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In recent years, combining multiple sources or views of datasets for data clustering has been a popular
practice for improving clustering accuracy. As different views are different representations of the same
set of instances, we can simultaneously use information from multiple views to improve the clustering
results generated by the limited information from a single view. Previous studies mainly focus on the
relationships between distinct data views, which would get some improvement over the single-view
clustering. However, in the case of high-dimensional data, where each view of data is of high dimen-
sionality, feature selection is also a necessity for further improving the clustering results. To overcome
this problem, this paper proposes a novel algorithm termed Weighted Multi-view Clustering with Fea-
ture Selection (WMCFS) that can simultaneously perform multi-view data clustering and feature selec-
tion. Two weighting schemes are designed that respectively weight the views of data points and feature
representations in each view, such that the best view and the most representative feature space in each
view can be selected for clustering. Experimental results conducted on real-world datasets have vali-
dated the effectiveness of the proposed method.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Clustering is one of the most important methods to explore the
underlying (cluster) structure of data [1]. The basic idea is to
partition a set of data objects according to some criterion such that
similar objects can be grouped into the same cluster, and dissim-
ilar objects are separated into different clusters. To achieve this
goal, we usually conduct clustering by maximizing the intra-
cluster similarity and the inter-cluster dissimilarity. After several
decades' development, a number of clustering algorithms have
been developed [1], such as k-means clustering [2], spectral clus-
tering [3], kernel-based clustering [4], graph-based clustering [5]
and hierarchical clustering [6].

With the development of hardware technology, a huge amount
of multi-view data with various representations have been gen-
erated in real-world applications [7–14]. For example, in web
clustering, different types of data, such as images, videos, hyper-
links and texts, can be taken into consideration as they are dif-
ferent views of web pages (as shown in Fig. 1). In multi-view data,
different views are different representations of the same set of
instances. It is a significant research challenge to combine together
multiple views or sources of the same set of instances to get a
Xu),
ail.sysu.edu.cn (J.-H. Lai).
better clustering performance. The existing clustering algorithms
designed for single-source data cannot be applied directly to the
data consisting of multiple views or in various representations as
they often vary greatly from traditional single-source data. Data in
different views or sources are always not comparable to each other
due to their dimensions and semantic representations are always
different.

In addition, some views of data may be of high dimensionality
which leads to high computational complexity and possibly low
clustering accuracy. For example, when it comes to biomedicine,
we can get different types of information for a patient, including
magnetic resonance images, cerebrospinal fluid test data, blood
test data, protein expression data, and genetic data, each of which
is taken as a distinct view of patient data. However, some view of
data may be of high dimensionality which would lead to a large
amount of calculation. For some specific views, only a portion of
features are needed for improving the clustering results. In other
words, feature selection is a way which can both simplify the
calculation and help to get an accurate data model in data clus-
tering [15,13,16].

In order to solve this problem, we propose a novel algorithm,
termed Weighted Multi-view Clustering with Feature Selection
(WMCFS), which can simultaneously perform multi-view data
clustering and feature selection. A global objective function is
proposed, which takes into consideration both of the multi-view
learning and feature selection in the process of data clustering. In
the global objective function, two weighting schemes are designed
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Fig. 1. Multi-view data of web page.
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that respectively weight the views of data points and feature
representations in each view, such that the best view and the most
representative feature space in each view can be selected for
clustering. To solve the objective function, we design an EM
(Expectation Maximization)-like iteration, which can converge to
the acceptable clustering results. Experimental results conducted
on real-world datasets have validated the effectiveness of the
proposed method.

The rest of the paper is organized as follows. Section 2 briefly
overviews the previous work on multi-view data clustering. The
proposed WMCFS algorithm and its foundations are described in
detail in Section 3. To demonstrate the performance of our algo-
rithms, we have conducted extensive experiments, the experi-
mental results of which are reported in Section 4. The conclusion
is drawn in Section 5.
Table 1
Symbols used in this paper.

Symbol Meaning

X The whole dataset
Xv The v-th view dataset
xv
i The i-th instance of the v-th view dataset and xv

i ARdv

mv
k The cluster center of the k-th cluster in the v-th view

N Number of instances in each view
M Number of clusters
lv Number of features in the v-th view
εH Objective function which denotes the sum of intra-class distances
ωv Weight for the v-th view
τl
v Weight for the l-th feature of the v-th view

δik Indicator variable showing whether the i-th instance belongs to the k-
th cluster

p Exponential parameter controlling the sparsity of view weight vector
β Parameter controlling the sparsity of feature weight vectors
2. Related work

For clustering multi-view or multi-source datasets, some
algorithms have been proposed recently which take different
factors into consideration, e.g. the differences and relationships
between data from various views. Most of the earlier methods
extend the traditional single-source clustering algorithms to the
multi-view situation by simply minimizing the disagreement
between different views, i.e., by minimizing the difference of the
clustering results generated from different views. Two early works
[17,18] developed two-view algorithms by combining EM, k-
means and spectral clustering algorithms simultaneously. In
[19,20], Kumar et al. used the spectral embedding from one view
to conduct clustering of the other views which enforces the clus-
tering results in different views to agree with each other. Wang
et al. designed a multi-view spectral clustering, which relies on
Pareto optimization to find the best common cuts across all views
[21]. However, the above methods only focus on the relationships
between various views and ignore the characteristics of distinct
views in data. Tzortzis and Likas [22] proposed an multi-view
kernel k-means (MVKKM) algorithm which assigns a weight for
each view according to the view's contribution to the clustering
result and then combines the kernels derived from the weighted
views together. However, it is based on the inner product kernels
for all views, and has no explicit mechanism for feature selection.

To address the above issues, there are some other efforts that
investigate feature selection in multi-view data clustering. A fra-
mework was proposed in [14], which constructs models respec-
tively for the multi-source learning and feature selection. How-
ever, this work is designed for supervised learning and cannot deal
with the unsupervised situation. In particular, a model is first
trained based on the supervision information, during which the
relatively more important features for each cluster can be selected.
In this way, feature selection can be accomplished under the cri-
terion to enforce the correct class labels and the important fea-
tures discovered by this process will be assigned with high
weights. However, when it comes to the unsupervised situation,
where the labeled samples are not available, this method is no
longer applicable, since the importance of features cannot be
evaluated due to the lack of the ground-truth labeling. Similarly,
Zhao et al. [23] proposed an algorithm combining LDA with co-
training, i.e., exploiting labels learned in one view to learn dis-
criminative features in another view. In [24], Wang et al. devel-
oped an algorithm to do feature learning for multi-view clustering.
However, this method cannot deal with the noisy data in each
view. When some of the views are noisy, the result might become
unsatisfactory. Chen et al. [25] proposed an automated two-level
variable weighting clustering algorithm for multi-view data
termed TW-k-Means, which can simultaneously compute weights
for views and individual variables. However, the same weighting
scheme is used for both view weighting and feature selection,
which is not able to explore more possibilities. Cai et al. [26] also
focused on multi-view clustering based on k-means which would
be applicable for multi-view data but did not really do feature
selection so that their clustering model will degenerate in the case
of high dimensionality.

In this paper, inspired by the multi-view kernel k-means
algorithm proposed by Tzortzis and Likas [22], we design an
algorithm termed Weighted Multi-view Clustering with Feature
Selection (WMCFS), that can simultaneously perform multi-view
data clustering and feature selection. Instead of integrating a fea-
ture selection mechanism into multi-view kernel k-means, we use
a simple yet effective formula based on the original k-means
algorithm. This is because multi-view kernel k-means relies on a
kernel mapping in which the kernel selection itself is a challenging
issue in the unsupervised learning case.
3. Weighted Multi-view Clustering with Feature Selection

To make this paper clear, Table 1 summarizes the symbols used
in this paper.

3.1. Problem formulation

Consider a dataset consisting of N instances represented by V
views. Let X ¼ fx1

1; x
1
2;…; xV

Ng denote the dataset, where xv
i is the

i-th instance from the v-th view. In this way, the multi-view data
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Fig. 2. Illustration of multi-view data. The same color represents data from the
same view and the width of each column denotes the dimension of the corre-
sponding view. It is often the case that the dimensions would vary in
different views.
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can be represented as follows (shown in Fig. 2):

X ¼ fX1;X2;…;XV g; ð1Þ

X1 ¼ fx1
1; x

1
2;…; x1

Ng; ð2Þ

⋮

XV ¼ fxV
1 ; x

V
2 ;…; xV

Ng; ð3Þ
where Xv denotes the set of instances from the v-th view in X , and
xv
i ARdv is the i-th instance in Xv with dv being the dimension of

the v-th view.
The goal of multi-view clustering is to cluster the N instances

into M clusters according to their semantic similarity between
each other in all views.

3.2. Global objective function

In what follows, we will describe in detail the proposed global
objective function, which takes into consideration both of the
multi-view learning and the feature selection in the process of
data clustering. Both of the multi-view learning and the feature
selection are realized by weighting. To this end, two weighting
schemes are designed, which respectively weight the views of data
points and feature representation in each view, such that the best
view and the most representative feature subspace in each view
can be selected for clustering. For clarity, we will describe the
objective function from the viewpoint of multi-view k-means,
followed by view weighting and feature selection.

3.2.1. Multi-view k-means
We will describe our objective function from the viewpoint

of k-means for clarity. The goal of k-means is to choose M
cluster centers such that the sum of the squared distance of each
instance to the corresponding cluster center is minimized. Let X
¼ fx1; x2;…; xNg denote the dataset, the objective function of
k-means to be minimized is as follows:

εH ¼
XN
i ¼ 1

XM
k ¼ 1

δik J ðxi�mkÞJ2; ð4Þ

where mk is the center of cluster k and δik denotes the cluster
assignment of instances such that δik equals 1 when the i-th
instance is assigned to cluster k and 0 otherwise. Obviously, each
instance must be assigned to one and only one cluster, i.e.,PM
k ¼ 1 δik ¼ 1; 8 i; δikAf0;1g.
In the case of multi-view data, the objective function becomes

εH ¼
XV
v ¼ 1

XN
i ¼ 1

XM
k ¼ 1

δik J ðxv
i �mv

kÞJ2; ð5Þ

where mv
k is the center of cluster k in view v. In the multi-view k-

means objective function, each instance is assigned to the same
cluster in all views, but the cluster centers of the same cluster vary
in different views. This is because the data representations in
distinct views are different, which leads to different cluster center
representations.

3.2.2. View weighting and feature selection
To simultaneously perform multi-view learning and feature

selection in the process of data clustering, two weighting schemes
are designed that respectively weight the views of data points and
feature representation in each view.

The first weighting scheme is to weight the data of each view.
Let ωv denote the weight for data from the v-th view, satisfyingPV

v ¼ 1ωv ¼ 1;ωvZ0. Therefore, ω is the view weight vector. The
second weighting scheme is to weight the features of each view.
Let τv denote the feature weight vector of length dv, with each
entry τlv representing the weight for the l-th feature in view v,
satisfying

Pdv

l ¼ 1 τ
v
l ¼ 1; τvl Z0.

Based on the above notation, we get the sum of the weighted
squared distance with regularization term as follows:

εH ¼
XV
v ¼ 1

ðωvÞp
XN
i ¼ 1

XM
k ¼ 1

δik JdiagðτvÞðxv
i �mv

kÞJ2þβ
XV
v ¼ 1

Jτv J2; ð6Þ

where mv
k is the center of cluster k in view v:

mv
k ¼

PN
i ¼ 1 δikx

v
iPN

i ¼ 1 δik
; ð7Þ

and diagðτvÞ is a diagonal matrix with the elements of the vector τv

on the diagonal.
The last component of this objective function β

PV
v ¼ 1 Jτv J2 is

used to control the sparsity of the feature weight vectors τv; 8v so
as to avoid the situation that only a few features are selected in
getting a very small but meaningless objective value. The para-
meters p and β are the exponential and balancing parameters,
which are selected according to the priori knowledge of data so as
to help controlling the sparsity of the view weight vector ω and
the feature weight vectors τv; 8v¼ 1;…;V respectively. Experi-
mental analysis shows that there exists a relatively wide range of
values that can generate satisfactory clustering results.

The major difference between the proposed objective function
(6) and the one proposed by Tzortzis and Likas [22] is that, the
objective in [22] only considers view weighting and there is no
strategy for feature learning, as shown below:

εH ¼
XV
v ¼ 1

ðωvÞp
XN
i ¼ 1

XM
k ¼ 1

δik Jϕ
vðxv

i Þ�mv
k J

2; ð8Þ

where mv
k is the center of cluster k in view v:

mv
k ¼

PN
i ¼ 1 δikϕ

vðxv
i ÞPN

i ¼ 1 δik
: ð9Þ

The feature in each view is pre-specified by a kernel mapping ϕ as
input to their algorithm. However, in our method, not only view
weighting but also feature weighting are automatically learned.
Although it is possible to integrate the weighting-based feature
selection mechanism into (8), the kernel selection itself is a chal-
lenging issue in the unsupervised learning case. Therefore, a
simple yet effective formula is used in our model.
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3.2.3. Final objective function
The goal of the Weighted Multi-view Clustering with Feature

Selection is to find the optimal cluster assignment, view weighting
and feature weighting simultaneously such that the objective
function is minimized. That is

min
fδikgMk ¼ 1 ;fωvgVv ¼ 1 ;fτvgVv ¼ 1

εH ;

subject to
XM
k ¼ 1

δik ¼ 1; 8 i; δikAf0;1g;

XV
v ¼ 1

ωv ¼ 1;ωvZ0;

Xdv
l ¼ 1

τvl ¼ 1; τvl Z0; 8v: ð10Þ

3.3. Optimization

To search for the optimal cluster assignment, view weighting
and feature weighting, we design an EM-like iteration, which
contains three iteration stages. In each stage, one of the three
variables is updated, with the other two variables being fixed. We
will describe the three stages one by one in the following sections.

3.3.1. Updating the cluster assignment
By fixing the view weight vector and feature weight vectors, we

can update the cluster assignment δik by performing k-means. That
is, in the objective function (6), fixing ω and τv; 8v results in the
objective function the same as k-means.

In the first round of iteration, the view weight vector ω and
feature weight vectors τv; 8v¼ 1;…;V are respectively initialized
evenly as ωv ¼ 1

V; 8v and τvl ¼ 1
dv
; 8 l.

Then we can apply k-means by minimizing εH in (6).
For convenience, some notations are introduced here. Let

G¼
XV
v ¼ 1

ωp
vGv; ð11Þ

where

Gvði; jÞ ¼ ðxv
i ÞTdiagðτvÞdiagðτvÞxv

j ; ð12Þ

which can be written as

Gvði; jÞ ¼ ðyvi ÞTyvj ; ð13Þ

where yvi is the projection of instance xv
i after feature selection

(i.e., weighted by τv).
By substituting (7) into (6), we can get

εH ¼
XV
v ¼ 1

ωp
v

XN
i ¼ 1

XM
k ¼ 1

δik JdiagðτvÞ xv
i �
PN

i ¼ 1 δikx
v
iPN

i ¼ 1 δik

 !
J2þβ

XV
v ¼ 1

Jτv J2;

) εH ¼ trðGÞ�trðΔTGΔÞþβ
XV
v ¼ 1

Jτv J2; ð14Þ

where Δ is

Δik ¼
δikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j ¼ 1 δjk

q ; ð15Þ

and the last regularization term is a constant given fixed
τv; 8v¼ 1;…;V .

In this way, we can take full advantage of the information from
various views to improve the clustering results.
3.3.2. Updating the view weighting
In this stage of iteration, by fixing the cluster assignment δik

and the feature weight vectors τv; 8v, we can update the view
weight vector ω as follows.

First, we get the Lagrangian formula of (10) w.r.t. ωv as follows:

Lðω; λÞ ¼ εHðωÞþλ
XV
v ¼ 1

ωv�1

 !
: ð16Þ

Taking derivative of both sides w.r.t. ωv gives

∂Lðω; λÞ
∂ωv

¼ ∂εHðωÞ
∂ωv

þλ: ð17Þ

Setting the derivation to zero, we can get

pωðp�1Þ
v Dvþλ¼ 0 ) ωv ¼

�λ
pDv

� �1=ðp�1Þ
; ð18Þ

where

Dv ¼
XN
i ¼ 1

XM
k ¼ 1

δik JdiagðτvÞðxv
i �mv

kÞJ2; ð19Þ

when p41.
Furthermore, we can get the following formula by substituting

(18) into the constraint
PV

v0 ¼ 1ωv0 ¼ 1:

XV
v0 ¼ 1

�λ
pDv0

� �
1=ðp�1Þ ¼ 1 ) ð�λÞ1=ðp�1Þ ¼ 1

PV
v0 ¼ 1

1
pDv0

� �1=ðp�1Þ:

ð20Þ

Based on this, we can get the formula to update ωv by substituting
(20) into (18) as follows:

ωv ¼
1

PV
v0 ¼ 1

Dv

Dv0

� �1=ðp�1Þ; p41: ð21Þ

When p¼1, the weights are less than 1 according to
PV

v ¼ 1ωv ¼ 1,
and we can get Dvn r

PV
v0 ¼ 1ωv0Dv0 , where vn ¼ arg minv0Dv0 .

Therefore, we can get the following formula for ωv if p¼1:

ωv ¼
1; v¼ arg min

v0
Dv0

0; otherwise

(
p¼ 1: ð22Þ

In the above formulas, p is a exponential parameter that can help
adjusting the sparsity of the view weight vector ω. If we get some
priori knowledge of the input data, we can set p to a better value
which can improve the result. That is, according to (21), if most of
the views are useful, larger p is more suitable. Nevertheless, our
experimental results show that there exists relatively a wide range
of p values that can generate satisfactory clustering results.

The underlying rationale of the above updating formula is that
the instances closer to the cluster centers are considered to be
more useful. The more useful one view is, the larger weight this
view will be assigned to.

3.3.3. Updating the feature weighting
In this stage of iteration, by fixing the cluster assignment δik

and the view weight vector ω, we can update the feature weight
vectors τv; 8v as follows.

Similar to the updating of the view weighting, the Lagrangian
formula of (10) w.r.t. τv can be obtained as follows:

Lðτ; λÞ ¼ εHðτÞþλ
Xdv
l ¼ 1

τvl �1

 !
; 8v: ð23Þ
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Taking derivative of both sides w.r.t. τvl gives

∂Lðτ; λÞ
∂τvl

¼ ∂εHðτÞ
∂τvl

þλ: ð24Þ

To obtain a simpler formula of the first term on the righthand
side, we rewrite the formula of εH as follows:

εHðτÞ ¼
XV
v ¼ 1

ðωvÞp
XN
i ¼ 1

XM
k ¼ 1

δik
Xdv
l ¼ 1

ðxv
i �mv

kÞ2l ðτvl Þ2þβ
XV
v ¼ 1

Xdv
l ¼ 1

ðτvl Þ2;

ð25Þ
where ðxv

i �mv
kÞl means the l-th element of ðxv

i �mv
kÞ. Based on the

above formula, we can get

∂εHðτÞ
∂τvl

¼ 2ðωvÞp
XN
i ¼ 1

XM
k ¼ 1

δikðxv
i �mv

kÞ2l τvl þ2βτvl : ð26Þ

By substituting (26) into (24) and setting (24) to 0, we can get

τvl ¼
�λ

2βþ2ðωvÞp
PN

i ¼ 1
PM

k ¼ 1 δikðxvi �mv
kÞ2l

: ð27Þ

Substituting (27) into the constraint
Pdv

l0 ¼ 1 τ
v
l0 ¼ 1, we can get

�λ¼ 1Pdv

l0 ¼ 1
1

2βþ2ðωvÞp
PN

i ¼ 1
PM

k ¼ 1 δikðxvi �mv
kÞ2l0

: ð28Þ

At last, we can get the formula for updating the feature weight
vectors τv; 8v by substituting (28) into (27) as follows:

τvl ¼

1Pdv

l0 ¼ 1
1

2βþ2ðωvÞp
PN

i ¼ 1
PM

k ¼ 1 δikðxvi �mv
kÞ2l0

2βþ2ðωvÞp
PN
i ¼ 1

PM
k ¼ 1 δikðxvi �mv

kÞ2l
; 8 l; ð29Þ

which can be further simplified as

τvl ¼
1Pdv

l0 ¼ 1
Bv
l

Bv
l0

; 8 l; ð30Þ

where

Bv
l ¼ βþðωvÞp

XN
i ¼ 1

XM
k ¼ 1

δikðxvi �mv
kÞ2l : ð31Þ

3.4. The complete algorithm
Algorithm 1. Weighted Multi-view Clustering with Feature
Selection.
1:
2:

3:

4:
5:

6:

7:
8:
Input: X ¼ fx1
1; x

1
2;…; xV

Ng; p;β;M; tmax.
Output: δik: the cluster assignment; ωv: the view

weighting; τlv: the feature weighting.

Initialize ωv ¼ 1

V and τvl ¼ 1
dv
; 8 l¼ 1;2;…; dv; 8v¼ 1;2;…;V .

t¼0.

Repeat
Update the cluster assignment δik by performing k-
means w.r.t. (6).
Update the view weight vector ω via (21) or (22).

Update the feature weight vectors τv; 8v via (30).
t ¼ tþ1.

Until Convergence or t4tmax
1 http://archive.ics.uci.edu/ml/datasets/MultipleþFeatures
2 http://multilingreuters.iit.nrc.ca/ReutersMultiLingualMultiView.htm
9:

For clarity, Algorithm 1 summarizes the proposed Weighted
Multi-view Clustering with Feature Selection (WMCFS) algorithm.
To prove the convergence of Algorithm 1, we set the changes of
weighted sum of intra-class distances between the t-th and the
ðtþ1Þ-th iterations as CH(t) which can be computed as follows:

CHðtÞ ¼ εtH�min
ω̂

ðmin
τ̂

ðmin
δ̂

ðεtHÞÞÞ; ð32Þ

where ω̂, τ̂ and δ̂ are the updated parameters in the ðtþ1Þ-th
iteration and εHt is the weighted sum of intra-class distances after
the t-th iteration. Obviously, CHðtÞZ0 which means that the sum
of intra-class distances updated in each step of iterations is strictly
decreasing. Algorithm 1 converges to a local minimum.

In our experiments, the iteration stops when the number of
iterations reaches the maximum number of iterations tmax (we
always set tmax ¼ 10 in our experiments) or the iteration con-
verges, i.e., when the sum of intra-class distances keeps stable.
Here we set a threshold (e¼0.00001) and when the gap of the
sum of intra-class distances between the two consecutive itera-
tions is less than the threshold, we stop the iteration and output
the final results.
4. Experimental results

In order to demonstrate the effectiveness of the proposed
method, extensive experiments have been conducted on three
real-world datasets. We first analyze the performance sensitivity
to the two parameters p and β. Then, several state-of-the-art
multi-view clustering methods have been performed and com-
pared with the proposed method, which shows the significant
improvement achieved by our method. For experimental purpose,
we only perform the parameter analysis on two of the three
datasets and then report all of the comparison results on the three
datasets.

4.1. Datasets and experimental settings

Three real-world datasets are used in our experiments, namely
Mfeat, Reuters and Corel.

The Multiple Features (abbr. Mfeat) dataset is a dataset con-
sisting of handwritten digits (0–9) [27]. There are 6 views of each
instance, namely, Fourier coefficients of the character shapes (fol-
lowing the UCI Machine Learning Repository website1, we use
abbreviation mfeat-fou), profile correlations (mfeat-fac), Karhunen-
Love coefficients (mfeat-kar), pixel averages in 2�3 windows
(mfeat-pix), Zernike moments (mfeat-zer) and 6 morphological
features (mfeat-mor). Here we take the first five representative
views of this dataset to form a five-view dataset. The detailed
information of this dataset is shown in Table 2.

The Reuters RCV1/RCV2 Multilingual (abbr. Reuters) dataset is a
dataset consisting of machine translated documents [28]. It has
been widely used for evaluating the performances of multi-view
learning algorithms. The dataset contains documents originally
written in five different languages, namely English (EN), French
(FR), German (GR), Italian (IT) and Spanish (SP). Each document,
originally written in one language, is translated to the other four
languages using the Portage system [29]. The documents are
categorized into six different topics. The dataset is summarized in
Table 3. More detail can be found on the dataset website.2 In our
experiments, we choose one language, namely English (EN), as the
original language source and take the translated documents in the
other four languages as the other four sources. This means that we
conduct our experiments on the five-view dataset, with the views
being EN, FR, GR, IT and SP respectively.

http://www.archive.ics.uci.edu/ml/datasets/Multiple&plus;Features
http://www.archive.ics.uci.edu/ml/datasets/Multiple&plus;Features
http://www.archive.ics.uci.edu/ml/datasets/Multiple&plus;Features
http://www.archive.ics.uci.edu/ml/datasets/Multiple&plus;Features
http://www.multilingreuters.iit.nrc.ca/ReutersMultiLingualMultiView.htm
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The Corel dataset is extracted from a Corel image collection
[27], and we randomly get 2000 instances of 5 classes. Four sets of
features are available based on the color histogram (abbr. Col-h),
color histogram layout (abbr. Col-hl), color moments (abbr. Col-m),
and co-occurrence texture (abbr. Coo-t). These features are treated
as the 4 views of samples whose information is shown in Table 4.

All the experiments are conducted in MATLAB 2012a (7.14) 64-
bit edition on a workstation (Windows 64 bit, 8 Intel 2.00 GHz
processors, 16 GB of RAM).

For clustering performance evaluation, two widely used mea-
surements, i.e. classification rate (CR) [30] and normalized mutual
information (NMI) [31], are used based on the ground-truth labels
of the instances. When computing the classification rate, each
obtained category is firstly associated with the “ground-truth”
category which accounts for the largest number of samples in the
learned category. Then the classification rate (CR) are computed as
the ratio of the number of correctly classified samples to the size of
Table 2
Detailed information of the Mfeat dataset.

View # Samples # Features # Classes

mfeat-fou 2000 76 10
mfeat-fac 2000 216 10
mfeat-kar 2000 64 10
mfeat-pix 2000 240 10
mfeat-zer 2000 47 10
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Fig. 3. Analysis on the exponential parameter p: distribu

Table 3
Detailed information of the Reuters Dataset.

View # Docs # Words

EN 18,758 21,513
FR 26,648 24,839
GR 29,953 34,279
IT 12,342 11,547
SP 24,039 11,506

Topic # Docs per(%)

C15 18,816 16.84
CCAT 21,426 19.17
E21 13,701 12.26
ECAT 19,198 17.18
GCAT 19,178 17.16
M11 19,421 17.39
the dataset. That is

CR¼#Correctly classified samples
#Samples in the dataset

: ð33Þ

Given the clustering labels π of c clusters and the actual class
labels θ of ĉ classes, we build a confusion matrix where entry (i,j)
defines the number NðjÞ

i of data points in cluster i and class j. Then
NMI can be computed from the confusion matrix [31],

NMI¼
2
Pc

l ¼ 1
Pĉ

h ¼ 1
NðhÞ

l

N
log

NðhÞ
l NPc

i ¼ 1 N
ðhÞ
i

Pĉ
i ¼ 1 N

ðiÞ
l

HðπÞþHðθÞ ; ð34Þ

where HðπÞ ¼ �Pc
i ¼ 1

Ni
N log Ni

N and HðθÞ ¼ �Pĉ
j ¼ 1

NðjÞ
N log NðjÞ

N are
the Shannon entropy of cluster labels π and class labels θ
respectively, with Ni and NðjÞ denoting the number of data points in
cluster i and class j. Obviously, a higher classification rate (CR) (also
normalized mutual information (NMI)) indicates a more accurate
clustering result.

4.2. Parameter analysis

In this subsection, we demonstrate the performance of our
method by using different parameters p and β. In the process of
analyzing one of the two parameters, the other parameter is fixed.

4.2.1. The exponential parameter p
The exponential parameter p is used to adjust the sparsity of

the view weight vector ω, which would affect the performance of
our method, i.e., different pwill lead to different distribution of the
view weight vectorω and hence different clustering results will be
generated. To this end, the effect of the parameter p is analyzed
from two perspectives, namely on the distribution of the view
weight vector ω and on the final clustering results, i.e., classifi-
cation rate (CR).

First, we analyze the effect of the parameter p on the dis-
tribution of the view weight vectorω. Fig. 3 shows the distribution
of ω as a function of p on the Mfeat and Reuters datasets, by
Table 4
Detailed information of the Corel dataset.

View # Samples # Features # Classes

Col-h 2000 32 5
Col-hl 2000 32 5
Col-m 2000 9 5
Coo-t 2000 16 5

p=1 p=5 p=10 p=15 p=20 p=25 p=30
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tion of the view weight vector ω as a function of p.
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Fig. 4. Analysis on the exponential parameter p: the clustering performance (in terms of CR) as a function of p.
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ranging p from 1 to 30. Clearly, from (21), the smaller p is, the
sparser the view weight vector ω will be. The results reported in
Fig. 3 have confirmed this fact. If we know some priori knowledge
about whether most of the data views are useful or not, we can
select a relatively suitable p.

Secondly, we analyze the effect of the parameter p on the
clustering performance in terms of classification rate (CR), as
shown in Fig. 4. By fixing the other parameter β as 0.1 on both of
the two datasets, we perform our method by using different p
ranging from 5 to 30 (we do not start with p¼1 here as we can see
in Fig. 3 that setting p¼1 degenerates into single view clustering).
The clustering performance in terms of CR is plotted in Fig. 4
(a) and (b) respectively. From the figures, we can see that, the
clustering performance is relatively stable in a wide range of p. For
various datasets, a proper p can be set widely ranging from 5 to 30.
We can figure out that the clustering results keep stable and are
always better than those generated by the compared algorithms.
In particular, the best clustering results can be obtained with p¼10
on the Mfeat dataset and p¼5 on the Reuters dataset.

4.2.2. The balancing parameter β
The balancing parameter β is used to control the sparsity of the

feature weight vectors τv; 8v, which would also affect the perfor-
mance of our method. To this end, the effect of the parameter β is
also analyzed from two perspectives, namely on the distribution of
the feature weight vectors τv; 8v¼ 1;…;V and on the final clus-
tering results in terms of classification rate (CR).

To begin with, we first analyze the effect of parameter β on the
sparsity of τv. Obviously, if the balancing parameter β is set to 0,
there is no more regularization term for controlling the distribu-
tion of the feature weight vectors τv; 8v¼ 1;…;V . In this case, in
order to get a smaller objective function value during the itera-
tions, only a small number of features will be used (with nonzero
weight), as shown in Fig. 5, which plots the distribution of τv in
one representative view of the Mfeat dataset. Therefore we need
to set β to some proper value in order to balance the distribution
of entries of τv as shown in Figs. 6 and 7. According to the
experimental analysis, we suggest to choose β from ð0;1�.

Additionally, we explore the effect of the parameter β on the
clustering performance in terms of classification rate (CR). The
results are reported in Fig. 8(a) and (b), with fixing the other
parameter p as 10 and 5 on the two datasets respectively. When
setting β in the range ½0:0005;1� and ½0:00005;1�, the proposed
method always generates the same clustering results on the Mfeat
and Reuters datasets, i.e. the classification rate values 0.836 and
0.930. The only ranges where fluctuating clustering results are
generated on Mfeat and Reuters are ½0;0:0005� and ½0;0:00005�.
Therefore we only plot the CR values as a function of β in these
two ranges since it is meaningless to plot CR values when setting β
in the range ½0:0005;1� and ½0:00005;1�. Based on this analysis, we
can get a wide range of β in which our method can generate very
stable results. Therefore, based on the analysis in terms of both
feature distribution and clustering performance, we suggest to set
β¼ 0:1 on all the datasets.

4.3. Comparison results

In this subsection, we compare the performance of the pro-
posed method with some existing methods in terms of CR and
NMI, namely traditional k-means [2], EM (Expectation Maximiza-
tion) [32], MVKKM (multi-view kernel k-means) [22], Co-regspec
(Co-regularized multi-view spectral clustering) [20] and LLC-fs
(Local Learning-Based Clustering with Feature Selection) [33].

The optimal parameters analyzed in Section 4.2 are used in our
WMCFS method. The parameter settings of the other five com-
pared algorithms are summarized below:

1. k-means: We use the traditional k-means algorithm [2] as one of
the compared algorithms. In our experiments, we apply the
default k-means function of MATLAB to get the clustering result
in each view on the three datasets.

2. EM: EM (Expectation Maximization) [32] is an iterative method
for finding maximum likelihood or maximum a posteriori
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Table 5
The mean and standard deviations of classification rate (CR) generated by the six algorithms over 100 runs.

Datasets Average of single view
k-means

Average of single view EM Average of single view
LLC-fs

MVKKM Co-regspec WMCFS

Mfeat mfeat-fac&mfeat-
fou

0.63970.011 0.65570.010 0.77670.009 0.82570.012 0.79270.013 0.83570.010

mfeat-fac&mfeat-
zer

0.61070.013 0.59570.009 0.70870.010 0.71870.015 0.65270.007 0.79470.009

All 5 views 0.67870.012 0.63670.010 0.81570.006 0.64670.014 0.73570.010 0.83670.010

Reuters EN&FR 0.69870.007 0.77070.008 0.68270.010 0.62670.009 0.91570.012 0.92570.008
EN&GR 0.76270.009 0.77070.011 0.78270.013 0.63870.008 0.90770.010 0.92670.009
All 5 views 0.74870.011 0.68370.010 0.82570.012 0.69070.007 0.92570.007 0.92770.007

Corel Col-h&Col-m 0.42370.007 0.55370.010 0.48070.011 0.50270.010 0.62170.011 0.65770.007
Coo-t&Col-hl 0.34470.013 0.49570.015 0.42370.012 0.51370.007 0.65670.010 0.69070.012
All 4 views 0.38470.013 0.50570.010 0.45970.013 0.50870.014 0.69870.008 0.71270.008
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(MAP) estimates of parameters in statistical models. In our
experiments, we apply the default EM function of MATLAB to
get the clustering result in each view on the three datasets.

3. MVKKM: In the MVKKM (multi-view kernel k-means) algorithm
[22], a weighted combination of kernels is learned to conduct
clustering. There is one parameter p used to control the sparsity
of view weight vector with the best parameter value selected
from ð1;6� as suggested in [22]. In our experiments, we get the
best performance with p¼3, p¼1.5 and p¼2 on the Mfeat,
Reuters and Corel datasets respectively. Additionally, we stop
the iteration when the gap of objective between two consecu-
tive iterations is less than 0.00001.

4. Co-regspec: Co-regspec (Co-regularized multi-view spectral cluster-
ing) [20] is a method aiming at minimizing the differences between
various views. We use Gaussian kernel for constructing similarity
matrix. The hyperparameter λ which trades off the spectral
clustering objectives and the spectral embedding (dis)agreement
term can be adjusted by the algorithm itself. We set the maximum
number of iterations to 10 as suggested in the paper [20].

5. LLC-fs: LLC-fs (Local Learning-Based Clustering with Feature
Selection) [33] is a single view data clustering algorithm with
feature selection. In our experiment, we run the LLC-fs algorithm
in each view of the three datasets. The size of neighborhood k
and the trade off parameter β are chosen from the prespecified
candidate as reported in the paper [33] and we only report the
best performances with k¼30 on the Mfeat dataset, k¼70 on the
Reuters dataset and k¼55 on the Corel dataset. Additionally, we
stop the iteration when the gap of objective between two
consecutive iterations is less than 0.0001.
Tables 5 and 6 report the mean and standard deviation of CR and
NMI respectively generated by the six algorithms on the three
testing datasets over 100 runs, where different random initializa-
tions are used in performing clustering. Apart from performing
clustering on the three original whole-view datasets, we also report
the clustering results on the datasets formed by some randomly
selected views. For instance, on the Mfeat dataset, apart from the
five-view data, we also run on the 2 two-view datasets formed by
mfeat-fac&mfeat-fou and mfeat-fac&mfeat-zer respectively.

By comparing the results of our algorithm and other compared
algorithms, we can draw the conclusion that our proposed method
performs the best in the case of multi-view clustering, since we
consider the weights both for various views and for various fea-
tures by measuring their contributions to the clustering result. In
particular, on the five-view Mfeat dataset, a classification rate as
high as 0.836 can be generated, achieving a significant improve-
ment over the existing methods; we get the best NMI value at the
same time. On the five-view Reuters dataset, the proposed WMCFS
method is slightly better than the second best Co-regspec method
but much better than the other methods. Even on the two-view
datasets, the WMCFS method performs much better than the
compared methods in terms of both CR and NMI. Another
important result is that, for the multi-view clustering methods, the
performance achieved on the five-view datasets is much better
than that achieved on the two-view datasets. This confirms the
fact that adding useful views will enhance the clustering perfor-
mance of the multi-view clustering methods.



Table 6
The mean and standard deviations of normalized mutual information (NMI) generated by the six algorithms over 100 runs.

Datasets Average of single view k-
means

Average of single view EM Average of single view LLC-
fs

MVKKM Co-regspec WMCFS

Mfeat mfeat-fac&mfeat-
fou

0.59470.010 0.61770.010 0.73170.010 0.78270.011 0.75970.013 0.79070.010

mfeat-fac&mfeat-
zer

0.56270.012 0.54170.008 0.65370.011 0.65470.016 0.61070.008 0.75370.009

All 5 views 0.62670.010 0.58470.010 0.76570.007 0.60070.014 0.69570.010 0.79470.010

Reuters EN&FR 0.65470.008 0.72970.008 0.63570.010 0.57570.009 0.84670.011 0.85970.007
EN&GR 0.70770.009 0.72070.011 0.72670.010 0.59870.009 0.84570.009 0.86270.006
All 5 views 0.70370.010 0.64070.009 0.78870.012 0.65270.007 0.86470.008 0.86670.007

Corel Col-h&Col-m 0.38570.008 0.50270.010 0.43270.011 0.45070.012 0.57070.011 0.61170.007
Coo-t&Col-hl 0.30770.012 0.44270.015 0.38270.013 0.47070.007 0.60270.011 0.64370.013
All 4 views 0.33070.012 0.46070.010 0.40370.012 0.46170.013 0.63370.008 0.65270.008
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5. Conclusion

In this paper, we have proposed a novel multi-view clustering
methods, termed Weighted Multi-view Clustering with Feature
Selection (WMCFS), which simultaneously performs feature
selection and multi-view data clustering. A global objective func-
tion is proposed, which takes into consideration both of the multi-
view learning and the feature selection in the process of data
clustering. In the global objective function, two weighting schemes
are designed that respectively weight the views of data points and
feature representation in each view, such that the best view and
the most representative feature space in each view can be selected
for clustering. To solve the objective function, we design an EM-
like iteration, which consists of three main stages and can con-
verge to satisfactory results. Experiments have been conducted on
three real-world datasets, the results of which validate the effec-
tiveness of the proposed method. In the future work, we plan to
extend our algorithm into multi-view clustering with missing
data, and with the capability of selecting the number of clusters
automatically. Moreover, we will also try the exploration of the
automatical way to determine p and β which would not rely on
our prior knowledge any more.
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