperforms other base

lassifiers for low dimensional datasets.

.3. Validate AMCS and compare it with state-of-the-arts

To validate the efficiency of AMCS2, we test AMCS on the rest

atasets which are not selected in Section 5.2 and compare AMCS

ith some state-of-the-arts. we choose six efficient algorithms pro-

osed to cope with imbalanced learning, i.e., SMOTEBoost [16],

asyEnsemble [25], PUSBE [47], a cost-sensitive decision tree ensem-

le algorithm [18], a novel ensemble algorithm that using K-means

o split majority samples(ClusterBal) [15] and Imbalanced DGC(IDGC)

14].

SMOTEBoost and EasyEnsemble are two popular ensemble algo-

ithms that have been used for comparisons in many previous stud-

es [1,4,15,18,47]. PUSBE is a novel ensemble algorithm that a filter

ethod for feature selection is carried out. It is interesting to take

USBE into comparison since it also considered feature selection in

he ensemble model. The proposed ensemble algorithm in [18] is

ased on a cost-sensitive basic classifier and uses stochastic evolu-

ionary algorithm to fusion basic classifiers. ClusterBal uses cluster-

ng method to split majority samples, converts an imbalanced dataset

nto multiple balanced sub-datasets and then trains multiple base

lassifiers. Finally, the classification results of all the base classifiers

re combined by a specific ensemble rule called MaxDistance. IDGC

oes not employ any ensemble strategy but earns good results as is

uggested in [14]. All of these algorithms select different base clas-

ifiers, such as SVM, Ripper, CART, DGC, etc(we choose KNN as basic

lassifier in ClusterBal). Note that these algorithms except for IDGC
2 The MATLAB source code of AMCS is available at https://github.com/liyijing024/

MCS

c

o

t

h

ave only been used in binary classification problems in the corre-

ponding papers, we generalize these methods into multiple case by

sing OVO approach. The brief descriptions of the ensemble strategy

or five ensemble algorithms are shown in Table 10, where CS-MCS

tands for the cost-sensitive decision tree ensemble algorithm pro-

osed in [18].

Table 11 presents the performances of ACMS and these state-

f-the-arts in terms of AUCarea, average G-mean and average

-measure. The superior algorithm regarding to AUCarea, average G-

ean and average F-measure are highlighted in bold in Table 11. The

esults show that all the seven algorithms are comparable, as all of

hem have obtained the best performance in different datasets with

espect to the others. Overall, PUSBE and AMCS are slightly better

han the other algorithms. Considering PUSBE is also feature selec-

ion based ensemble algorithm, this finding can illustrate the crucial

ole of feature selection for imbalanced learning. All the ensemble al-

orithms outperform IDGC, which implies ensemble algorithms are

ore efficient than straightforward algorithm. Another observation

s that under-sample based methods like EasyEnsemble, CS-MCS and

lusterBal perform bad in benchmarks that are highly imbalanced,

uch as PageB and Shuttle. This may because under-sample methods

bandon too much information of majority classes in order to bal-

nce the sub-datasets. Taking ClusterBal for example. In data balanc-

ng process, ClusterBal split majority samples into K clusters, where

is set as the ratio of majority class samples over the minority class

amples. When dataset is extremely unbalance, say only one sample

n the minority class of the training set, then ClusterBal will split the

ajority class into huge amount of clusters while each cluster con-

ains only one or a few samples. In this way, all the base classifiers

annot be trained well because the information the sub-training-sets

arrying are too scarce (although they may be balanced). Another rea-

on some state-of-the-art algorithms like ClusterBal failed to achieve

s ideal results in multi-class datasets as in binary case is that bound-

ries among multiple classes in each balanced sub-dataset become

istorted since we just use a small cluster of multiple majority classes

o generate balanced datasets.

We recall nonparametric statistical tests to clarify the perfor-

ances of AMCS and state-of-the-arts. First, Friedman test is em-

loyed to detect the overall performances of all tested algorithms

egarding to AUCarea, average G-mean, average F-measure and ac-

uracy. After that, we chose post-hoc test to check out if the highest

anking algorithm in Friedman test is significantly better than the rest

43]. Friedman testing results are presented in Fig. 9, which supports

MCS gains the highest rank. Next we control AMCS and compare it

ith the others to see if there exist significant differences between

MCS and other six algorithms using post-hoc test, the results are

hown in Table 12. The results indicate all the six algorithms have sig-

ificant differences comparing with AMCS with low p-value, which

mplies AMCS significantly outperforms the others.

We also compare the runtime of all the algorithms used in this

ection, as is shown in Table 13. Since all the seven algorithms ex-

ept IDGC are ensemble algorithms, the computational complexity

f these six algorithms are relatively expensive. In general, Clus-

erBal wins in the most of benchmarks besides some large and

ighly imbalanced datasets. For those imbalanced datasets that AMCS

https://github.com/liyijing024/AMCS


100 L. Yijing et al. / Knowledge-Based Systems 94 (2016) 88–104

Table 10

Ensemble strategies of five state-of-the-art algorithms.

Algorithm Ensemble Strategy

SMOTEBoost SMOTE+Adaboost+Ripper (base classifier)

EasyEnsemble Random under-sample +Bagging+Adaboost+CART (base classifier)

PUSBE Filter feature selection+Boosting+SVM(base classifier)+Double-fault diversity based pruning method+Classifier fusion based on BP

CS-MCS Random under-sample +Cost sensitive decision tree+Classifier fusion based on GA

ClusterBal Split majority classes by Kmeans+KNN(base classifier)+MaxDistance ensemble rule

Table 11

Compare AMCS with state-of-the-arts regarding to AUCarea, average G-mean and average F-measure.

Dataset Autos WineQR Shuttle PageB WineQW Derm. Glass Mf-kar Contr. Balance Kr-vs-k

AUCarea 0.9782 0.8267 1.0000 0.8522 0.8637 1.0000 0.9000 0.9931 0.8889 0.8622 0.9196

AMCS AVG_GM 0.9887 0.8339 1.0000 0.9445 0.9223 1.0000 0.9473 0.9962 0.9388 0.9847 0.9148

AVG_Fm 0.9346 0.6696 1.0000 0.9469 0.7451 1.0000 0.9186 0.9914 0.9310 0.9400 0.9679

AUCarea 0.7970 0.8370 0.9960 0.8280 0.7040 0.9730 0.7590 0.9974 0.5420 0.6782 0.8840

SMOTEBoost AVG_GM 0.9530 0.7731 0.9620 0.9630 0.8610 0.9580 0.8550 0.9934 0.5700 0.9287 0.9434

AVG_Fm 0.8820 0.8760 0.9940 0.9880 0.8140 0.9900 0.8830 0.9836 0.7360 0.9421 0.9719

AUCarea 0.7270 0.7712 0.8250 0.8780 0.8140 0.9340 0.8520 0.9834 0.5500 0.7743 0.9202

EasyEnsemble AVG_GM 0.9270 0.8217 0.9000 0.9720 0.8540 0.9720 0.8860 0.9967 0.5900 0.9462 0.9687

AVG_Fm 0.8710 0.8524 0.9880 0.9970 0.8770 0.9940 0.8920 0.9916 0.7940 0.9456 0.9559

AUCarea 0.8040 0.7168 0.9140 0.8990 0.7800 1.0000 0.8580 0.9249 0.5370 0.6289 0.8634

PUSBE AVG_GM 0.7980 0.7674 0.8990 0.9780 0.8090 1.0000 0.8990 0.9643 0.6340 0.8530 0.8953

AVG_Fm 0.9430 0.7333 0.9990 0.9650 0.8260 1.0000 0.9840 0.9225 0.6990 0.8943 0.9515

AUCarea 0.8320 0.8380 0.9160 0.7900 0.7000 0.9700 0.8070 0.9060 0.4930 0.6512 0.8682

CS-MCS AVG_GM 0.9150 0.8549 0.9810 0.8150 0.7990 0.9730 0.8650 0.9900 0.6150 0.7180 0.9083

AVG_Fm 0.9690 0.8585 0.9610 0.8600 0.8450 0.9950 0.8980 0.9444 0.7510 0.8645 0.9029

AUCarea 0.8290 0.8304 0.6000 0.4010 0.6000 0.8000 0.8330 0.9078 0.7490 0.6804 0.8119

ClusterBal AVG_GM 0.8140 0.8605 0.6790 0.3100 0.6640 0.8450 0.8990 0.9658 0.8160 0.8070 0.8434

AVG_Fm 0.8930 0.8663 0.8400 0.5790 0.8800 0.9070 0.9020 0.9379 0.7990 0.7908 0.8719

AUCarea 0.6790 0.4555 0.9735 0.8899 0.4633 0.9718 0.8086 0.9438 0.5516 0.6310 0.8629

IDGC AVG_GM 0.8348 0.5578 0.9876 0.9384 0.5561 0.9812 0.8534 0.9890 0.6603 0.7669 0.8898

AVG_Fm 0.6580 0.2150 0.9833 0.8946 0.5592 0.9692 0.8748 0.9530 0.6448 0.6310 0.9296
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Fig. 9. Friedman test of AMCS and the state-of-the-arts.

e

t

employs filter feature selection algorithm, the computational time

are lower than the others, while for those wrapper method is uti-

lized, AMCS is more time-consuming. In particular, PUSBE, CS-MCS,

IDGC employ evolutionary algorithms as a sub-component of the
Table 12

Post hoc tests of the-state-of-the-arts (taking AMCS as the control

method).

Algorithm(Rank) Z p-value Hypothesis (α = 0.05)

SMOTEBoost (4.36) 2.493 0.013 Rejected for AMCS

EasyEnsemble (4.85) 2.135 0.033 Rejected for AMCS

PUSBE (4.18) 3.034 0.002 Rejected for AMCS

CS-MCS (3.48) 3.618 0.003 Rejected for AMCS

ClusterBal (2.74) 4.315 0.000 Rejected for AMCS

IDGC (2.61) 4.324 0.000 Rejected for AMCS

6

r

n

t

6

i

g

m

s

ntire model, which lead to a higher computational cost with respect

o SMOTEBoost and EasyEnsemble.

. The application of AMCS in Oil-bearing of reservoir

ecognition

In this section, we apply AMCS in oil-bearing of reservoir recog-

ition. The descriptions of logging datasets are shown in Section 6.1,

he experimental results and analyses are described in Section 6.2.

.1. Data description

The oil-bearing of reservoir recognition data has 6 attributes,

ncluding: Acoustic travel time(AC), Compensated Neutron Log-

ing(CNL), Pesistivity(RT), Porosity(POR), Oil Saturation(SO) and Per-

eability(PERM). AC is for use of analyzing the property that the

onic propagation varies when it comes to different rocks and fluids.
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Table 13

Computational cost for each algorithm (runtime in terms of milliseconds).

Dataset AMCS SMOTEBoost EasyEnsemble PUSBE CS-MCS ClusterBal IDGC

Autos 5305 5799 5152 6021 6910 1340 1645

WineQR 44040 28790 6120 39480 23200 27800 66960

Shuttle 13329 44192 11750 13494 18310 50434 7740

PageB 7781 129871 11075 26560 39250 183209 8820

WineQW 4156 74187 15386 24968 32029 69678 63960

Derm. 1731 2304 2100 3478 5078 1524 3720

Glass 1083 1821 1679 1604 1998 3320 1468

Mf-kar 25244 11347 106740 21300 4572 2366 73640

Contr. 6060 9571 9140 11194 23733 23434 9468

Balance 7496 9200 5042 9624 7430 737 3119

Kr-vs-k 133649 191965 188847 639957 197930 107448 146434

Table 14

Oilsk81 well logging explanation results.

Reservoir number AC (μs/m) CNL (%) RT (� m) POR (%) SO (%) PERM (mμm2) Conclusion

1 195 7.5 13.0 6.0 0 0 Dry layer

2 225 10.0 7.3 11.0 0 0 Water layer

3 230 14.0 5.5 12.0 0 0 Water layer

4 220 9.0 25.0 9.0 56 1.3 Oil layer

5 225 8.0 30.0 9.0 58 2.3 Oil layer

6 210 7.0 26.0 6.0 0 0 Dry layer

… … … … … … … …

30 201 6.0 16.0 7.0 40 0.4 Inferior oil layer

31 213 9.5 12.0 9.0 61 2 Oil layer

Table 15

The distribution of each well logging.

Well number The distribution of each sample IR

(dry layer, water layer, oil layer,

inferior oil layer)

Oilsk81 (14, 2, 12, 3) 1:7

Oilsk82 (28, 2, 7, 11) 1:14

Oilsk83 (28, 3, 12, 7) 1:9

Oilsk84 (32, 6, 5, 9) 1:6

Oilsk85 (44, 4, 6, 11) 1:11
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enerally, AC would increase dramatically if there were oil vapor in

he void. Various effects of interaction between CNL and other sub-

tances can be used to study rock formation properties of the cross

ection. RT is a main parameter to judge fluids properties of reser-

oir. POR is defined as the ratio between the void space in a rock and

he bulk volume of that rock. SO is defined as ratio of void volume

ccupied by crude oil to total void volume of rock in oil reservoir. Al-

owable capability of fluid passing to the rock in some difference of

ressure is called PERM. Recognizing oil-bearing formation means to

ecognize the characters of each layer in the well. These characters

nclude oil layer, inferior oil layer, water layer and dry layer. The exper-

mental data Oilsk81, Oilsk82, Oilsk83, Oilsk84, Oilsk85 come from

ianghan oil field of China. We test each logging data separately while

raining with the rest four logging data. Table 14 shows a portion of

ilsk81 well logging data and the corresponding conclusions of log-
Table 16

Classification results of logging data in terms of accuracy and

AMCS SMOTEBoosting

Datasets AUCarea Accuracy AUCarea Accuracy

Oilsk81 1.0000 1.0000 1.0000 1.0000

Oilsk82 1.0000 1.0000 1.0000 1.0000

Oilsk83 1.0000 1.0000 0.9532 0.9800

Oilsk84 1.0000 1.0000 1.0000 1.0000

Oilsk85 1.0000 1.0000 1.0000 1.0000
ing explanations, the sample distributions of 5 logging datasets are

hown in Table 15.

.2. Results and analysis

According to the characteristics of five logging datasets, we em-

loy corresponding AMCS for Oilsk81-Oilsk85 respectively. For exam-

le, when testing in Oilsk81, the training set is “low IR, low dimension

nd small number of classes (Type 8)” datasets, AMCS will apply BPSO

s feature selection algorithm, Adaboost as the ensemble framework

nd SVM as the base classifier. While testing in Oilsk84, the corre-

ponding training set is “high IR, low dimension and small number of

lasses (Type 5)” datasets, AMCS will apply BPSO as feature selection

lgorithm, Adaboost as the ensemble framework and RBF as the base

lassifier. We test AMCS and the dominating three state-of-the-arts

n Section 5.2 (SMOTEBoosting, Easyensemble and PUSBE) on Jiang-

an logging data, the results are shown in Table 16. Only AMCS makes

o mistakes on predicting the character of each layer, while SMOTE-

oosting and PUSBE are compatible and Easyensemble makes most

istakes.

Using AUCarea as evaluation metric, we can also clearly justify the

erformances of algorithms between any two classes. If the AUC of

wo classes is 1, it demonstrates that there is no mutual misclassifica-

ion exists between these two classes, which also suggests these two

lasses are more separable. The AUC less than 1 means that the clas-

ifier makes some mistakes when distinguishing a pair of classes, the

loser the AUC value to 1, the lower misclassified cases occur. In order
AUCarea.

EasyEnsemble PUSBE

AUCarea Accuracy AUCarea Accuracy

1.0000 1.0000 1.0000 1.0000

0.9162 0.9592 1.0000 1.0000

0.9532 0.9800 1.0000 1.0000

0.8867 0.9615 1.0000 1.0000

1.0000 1.0000 0.8988 0.9231
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Table 17

AUC of each pair of layers.

Oilsk82 Oilsk83 Oilsk84 Oilsk85

AMCS EasyEnsemble AMCS SMOTEBoost EasyEnsemble AMCS EasyEnsemble AMCS PUSBE

Dry vs. water layer 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Dry vs. oil layer 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Dry vs. inferior oil layer 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Water vs. oil layer 1.0000 1.0000 1.0000 0.9286 1.0000 1.0000 1.0000 1.0000 0.9432

Water vs. inferior oil layer 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Oil vs. inferior oil layer 1.0000 0.8701 1.0000 0.9286 0.9286 1.0000 0.8222 1.0000 0.6591
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Fig. 10. AUC diagrams obtained in 5 test datasets.
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to see the details of misclassifications, we list AUC value of each pair

of layers for the algorithms make mistakes on the logging datasets,

as is presented in Table 17. It is obvious that most misclassifications

happen between oil layer and inferior oil layer. What’s more, water

layer samples are also misclassified in some cases, since the number

of water layer samples is extremely rare. Since recognizing oil layer is

the most crucial task for this application, AMCS is significantly better

than other three algorithms since it does good job on distinguishing

oil layer samples from other layers’ samples. At last, we also plot the

AUCarea diagram for AMCS in Fig. 10 to clarify how AMCS improves

the performance of base classifier.

7. Conclusions

In this paper we propose an adaptive multiple classifier system to

deal with imbalanced data classification tasks. The AMCS is framed

by employing feature selection and resampling as preprocessors and

training with multiple classifiers. We consider two feature selection

methods, three ensemble frameworks, five base classifiers and five

ensemble rules as options, for different type of imbalanced datasets,
he AMCS chooses one specific route of conducing feature selection,

esample and ensemble learning. In our study we divide imbalanced

ata into eight types regarding to their IR, dimension and the num-

er of classes. To find the best routes for different types of imbalanced

atasets to form AMCS, we test all the 110 possible routes and set the

est route of each type as the adapting criterion. After constructing

dapting criteria of AMCS, we compare the AMCS with other state-

f-the-arts, the results show that AMCS can outperform or be com-

arable with many well-known algorithms. Besides, this paper has

ractical contribution since we applied the proposed algorithm to oil

eservoir recognition. The largest advantage of AMCS in this applica-

ion lies in detecting oil layer efficiently through logging data. The re-

ults show that AMCS has significant superiority when distinguishing

il layer from other layers.

When testing the adapting rule for AMCS, we also find some com-

rehensive guidelines for imbalanced learning. First, over-sampling

nd under-sampling may not always be a good choice since AMCS al-

ays chooses Adaboost as the ensemble framework, in which a filter

esample method is employed. Second, for high dimension datasets,

lter feature selection method is better than wrapper method for
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oth accuracy and time-complexity. At last, for high IR datasets, deci-

ion tree based classifiers and KNN are good choices. For low dimen-

ion datasets, SVM outperforms other base classifiers.

Note that in AMCS we did not employ cost sensitive learning due

o the difficulty of discriminating cost of misclassifying each class.

he cost of misclassification should be case-specific. However, we

ould like to employ cost sensitive learning in AMCS specially for

il reservoir recognition in the future. For this specific case, when oil

ayer is misclassified, we would rather to assign oil layer samples into

nferior oil layer than into other layers. This is because inferior oil

ayers are suspected oil layers, which means the companies may not

bandon them immediately until it is confirmed that there is no oil

xist. This strategy can be implemented by cost sensitive learning, but

he cost for each layer remains to be analyzed.

cknowledgments

This research has been supported by National Natural Science

oundation of China under Grant nos. 71103163, 71573237; New Cen-

ury Excellent Talents in University of China under Grant no. NCET-

3-1012; Research Foundation of Humanities and Social Sciences of

inistry of Education of China under Grant no. 15YJA630019; Special

unding for Basic Scientific Research of Chinese Central University

nder Grant nos. CUG120111, CUG110411, G2012002A, CUG140604;

pen Foundation for the Research Center of Resource Environ-

ent Economics in China University of Geosciences (Wuhan) (Grant

o. H2015004B); Structure and Oil Resources Key Laboratory Open

roject of China under Grant no.TPR-2011-11.

upplementary Materials

Supplementary material associated with this article can be found,

n the online version, at doi:10.1016/j.knosys.2015.11.013.

eferences

[1] J.F. Díez-Pastor, J.J. Rodríguez, C. García-Osorio, et al., Random balance: ensembles
of variable priors classifiers for imbalanced data, Knowl.-Based Syst. 85 (2015)

96–111.

[2] M. Galar, A. Fernández, E. Barrenechea, EUSBoost: enhancing ensembles for
highly imbalanced data-sets by evolutionary undersampling, Pattern Recogn. 46

(2013) 3460–3471.
[3] P. Vorraboot, S. Rasmequan, K. Chinnasarn, Improving classification rate con-

strained to imbalanced data between overlapped and non-overlapped regions by
hybrid algorithms, Neurocomputing 152 (2015) 429–443.

[4] Z. Sun, Q. Song, X. Zhu, A novel ensemble method for classifying imbalanced data,

Pattern Recogn. 48 (2015) 1623–1637.
[5] S.R. Earle, Linear Models for Unbalanced Data, Wiley, 1987.

[6] G. Menardi, N. Torelli, Training and assessing classification rules with imbalanced
data, Data Min. Knowl. Discov. (2014) 92–122.

[7] S. Maldonado, R. Weber, F. Famili, Feature selection for high-dimensional class-
imbalanced data sets using support vector machines, Inf. Sci. 286 (2014) 228–246.

[8] G.Q. Feng, Y. Li, D.H. Tan, Application of fuzzy closeness degree in reservoir recog-

nition, J. Southwest Pet. Inst. 21 (4) (1999) 46–49.
[9] H.X. Guo, X.W. Liao, K.J. Zhu, Optimizing reservoir features in oil exploration man-

agement based on fusion of soft computing, Appl. Soft Comput. 11 (2011) 1144–
1155.

[10] N.V. Chawla, K.W. Bowyer, L.O. Hall, SMOTE: synthetic minority over-sampling
technique, Artif. Intell. Res. 16 (2002) 321–357.

[11] P. Vorraboot, S. Rasmequan, K. Chinnasarn, Improving classification rate con-

strained to imbalanced data between overlapped and non-overlapped regions by
hybrid algorithms, Neurocomputing 152 (2015) 429–443.

[12] J.F. Díez-Pastor, J.J. Rodríguez, C. García-Osorio, et al., Random balance: ensembles
of variable priors classifiers for imbalanced data, Knowl.-Based Syst. 85 (2015)

96–111.
[13] Freund Yoav, Boosting a weak learning algorithm by majority, Inf. Comput. 121

(2) (1995) 256–285.
[14] L. Peng, H. Zhang, B. Yang, et al., A new approach for imbalanced data classification

based on data gravitation, Inf. Sci. 288 (2014) 347–373.

[15] Z. Sun, Q. Song, X. Zhu, A novel ensemble method for classifying imbalanced data,
Pattern Recogn. 48 (2015) 1623–1637.

[16] V.C. Nitesh, L. Aleksandar, O.H. Lawrence, SMOTEBoost: improving prediction of
the minority class in boosting, in: Proceedings of the 7th European Conference on

Principles and Practice of Knowledge Discovery in Databases, 2003, pp. 107–119.
[17] V. López, S. Río, J.M. Benítez, et al., Cost-sensitive linguistic fuzzy rule based classi-
fication systems under the MapReduce framework for imbalanced big data, Fuzzy

Sets Syst. 258 (2015) 5–38.
[18] B. Krawczyk, M. Wozniak, G. Schaefer, Cost-sensitive decision tree ensembles for

effective imbalanced classification, Appl. Soft Comput. 14 (2014) 554–562.
[19] S. Datta, S. Das, Near-bayesian support vector machines for imbalanced data clas-

sification with equal or unequal misclassification costs, Neural Netw. 70 (2015)
39–52.

20] L. Yin, Y. Ge, K. Xiao, Feature selection for high-dimensional imbalanced data,

Neurocomputing 105 (2013) 3–11.
[21] M. Alibeigi, S. Hashemi, A. Hamzeh, DBFS: an effective density based feature se-

lection scheme for small sample size and high dimensional imbalanced data sets,
Data Knowl. Eng. 81-82 (4) (2012) 67–103.

22] H. Han, W.Y. Wang, B.H. Mao, Borderline-SMOTE: A New Over-Sampling Method
in Imbalanced Data Sets Learning, Springer, Berlin Heidelberg, 2005, pp. 878–887.

Advances in Intelligent Computing.

23] W.A.Y. Ii, S.L. Nykl, G.R. Weckman, et al., Using Voronoi diagrams to improve
classification performances when modeling imbalanced datasets, Neural Com-

put. Appl. 26 (2015) 1–14.
[24] Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in: Pro-

ceedings of the Thirteenth International Conference on Machine Learning, 1996,
pp. 148–156.

25] X.Y. Liu, J. Wu, Z.H. Zhou, Exploratory Under-sampling for class-imbalance learn-

ing, bioinformatics, in: Proceedings of the IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, 39(2), 2009, pp. 539–550.

26] H. Yu, J. Ni, J. Zhao, ACOSampling: an ant colony optimization-based undersam-
pling method for classifying imbalanced DNA microarray data, Neurocomputing

101 (2013) 309–318.
[27] M.D. Martino, A. Fernández, P. Iturralde, Novel classifier scheme for imbalanced

problems, Pattern Recogn. Lett. 34 (2013) 1146–1151.

28] V. López, A. Fernández, S. García, et al., An insight into classification with imbal-
anced data: empirical results and current trends on using data intrinsic charac-

teristics, Inf. Sci. 250 (2013) 113–141.
29] Tom Fawcett. An introduction to ROC analysis, Pattern Recogn. Lett., 27: 861–874.

30] M. Richard, E. Jonathan, Multi-class ROC analysis from a multi-objective optimiza-
tion perspective, Pattern Recogn. Lett. 27 (2006) 916–927.

[31] Md. Hassan, R. Kotagiri, K. Chandan, et al., A Novel scalable multi-class ROC for

effective visualization and computation, in: Advances in Knowledge Discovery
and Data Mining14th Pacific-Asia Conference June, 21-24, 2010.

32] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of IEEE In-
ternational Conference on Neural Networks, 1995, pp. 1942–1948.

[33] W. Bin, P. Qinke, Z. Jing, A binary particle swarm optimization algorithm inspired
by multi-level organizational learning behavior, Eur. J. Oper. Res. 219 (2012) 224–

233.

34] J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algo-
rithm, in: IEEE International Conference on Systems Man and Cybernetics Com-

putational Cybernetics and Simulation, 1997.
[35] K. Bache, M. Lichman, UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml], University of California, School of Information and
Computer Science, Irvine, CA, 2013.

36] S. Ando, Classifying imbalanced data in distance-based feature space, Knowl. Inf.
Syst. (2015) 1–24.

[37] R.C. Prati, E. Gustavo, DiegoF. Silva, Class imbalance revisited: a new experimental

setup to assess the performance of treatment methods, Knowl. Inf. Syst. 45 (2015)
247–270.

38] Z. Liu, H. Cao, X. Chen, et al., Multi-fault classification based on wavelet SVM with
PSO algorithm to analyze vibration signals from rolling element bearings, Neuro-

computing 99 (1) (2013) 399–410.
39] X. Wang, S. Matwin, N. Japkowicz, X. Liu, Cost-sensitive boosting algorithms for

imbalanced multi-instance datasets, in: Canadian Conference on Artificial Intelli-

gence, 2013, pp. 174–186.
40] F. Alberto, L. Victoria, G. Mikel, et al., Analysing the classification of imbalanced

data-sets with multiple classes: binarization techniques and ad-hoc approaches,
Knowl.-Based Syst. 42 (2013) 97–110.

[41] F. Wilcoxon, Individual comparisons by ranking methods, Biometr. Bull. 6 (1945)
80–83.

42] D. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures,

Chapman & Hall/CRC, London, U.K., 2006.
43] S. Holm, A simple sequentially rejective multiple test procedure, Scand. J. Stat. 6

(1979) 65–70.
44] M.D. Pérez-Godoy, A.J Rivera, C.J. Carmona, et al., Training algorithms for radial

basis function networks to tackle learning processes with imbalanced data-sets,
Appl. Soft Comput. 25 (2014) 26–39.

45] RobertE. Schapire, Yoram Singer, Improved boosting algorithms using

confidence-rated pre-dictions, Mach. Learn. 37 (3) (1999) 297–336.
46] Yoav Freund, RobertE. Schapire, A decision-theoretic generalization of on-line

learning and an application to boosting, J. Comput. Syst. Sci. 55 (1) (1997) 119–
139.

[47] B. Krawczyk, G. Schaefer, An improved ensemble approach for imbalanced clas-
sification problems, in: 8th IEEE International Symposium on Applied Computa-

tional Intelligence and Informatics, 2013.

48] Q.Y. Yin, J.S. Zhang, C.X. Zhang, et al., A novel selective ensemble algorithm for
imbalanced data classification based on exploratory undersampling, Math. Prob.

Eng. 71 (3) (2014) 741–764.
49] L. Yin, Y. Ge, K. Xiao, Feature selection for high-dimensional imbalanced data,

Neurocomputing 105 (3) (2013) 3–11.

http://dx.doi.org/10.1016/j.knosys.2015.11.013
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0001
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0001
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0001
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0001
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0001
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0002
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0002
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0002
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0002
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0003
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0003
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0003
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0003
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0004
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0004
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0004
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0004
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0005
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0005
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0006
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0006
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0006
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0007
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0007
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0007
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0007
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0008
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0008
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0008
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0008
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0009
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0009
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0009
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0009
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0010
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0010
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0010
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0010
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0011
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0011
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0011
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0011
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0012
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0012
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0012
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0012
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0012
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0013
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0013
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0014
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0014
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0014
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0014
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0014
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0015
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0015
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0015
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0015
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0016
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0016
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0016
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0016
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0017
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0017
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0017
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0017
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0017
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0018
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0018
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0018
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0018
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0019
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0019
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0019
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0020
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0020
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0020
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0020
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0021
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0021
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0021
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0021
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0022
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0022
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0022
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0022
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0023
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0023
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0023
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0023
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0023
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0024
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0024
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0024
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0025
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0025
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0025
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0025
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0026
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0026
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0026
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0026
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0027
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0027
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0027
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0027
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0028
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0028
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0028
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0028
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0028
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0029
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0029
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0029
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0030
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0030
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0030
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0030
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0030
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0031
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0031
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0031
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0032
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0032
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0032
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0032
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0033
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0033
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0033
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0034
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0034
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0034
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0035
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0035
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0036
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0036
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0036
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0036
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0037
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0037
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0037
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0037
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0037
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0038
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0038
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0038
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0038
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0038
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0039
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0039
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0039
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0039
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0039
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0040
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0040
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0041
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0041
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0042
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0042
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0043
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0043
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0043
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0043
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0043
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0044
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0044
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0044
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0045
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0045
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0045
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0046
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0046
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0046
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0047
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0047
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0047
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0047
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0047
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0048
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0048
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0048
http://refhub.elsevier.com/S0950-7051(15)00456-6/sbref0048


104 L. Yijing et al. / Knowledge-Based Systems 94 (2016) 88–104
[50] A. Shanab, T. Khoshgoftaar, R. Wald, et al., Comparison of approaches to
alleviate problems with high-dimensional and class-imbalanced data, in: IEEE

International Conference on Information Reuse and Integration, 2011, pp. 234–
239.

[51] C. Seiffert, T.M. Khoshgoftaar, J. Van Hulse, et al., RUSBoost: a hybrid approach to
alleviating class imbalance, IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 40 (1)

(2010) 185–197.
[52] P. Vorraboot, S. Rasmequan, C. Lursinsap, et al., Improving classification rate con-

strained to imbalanced data between overlapped and non-overlapped regions by

hybrid algorithms, Neurocomputing 152 (2015) 429–443.
[53] B. Krawczyk, M. Wozniak, F. Herrera, Weighted one-class classification for differ-

ent types of minority class examples in imbalanced data, in: IEEE Computational
Intelligence and Data Mining (CIDM), 2014, pp. 337–344.

[54] J. Tian, H. Gu, W. Liu, Imbalanced classification using support vector machine en-
semble, Neural Comput. Appl. 20 (2) (2011) 203–209.

[55] N. Thai-Nghe, Z. Gantner, L. Schmidt-Thieme, Cost-sensitive learning methods

for imbalanced data, in: IEEE International Joint Conference Neural Networks
(IJCNN), 2010, pp. 1–8.
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