
Pattern Recognition 46 (2013) 885–898
Contents lists available at SciVerse ScienceDirect
Pattern Recognition
0031-32

http://d

n Tel.:

E-m
journal homepage: www.elsevier.com/locate/pr
Fast multi-label core vector machine
Jianhua Xu n

School of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu 210097, China
a r t i c l e i n f o

Article history:

Received 28 November 2011

Received in revised form

6 June 2012

Accepted 3 September 2012
Available online 11 September 2012

Keywords:

Support vector machine

Core vector machine

Multi-label classification

Frank–Wolfe method

Linear programming

Quadratic programming
03/$ - see front matter & 2012 Elsevier Ltd. A

x.doi.org/10.1016/j.patcog.2012.09.003

þ86 25 86306209; fax: þ86 25 85891990.

ail addresses: xujianhua@njnu.eud.cn, xujianh
a b s t r a c t

The existing multi-label support vector machine (Rank-SVM) has an extremely high computational

complexity due to a large number of variables in its quadratic programming. When the Frank–Wolfe

(FW) method is applied, a large-scale linear programming still needs to be solved at any iteration.

Therefore it is highly desirable to design and implement a new efficient SVM-type multi-label

algorithm. Binary core vector machine (CVM), as a variant of traditional SVM, is formulated as a

quadratic programming with a unit simplex constraint, in which each linear programming in FW has an

analytical solution. In this paper, we combine Rank-SVM with CVM to construct a novel SVM-type

multi-label classifier (Rank-CVM) which is described as the same optimization form as binary CVM.

At its any iteration of FW, there exist analytical solution and step size, and several useful recursive

formulae for proxy solution, gradient vector, and objective function value, all of which reduce

computational cost greatly. Experimental study on nine benchmark data sets shows that when Rank-

CVM performs as statistically well as its rival Rank-SVM according to five performance measures, our

method runs averagely about 13 times faster and has less support vectors than Rank-SVM in the

training phase under C/Cþþ environment.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Multi-label classification is a special supervised learning issue, in
which any single instance could be possibly associated with several
classes simultaneously and thus the classes are no longer mutually
exclusive [1–3]. Recently, it has been paid more attention to than
before due to lots of real-world applications, e.g., text categorization
[4–7], scene and video annotation [8–11], bioinformatics [6,12,13],
and music emotion categorization [14]. Currently, there are three
main strategies to design and implement various discriminative
multi-label classification methods: data decomposition, algorithm
extension and hybrid strategies. Further, label correlation, i.e., label
co-occurrence information, has been exploited in four different
levels: individual and partial instances, and pairwise and different
labels.

Data decomposition strategy divides a multi-label data set into
either one or more single-label (binary or multi-class) subsets,
builds a sub-classifier for each subset using an existing classifier,
and then assembles all sub-classifiers into an entire multi-label
classifier. There are mainly three decomposition tricks: one-
versus-rest (OVR), one-versus-one (OVO), and label powerset
(LP) [1–3]. It is convenient to implement a data decomposition
multi-label method since lots of popular classifiers and their free
ll rights reserved.

ua99@tsinghua.org.cn
software are available. This strategy depicts label correlation of
individual instance, partial instances and pairwise labels respec-
tively by reusing multi-label instances in the OVR methods
implicitly, constructing possible label combinations in the LP
methods directly, and considering pairwise label combinations
in the OVO methods explicitly.

Algorithm extension strategy generalizes a specific multi-class
classification algorithm to consider all training instances and all
classes (or labels) of a multi-label training data set at once. Such a
strategy could induce some complicated optimization problems,
e.g., large-scale quadratic programming in multi-label support
vector machine (Rank-SVM) [15,16] and unconstrained optimiza-
tion in multi-label back-propagation neural networks (BP-
MLL) [6]. However, they explicitly characterize as many label
correlations of individual instance using pairwise constraints
between relevant labels and irrelevant ones as possible.

Hybrid strategy not only extends an existing single-label
method but also splits a multi-label data set into a series of
subsets implicitly or explicitly. This strategy has been used to
design and implement several popular multi-label classifiers, e.g.,
two kNN-based multi-label approaches (ML-kNN and IBLR-ML)
[9,17], which cascade kNN with discrete Bayesian rule and logistic
model respectively while the OVR trick is applied implicitly.
Generally this strategy weakly characterizes label correlations
either explicitly or implicitly.

As mentioned above, algorithm extension strategy takes as
many label correlations into account as possible, which is regarded

www.elsevier.com/locate/pr
www.elsevier.com/locate/pr
dx.doi.org/10.1016/j.patcog.2012.09.003
dx.doi.org/10.1016/j.patcog.2012.09.003
dx.doi.org/10.1016/j.patcog.2012.09.003
mailto:xujianhua@njnu.eud.cn
mailto:xujianhua99@tsinghua.org.cn
dx.doi.org/10.1016/j.patcog.2012.09.003

J. Xu / Pattern Recognition 46 (2013) 885–898886
as an optimal way to improve multi-label classification perfor-
mance further [18]. But, its corresponding methods have a high
computational cost, which limits their usability for many applica-
tions. Therefore, it is highly desirable to design and implement
some novel efficient multi-label classifiers.

In this paper, we focus on SVM-type multi-label classification
techniques. When Rank-SVM [15,16] is solved by the
Frank–Wolfe (FW) algorithm [19,20], its each iteration needs to
deal with a large-scale linear programming [15,16]. Binary core
vector machine (CVM), as a variant of traditional SVM, is for-
mulated as a quadratic programming with a unit simplex con-
straint, which is converted into minimum enclosing ball (MEB)
problem in [21,22]. An alternative solution is based on FW [23],
where any linear programming has an analytical solution. In this
paper, we combine Rank-SVM with CVM to construct a novel
SVM-type multi-label classifier (Rank-CVM), which has the same
quadratic programming form as binary CVM. When FW is applied,
we can derive an analytical solution, an analytical step size, and
several efficient recursive formulae for gradient vector, objective
function and so on. It is shown theoretically that our Rank-CVM
has a lower time complexity than Rank-SVM. Experimental
results on nine benchmark data sets demonstrate that our
method is a competitive candidate for multi-label classification
according to five performance measures, compared with four
existing techniques: Rank-SVM [15,16], ADTree [24], and
BP-MLL [6] and ML-kNN [9]. Moreover, our Rank-CVM runs
averagely 13 times faster and has less support vectors than its
rival Rank-SVM in the training phase using C/Cþþ language.

The rest of this paper is organized as follows. Multi-label
classification setting and evaluation are introduced in Section 2
and previous work is summarized in Section 3. Binary SVM and
CVM, and Rank-SVM are reviewed briefly in Sections 4 and 5. Our
novel method is proposed in Section 6. In Section 7, we summar-
ize FW, and then construct a fast training algorithm for our Rank-
CVM. Section 8 is devoted to experiments with nine benchmark
data sets. This paper ends with some conclusions in Section 9.
1�:

2. Multi-label classification setting and evaluation

Let XARd be a d-dimensional input space and Q¼{1,2,...,q} a
finite set of class labels, where q is the number of class labels.
Further, assume that each instance xAX can be associated with a
set of relevant labels LD2Q. At the same time, the complement of
L, i.e., L¼Q \L, is referred to as a set of irrelevant labels of x. Given
a training data set of size l drawn identically and independently
from an unknown probability distribution (i.i.d.) on X�2Q, i.e.,

fðx1,L1Þ,. . .,ðxi,LiÞ,. . .,ðxl,LlÞg, ð1Þ

the multi-label classification problem is to learn a classifier
f(x):X-2Q that generalizes well on both these training instances
and unseen ones in the sense of optimizing some expected risk
functional with respect to a specific empirical loss function [6,17].

In many traditional q-class single-label classification methods, a
widely used trick is to learn q discriminant functions f iðxÞ :
X-R,i¼ 1,. . .,q such that fk(x)4fi(x), iak if xAclass k [25]. For
multi-label classification, as an extension of multi-class classifica-
tion, this idea is adapted as f kðxÞ4 f iðxÞ, kAL, iAL, which implies
that any relevant label should be ranked higher than any irrelevant
one [15]. In this case, the multi-label prediction can be fulfilled
through a proper threshold t(x),

f ðxÞ ¼ fk9f kðxÞZtðxÞ,k¼ 1,. . .,qg: ð2Þ

Now mainly there are three kinds of thresholds: a constant
(e.g., 0.0 for �1/þ1 setting and 0.5 for 0/1 one) [4,8,9], a linear
regression model associated with q discriminant function values
[6,15], and an additional discriminant function for a virtual or
calibrated label [10]. In the first case, t(x) is independent of x.

So far, more than 10 performance evaluation measures have
been introduced [2,3], since it is more complicated to evaluate a
multi-label classification algorithm than a single-label one. In this
paper, we choose the same five popular and indicative measures:
coverage, one error, average precision, ranking loss and Hamming
loss, as in [6,9,17]. Assume a test data set of size m to be
fðx1,L1Þ, . . .,ðxi,LiÞ,. . .,ðxm,LmÞg. Given some instance xi, its q dis-
criminant function values and predicted set of relevant labels
from some multi-label classification algorithm are denoted by
f P

kðxiÞ,k¼ 1, . . .,q and LP
i D2Q respectively.

The coverage estimates how far we need, on average, to go
down the list of labels to cover all relevant labels of the instance:

Coverage¼
1

m

Xm
i ¼ 1

CðxiÞ
�� ���1
� �

A ½0,q�1�, ð3Þ

where CðxiÞ ¼ fk9f
P
kðxiÞZ f P

k0 ðxiÞ,kAQgand k0 ¼ fk9min f P
kðxiÞ,kALig.

The one error evaluates how many times that the top-ranked
label is not one of relevant labels:

One error¼
1

m

Xm

i ¼ 1

fk=2Li9f
P
kðxiÞ ¼max

k0AQ
f P

k0 ðxiÞg

����
����A 0,1½ �: ð4Þ

The average precision calculates the average fraction of labels
ranked above a specific relevant label kALi, which actually are in
Li, i.e.,

Average precision¼
1

m

Xm

i ¼ 1

1���Li

���
X
kALi

���fk0ALi

��f P
k0 ðxiÞZ f P

kðxiÞg

������fk0AQ
��f P

k0 ðxiÞZ f P
kðxiÞg

���
0
B@

1
CAA 0,1½ �:

ð5Þ

The ranking loss computes the average fraction of labels pairs
(a relevant label versus an irrelevant one) that are not correctly
ordered for the instance:

Ranking loss¼
1

m

Xm

i ¼ 1

1

Li

�� �� Li

�� �� fðk,k0ÞAðLi � LiÞ9f
P
kðxiÞr f P

k0 ðxiÞg

��� ���
 !

A 0,½

ð6Þ

The Hamming loss estimates the percentage of labels, whose
relevance is predicted incorrectly:

Hamming loss¼
1

m

Xm
i ¼ 1

LiDLP
i

��� ���
q

A 0,1½ �, ð7Þ

where D denotes the symmetric difference between two sets. It is
desirable that a multi-label algorithm should achieve a larger
value for the average precision, and smaller values for the other
four measures.
3. Previous work

In the past 10 years, since multi-label classification has received
a lot of attention in machine learning, pattern recognition and
statistics, a variety of methods have been proposed. In this section,
according to three strategies mentioned in Section 1, we categorize
previous discriminative multi-label methods into three groups:
data decomposition, algorithm extension and hybrid methods. It
is worth noting that the last two groups are roughly merged into
algorithm adaptation or dependent methods in [1–3].

J. Xu / Pattern Recognition 46 (2013) 885–898 887
3.1. Data decomposition methods

Data decomposition methods combine data decomposition
tricks with existing single-label classification methods, whose two
key techniques are decomposition tricks and integration ways.

The one-versus-rest (OVR) or binary relevance (BR) decom-
position trick splits a q-class multi-label data set into q binary
subsets [4,8], in which the ith subset consists of positive instances
with the ith label and negative ones with the all other labels.
Usually, q sub-classifiers are assembled into an entire multi-label
algorithm using a constant threshold. So far, many OVR multi-
label methods have been verified to work well using various
binary classifiers, e.g., SVM [1,4,8,15], C4.5 [1,17], and kNN [1,17].
With a probabilistic output setting, the classification performance
can be improved further via a thresholding strategy [26].

The one-versus-one (OVO) decomposition trick divides a
q-class multi-label data set into q(q�1)/2 binary subsets in a
pairwise way, where the subset ij (io j) only involves instances
with the ith and jth labels. Note that for some subsets there is a
mixed class whose instances belong to both positive and negative
classes simultaneously. In [27], these special subsets are handled
by two binary SVM classifiers using the OVR strategy, and a vote
threshold is used to detect relevant labels. But in [28], the mixed
classes are discarded simply. Further, a calibrated label is esti-
mated by some OVR-based method, whose votes are defined as a
threshold t(x) in (2). To reduce the test computational cost, three
two-stage architectures are designed in [29].

The label powerset (LP) decomposition trick considers each
possible label combination of more than one class as a new single
class, and then converts a multi-label training set into a standard
multi-class one [1,8]. This could produce a large number of new
classes, many of which consist of very few instances. Such a
shortcoming is avoided by LP-based ensemble classifiers in terms
of a small subset of labels in [30].
3.2. Algorithm extension methods

Algorithm extension methods generalize existing multi-class
classifiers to consider all instances and all classes in a multi-label
data set at once.

In [31], a C4.5-type multi-label algorithm was proposed,
through modifying the formula of entropy calculation and per-
mitting multiple labels at the leaves of the tree. BoosTexer [5] is
derived from the well-known Adaboost algorithm, which includes
two slightly different versions: AdaBoost.MH and AdaBoost.MR.
The former is to predict the set of relevant labels of an instance,
while the latter to range labels of an instance in descending order.
ADTree is constructed by integrating alternative decision tree
with Adaboost.MH [24].

Multi-label support vector machine (Rank-SVM) was proposed
in [15,16] via extending multi-class SVM [32] and accepting an
Fig. 1. Schematic illustration
approximate ranking loss as its empirical loss, resulting into an
extremely complicated quadratic programming. Additionally
Rank-SVM needs to learn a threshold function t(x) in (2) using
linear regression. In [10], a virtual label is added to find a natural
zero to determine relevant labels simply, which further increases
the number of variables to be solved. Although such two Rank-
SVM forms are solved by FW [19,20], their training procedures are
still computationally expensive. Multi-label back-propagation
neural networks (BP-MLL) [6] also define a new empirical loss
function based on ranking loss to reflect label correlation of
individual instance, which results in a large scale unconstrained
optimization problem. Additionally a linear threshold function is
needed just as in Rank-SVM.
3.3. Hybrid methods

Hybrid methods extend some specific single-label classifica-
tion algorithms while one or two data decomposition tricks are
utilized implicitly or explicitly, in order to integrate some merits
of the aforementioned two groups of multi-label methods.

After the OVR trick is utilized implicitly, traditional k-nearest
neighbor (kNN) method are generalized to construct two slightly
different multi-label methods: ML-kNN [9] and IBLR-ML [17].
Such two methods include a training phase combining leave-one-
out (LOO) procedure with kNN, in which ML-kNN estimates class
prior and conditional probabilities of discrete binary Bayesian
rule for each label independently, and IBLR-ML calculates poster-
ior probability associated with weighted sums of k-nearest
neighbor labels of all classes using logistic regression. Addition-
ally, the OVR trick is utilized explicitly in multi-label naı̈ve Bayes
(ML-NB) [33], classifier chain [34], extended SVM [35], and RBF
neural networks (ML-RBF) [36].

As mentioned above, the OVO decomposition trick could result
in a mixed class for some subsets. It seems natural and reasonable
to locate this mixed class between positive and negative classes.
Through extending traditional binary SVM, two parallel hyper-
planes are used to deal with three class subsets in [37,38], while
the mixed class is forced to reside in the marginal region of binary
SVM in [39].
4. Binary support vector machine and core vector machine

In this section, we briefly review binary support vector
machine (SVM) [32] and its variant core vector machine (CVM)
[21,22]. Here, let a binary i.i.d. training set of size l be

fðx1,y1Þ,. . .,ðxi,yiÞ,. . .,ðxl,ylÞg, ð8Þ

where xiAX and yiA{þ1,�1} denote the ith training instance
vector and its binary label.
of SVM (a) and CVM (b).

Fig. 2. Three possible relative relationships between a pair of labels in Rank-SVM

(r¼1) and our Rank-CVM (r40).

J. Xu / Pattern Recognition 46 (2013) 885–898888
In the original space, a linear discriminant function is defined
as

f ðxÞ ¼wT xþb, ð9Þ

where w and b are the weight vector and bias term respectively,
as shown in Fig. 1. For the linearly separable case in SVM, the
hyperplane f(x)¼0 separates positive instances from negative
ones with a margin 1=99w992 which is maximizing through
minimizing 99w992

2 ¼wT w, where 99U992indicates 2-norm of vector.
The primary problem of SVM for the nonlinearly separable case is
formulated as

min
1

2
wT wþC

Xl

i ¼ 1

xi,

s:t: yi wT xiþb
� �

Z1�xi,xiZ0, i¼ 1,. . .,l,

ð10Þ

where C40 denotes a regularization constant to control the
tradeoff between classification errors and model complexity,
and xiZ0 are slack variables to indicate misclassification errors.
The dual version of (10) is

min
1

2
aT K � yyT
� �

a�uTa,

s:t: yTa¼ 0,0rarCu, ð11Þ

where the symbol � represents the Hadamard product, a¼[a1,...,al]
T

is the l Lagrangian multipliers to be solved, K ¼ xT
i xj9i,j¼ 1,

�
. . .,l �

denotes the symmetric kernel matrix, u¼[1,...,1]T and 0¼[0,...,0]T are
two column vectors with l ones and zeros respectively, and
y¼[y1,...,yl]

T indicates the binary label vector.
In CVM, since the minimal discriminant function values for

positive and negative instances are denoted by 7r as shown in
Fig. 1(b), the margin is defined as r=99½wT ,b�T992which depends on
both w and b for the linearly separable case. This margin is
maximized via minimizing a linear combination wTwþb2

�nr,
where n40 indicates a positive constant. The primary form of
CVM for the nonlinearly separable case is built as

min
1

2
ðwT wþb2

Þ�nrþ1

2
C
Xl

i ¼ 1

x2
i ,

s:t: yi wT xiþb
� �

Zr�xi,rZ0, i¼ 1,. . .,l: ð12Þ

Note xiZ0 are redundant due to its squared form in the
objective function. The dual version of (12) becomes

min
1

2
aT K � yyTþyyTþ

1

C
I

� �
a,

s:t: uTaZn,aZ0, ð13Þ

where I represents the unit matrix of size l� l. In [40], it has been
shown that the inequality uTaZn in (13) can be replaced by an
equality uTa¼n. Via dividing the n, the above problem (13) is
further simplified into a quadratic programming with a unit
simplex constraint:

min
1

2
aT K � yyTþyyTþ

1

C
I

� �
a,

s:t: uTa¼ 1,aZ0: ð14Þ

Now SVM (11) is widely solved by sequential minimization
optimization (SMO) [41]. But, for CVM (14), due to its unit
simplex constraint, there exist two special solution ways: the
minimum enclosing ball (MEB) technique [21,22] and the Frank–
Wolfe (FW) algorithm [23]. The latter has an analytical solution
for each linear programming in FW.
5. Multi-label support vector machine

In this section, we review some previous work on multi-label
support vector machine (Rank-SVM) [15,16] first and then pro-
vide more detailed description. Now, in the original input space, q

linear discriminant functions are defined as

f kðxÞ ¼wT
k xþbk, k¼ 1,. . .,q, ð15Þ

where wk and bk denote the weight vector and bias term of the kth
class respectively. As mentioned in Section 2, it is desirable that
any relevant label should be ranked higher than any irrelevant.
In case such an ideal situation does not happen, a slack variable is
introduced just as in binary SVM. Therefore, in Rank-SVM, the
relative relationship between any relevant label and any irrelevant
one for some training instance xi, is described using the following
pairwise constraint:

f mðxiÞ�f nðxiÞ ¼ ðwm�wnÞ
T xiþðbm�bnÞZ1�ximn, ðm,nÞA ðLi � LiÞ,

ð16Þ

where the slack variable ximnZ0 is added to force the difference to
be equal to or more than 1. As shown in Fig. 2 for r¼1, there exist
three possible cases, (a) fm(xi)� fn(xi)Z1 and ximn¼0, which is a
perfect situation; (b) 0ofm(xi)� fn(xi)o1 and 0oximno1; and (c)
fm(xi)� fn(xi)r0 and ximnZ1.

According to the definition of ranking loss (6), the first two
cases do not induce any ranking loss value, while the last one
does result into a ranking loss ‘‘1’’. However, regardless of any
case, its ranking loss value is less than or equal to the slack
variable ximn. Therefore, an approximate ranking loss function can
be defined as

Approximate ranking loss¼
1

l

Xl

i ¼ 1

1

Li

�� �� Li

�� �� X
ðm,nÞA ðLi�LiÞ

ximn, ð17Þ

which is essentially the upper bound of the actual ranking loss
(6) and is utilized as an empirical loss term in Rank-SVM after 1/l
is omitted. The original optimization problem of Rank-SVM is
depicted as

min
1

2

Xq

k ¼ 1

wT
k wkþC

Xl

i ¼ 1

1

Li

�� �� Li

�� �� X
ðm,nÞA ðLi�LiÞ

ximn,

s:t: ðwm�wnÞ
T xiþðbm�bnÞZ1�ximn,

ximnZ0,ðm,nÞAðLi � LiÞ,i¼ 1,. . .,l: ð18Þ

J. Xu / Pattern Recognition 46 (2013) 885–898 889
The model regularization term, i.e., the first one in the above
objective function, is defined according to the corresponding term
in binary SVM. Using the standard Lagrangian technique, the dual
version of (18) is derived as follows [15,16]:

min
1

2

Xq

k ¼ 1

Xl

i,j ¼ 1

bkibkjðx
T
i xjÞ�

Xl

i ¼ 1

X
ðm,nÞA ðLi�LiÞ

aimn,

s:t:
Xl

i ¼ 1

X
ðm,nÞA ðLi�LiÞ

ck
imnaimn ¼ 0, k¼ 1,:::,q,

0raimnrCi ¼
1

Li

�� �� Li

�� ��C,ðm,nÞAðLi � LiÞ, i¼ 1,. . .,l, ð19Þ

with

ck
imn ¼

0

þ1

�1

if mak and nak,

if m¼ k,

if n¼ k,

8><
>: ð20Þ

and

bki ¼
X

ðm,nÞA ðLi�LiÞ

ck
imnaimn: ð21Þ

In [15,16], the above component-based form is described only.
Now we transform (19) and (21) into concise vector and matrix
representations. For the ith instance, we construct a column vector
ai with aimn, a row vector hki with ck

imn and a unit vector ui, whose
length is li ¼ 9Li99Li9, and a matrix Hi of size q� li using hki

ai ¼ aimn9ðm,nÞAðLi � LiÞ
� �T

¼ aj
i9j¼ 1,. . .,li

h iT
,

hki ¼ ck
imn9ðm,nÞA ðLi � LiÞ

h i
¼ hj

ki9j¼ 1,. . .,li
h i

,

ui ¼ 1,. . .,1½ �
T ,

Hi ¼ hT
1i,. . .,h

T
qi

h iT
: ð22Þ

According to (22), the formulae (21) and (19) can be simplified as

bki ¼ hkiai, ð23Þ

and

min
1

2

Xm

i,j ¼ 1

aT
i ðH

T
i HjÞajðx

T
i xjÞ�

Xl

i ¼ 1

uT
i ai,

s:t:
Xl

i ¼ 1

Hiai ¼ 0,0rairCiui, ð24Þ

Further, using (22), we define a solution vector a and a unit
vector u, whose length is lt ¼

Pl
i ¼ 1 li, and a new matrix H of size

q� lt and a kernel matrix K of size lt� lt

a¼ aT
1,. . .,aT

i ,. . .,aT
l

� �T
,

u¼ uT
1 ,. . .,uT

l

� �T
,

H ¼ H1,. . .,Hi,. . .,Hl½ �,

K ¼ ðxT
i xjÞðuiu

T
j Þ9i,j¼ 1,. . .,l

h i
: ð25Þ

In terms of (25), the above quadratic programming (24) can be
rewritten as a more concise form:

min WðaÞ ¼
1

2
aT ðHT HÞ � K
	

a�uTa,

s:t: Ha¼ 0,0rarC, ð26Þ

where the column vector C ¼ C1uT
1 . . . Clu

T
l

h iT
. Due to lt vari-

ables to be solved, this quadratic programming (26) has an
extremely high computational complexity. Now, the above Rank-
SVM (19) or (26) is solved by the FW method [19], where any
iteration needs to solve a large-scale linear programming [16].
Similarly in binary SVM and CVM [21,22,32], the dot product
between two vectors in (25) can be replaced by various kernels [32],
and q nonlinear discriminant functions with kernel are rewritten as

f kðxÞ ¼
Xl

i ¼ 1

bkiKðx,xiÞþbk,k¼ 1,. . .,q, ð27Þ

where K(x,xi) denotes some kernel function [32]. To determine the
threshold function t(x) in (2), each training instance xi is converted
into a q-dimensional vector [f1(xi),....,fq(xi)]

T using (27), and then an
optimal threshold t*(xi) is determined via minimizing the Hamming
loss (7). A linear regression threshold function is trained in Rank-
SVM, i.e., tðxÞ ¼

Pq
k ¼ 1 skf kðxÞþs0, where si(i¼0,1,...,q) represent the

regression coefficients. Then this threshold form is used to predict
the relevant labels in the test phase.
6. Multi-label core vector machine

In this section, we combines Rank-SVM with binary CVM to
construct a novel multi-label SVM-type classifier (Rank-CVM
simply), whose any iteration of FW has an analytical solution.

Now it is still desired that any relevant label should be ranked
higher than any irrelevant one. According to the constraints in
binary CVM and Rank-SVM, we define the following pairwise
constraints for Rank-CVM:

f mðxiÞ�f nðxiÞ ¼ ðwm�wnÞ
T xiþðbm�bnÞZr�ximn,ðm,nÞAðLi � LiÞ,

ð28Þ

where the slack variable ximn is used to force the difference to be
more than r40. As shown in Fig. 2 for r40, there still are three
possible situations: (a) fm(xi)� fn(xi)Zr and ximn¼0; (b) 0o fm(xi)
� fn(xi)or and 0oximnor; and (c) fm(xi)� fn(xi)r0 and ximnZr.
According to the ranking loss (6), it could be found out that the
ranking loss value is always less than or equal to ximn/r. There-
fore, an approximate ranking loss function for Rank-CVM can be
defined as follows:

Approximate ranking loss¼
1

lr2

Xl

i ¼ 1

1

Li

�� �� Li

�� �� X
ðm,nÞA ðLi�LiÞ

x2
imn: ð29Þ

This is used as an empirical loss term when1/lr2 is removed in
our Rank-CVM. On the other hand, we constitute a model
regularization term ð1=2Þ

Pq
k ¼ 1ðw

T
k wkþb2

k Þ�nr for Rank-CVM in
terms of binary CVM and Rank-SVM principles. Now we formu-
late the primary form of our Rank-CVM as

min
1

2

Xq

k ¼ 1

ðwT
k wkþb2

k Þ�nrþ
1

2
C
Xl

i ¼ 1

1

Li

�� �� Li

�� �� X
ðm,nÞA ðLi�LiÞ

x2
imn,

s:t: ðwm-wnÞ
T xiþðbm-bnÞ ¼

Xq

k ¼ 1
ck

imnðw
T
k xiþbkÞZr�ximn,

r40,ðm,nÞAðLi � LiÞ,i¼ 1,:::,l: ð30Þ

Note that ximnZ0 hold naturally due to the squared form of
slack variables in the objective function (30), and the concise
constraints are reformulated according to the definition of ck

imnin
(20). Again, C represents the regularization constant to control the
tradeoff between the model complexity and the ranking loss.

The dual problem of (30) can be derived using the standard
Lagrangian technique. Let aimnZ0 and ZZ0 be the Lagrangian
multipliers for the inequality constraints in (30). The Lagrangian
for the primal form (30) becomes

L¼
1

2

Xq

k ¼ 1

ðwT
k wkþb2

k Þ�nrþ
1

2

Xl

i ¼ 1

Ci

X
ðm,nÞA ðLi�LiÞ

x2
imn

�
Xl

i ¼ 1

X
ðm,nÞA ðLi�LiÞ

aimn

Xq

k ¼ 1

ck
imn wk

T xiþbk

� �
�rþximn

 !
�Zr, ð31Þ

J. Xu / Pattern Recognition 46 (2013) 885–898890
where Ci ¼ C= Li

�� �� Li

�� ��. The Karush–Kuhn–Tucker (KKT) conditions
for this primary problem require the following relations to be true

@L

@wk
¼ 0) wk ¼

Xl

i ¼ 1

X
ðm,nÞA ðLi�LiÞ

ck
imnaimn

0
@

1
Axi ¼

Xl

i ¼ 1

bkixi, ð32Þ

@L

@bk
¼ 0) bk ¼

Xl

i ¼ 1

X
ðm,nÞA ðLi�LiÞ

ck
imnaimn ¼

Xl

i ¼ 1

bki, ð33Þ

@L

@r
¼ 0)

Xl

i ¼ 1

X
ðm,nÞA ðLi�LiÞ

aimn ¼ nþZ, ð34Þ

@L

@ximn
¼ 0) aimn ¼ Ciximn: ð35Þ

The last relation (35) shows that ximnZ0 hold naturally due to
aimnZ0. By introducing the above KKT conditions (32)-(35) into
the Lagrangian (31), the dual form is

min WðaÞ ¼
1

2

Xq

k ¼ 1

Xl

i,j ¼ 1

bkibkjðx
T
i xjÞþ

1

2

Xq

k ¼ 1

Xl

i,j ¼ 1

bkibkj

þ
1

2

Xl

i ¼ 1

1

Ci

X
ðm,nÞA ðLi�LiÞ

a2
imn

0
@

1
A,

s:t:
Xl

i ¼ 1

X
ðm,nÞA ðLi�LiÞ

aimnZn;aimnZ0,ðm,nÞA ðLi � LiÞ, i¼ 1,:::,l: ð36Þ

According to those notions in (22) and (25), and the derivation
of binary CVM, this formula (36) can further be simplified into a
quadratic programming with a unit simplex constraint too

min WðaÞ ¼
1

2

Xl

i,j ¼ 1

Xq

k ¼ 1

aT
i ðh

T
kihkjÞaj

 !
ðxT

i xjÞ

þ
1

2

Xl

i,j ¼ 1

Xq

k ¼ 1

aT
i ðh

T
kihkjÞaj

 !
þ

1

2

Xl

i ¼ 1

1

Ci
aT

i ai

� �

¼
1

2

Xl

i,j ¼ 1

aT
i ðH

T
i HjÞajðx

T
i xjÞþ

1

2

Xl

i,j ¼ 1

aT
i ðH

T
i HjÞajþ

1

2

Xl

i ¼ 1

1

Ci
aT

i ai

� �

¼
1

2
aT ðHT HÞ � KþHT HþD
	

a¼
1

2
aTHa,

s:t: uTa¼ 1, aZ0, ð37Þ

where

D¼ diagðuT
1=C1,::::,uT

l =ClÞ,

H¼ ðHT HÞ � KþðHT HÞþD: ð38Þ

Similarly, our Rank-CVM (37) and its q discriminant functions
(15) can also be kernelized by various kernels satisfying Mercer
theorem [32]. Additionally, Rank-CVM also needs a threshold
function, which is estimated using the same method as in Rank-
SVM. Although our Rank-CVM (37) has the same number of
variables to be solved as Rank-SVM (26), due to a unit simplex
constraint in (37), we can construct a fast training algorithm
based on FW for our Rank-CVM.
7. A fast training algorithm for Rank-CVM

In this section, a fast training algorithm for our Rank-CVM is
constructed based on the Frank–Wolfe iterative linearization
algorithm.

7.1. Frank–Wolfe algorithm

In this sub-section we briefly review the Frank–Wolfe (FW)
method and its three special cases, from which both Rank-SVM
and Rank-CVM will benefit a lot. FW is a simple and classical first
order feasible direction optimization method [19], which was
originally proposed to solve quadratic programming and then
extended to solve convex problems with continuously differential
objective function and linear (and box) constraints:

min f ðxÞ, s:t:xAS: ð39Þ

The set S is a nonempty and bounded polyhedron of the form,

S¼ fx9Ax¼ b,lrxrug, ð40Þ

where A is a m�n matrix, b represents a m-dimensional column
vector, and l and u denote the lower and upper bounds of x. FW
generates a sequence of feasible vectors {x(p)} using a linear

search x(pþ1)
¼x(p)

þl(p)d(p), where l(p)A[0,1] is a step size and

dðpÞ ¼ xðpÞ� xðpÞ a feasible descent direction satisfying xðpÞAS and

z(p)
¼(d(p))Trf(x(p))o0. To find out a best feasible direction, i.e.,

the best xðpÞ, FW utilizes the first order Taylor series expansion of
f(x) around the vector x(p) and then solves a linear programming
problem with linear constraints (40):

xðpÞ ¼ argmin
xA S

f ðxðpÞÞþðx�xðpÞÞTrf ðxðpÞÞ
	

¼ argmin
xA S

xTrf ðxðpÞÞ:

ð41Þ

Such a linear programming problem is usually optimized by
the widely used simplex or interior point method. The basic FW
algorithm for (39) can be stated as follows:

Step 1 (initializing): Select an initial feasible vector x(p)AS with
p¼1 and set a stop criterion e.
Step 2 (solving a linear programming problem): Let
xðpÞ ¼ argmin

xAS
xTrf ðxðpÞÞ. If 9z(p)9re, then stop.

Step 3 (executing a linear search for step size): Let lðpÞ ¼
argmin
lA ½0,1�

f ðxðpÞ þlðxðpÞ�xðpÞÞÞ.

Step 4 (updating): Set xðpþ1Þ ¼ xðpÞ þlðpÞðxðpÞ�xðpÞÞ and p¼pþ1,
go to Step 2.

It was proved that the above FW algorithm has a sub-linear
convergence [19,20]. We rewrite the objective functions in Rank-
SVM and our Rank-CVM into a unified concise quadratic form:

f ðxÞ ¼
1

2
xTHxþhT x, ð42Þ

where H¼ ðHT HÞ � K and h¼u in Rank-SVM, and H¼ ðHT HÞ
�KþðHT HÞþD and h¼0 in Rank-CVM. For some widely used
Mercer kernels, e.g., linear, polynomial and RBF kernels, such an
objective function (42) is strictly convex generally [32]. To speed
up the training procedures of Rank-SVM and our Rank-CVM, three
special cases can be exploited, i.e.,

Case 1. For the strictly convex objective function (42), the
analytical step size of FW becomes

lðpÞ ¼min �
zðpÞ

ðdðpÞÞTHdðpÞ
,1

()
: ð43Þ

This formula can be used to estimate the step size for Rank-
SVM and our Rank-CVM efficiently.

Case 2. If the strictly convex function f(x) in (42) has an optimal
value fn, and {x(p)} and {z(p)} are derived by FW (p¼1,2..., x(1)AS), then,

f ðxðpÞÞ�f nr�zðpÞ ¼ �ðHxðpÞ þhÞT dðpÞ: ð44Þ

Therefore, when 9z(p)9re, we have f(x(p))� f*re. This implies
that, when the stopping criterion e is satisfied in Step 2 the
difference between the current function value and the optimal
one is less than e.

J. Xu / Pattern Recognition 46 (2013) 885–898 891
Case 3. For a unit simplex constraint in our Rank-CVM, the linear
programming in Step 3 is

min
Xn

i ¼ 1

HxðpÞ
� �

i
xðpÞi , s:t:

Xn

i ¼ 1

xðpÞi ¼ 1, ð45Þ

where (Hx(p))i denotes the ith component of gradient vector.
Then, the above (45) has an analytical solution:

xðpÞj ¼
1

0

if j¼ argmin
i ¼ 1,:::,n

HxðpÞ
� �

i
,

otherwise:

8<
: ð46Þ

That is, the component with a minimum derivate is 1, and the
other components all are 0. Therefore, we can obtain an analytical
solution directly for our Rank-CVM, which greatly reduces the
computational time of the training procedure.

To decide how many iterations are theoretically needed to solve
Rank-SVM and our Rank-CVM, we provide the rate of convergence
of FW for (42) using the following theorem 1, in which we utilize
some techniques in [19,20,23].

Theorem 1. Let x* be optimal for the quadratic programming (42)
with the feasible set S (40), and {x(p)} a sequence generated by
FW. Then there exists a constant xZ�1 such that

f ðxðpÞÞ�f ðxnÞr
2:H:FD

2

pþx
, ð47Þ

where :H:F indicates Frobenius norm of matrix, and D is the
diameter of S.

Proof. According to x(pþ1)
¼x(p)

þl(p)d(p) and the step size l(p) in
(43), we have

f ðxðpþ1ÞÞ ¼
1

2
xðpÞ þlðpÞdðpÞ
	
T

H xðpÞ þlðpÞdðpÞ
	

þhT xðpÞ þlðpÞdðpÞ
	

¼ f ðxðpÞÞ�
1

2

ðHxðpÞ þhÞT dðpÞ
	
2

ðdðpÞÞTHdðpÞ
: ð48Þ

Using (44), the above (48) can be rewritten as

f ðxðpþ1ÞÞ�f ðxnÞr f ðxðpÞÞ�f ðxnÞ�
1

2

f ðxðpÞÞ�f ðxnÞ
� �2

ðdðpÞÞTHdðpÞ
: ð49Þ

Set dðpÞ ¼ 2ðdðpÞÞTHdðpÞr2:H:F:dðpÞ:2

2r2:H:FD
2
¼ d, where

D¼max99
p

dðpÞ992, namely, the diameter of S. Since (1�a)(1þa)¼

1�a2r1 if aZ0, the inequality holds: 1�ar1/(1þa).
Denoting b(p)

¼ f(x(p))� f(x*)Z0, it follows that

bðpþ1ÞrbðpÞ�
ðbðpÞÞ2

dðpÞ
r

bðpÞ

1þbðpÞ=dðpÞ
¼

1

1=bðpÞ þ1=dðpÞ
r

1

1=bðpÞ þ1=d
ð50Þ

For k¼1, its step size l(1)
¼�(Hx(1)

þh)Td(1)/d(1)r1 and
according to (44), we have b(1)rl(1)d(1)rl(1)d.

By inducing, we derive the following inequalities:

bð2Þr
1

1=dþ1=lð1Þd
¼

d
1þ1=lð1Þ

, bð3Þr
1

1=dþ1=bð2Þ
¼

d
2þ1=lð1Þ

. . .,

bðpÞr ¼
d

p�1þ1=lð1Þ
: ð51Þ

Since 0rl(1)r1, let x¼1/l1�1Z�1, and then we have

f ðxðpÞÞ�f ðxnÞr
d

pþx
¼

2:H:FD
2

pþx
, ð52Þ

which completes our proof. This theorem implies that, to achieve
a e-accuracy solution, i.e., e¼ f(x(p))� f(x*), FW needs
Oð2:H:FD

2=eÞ iterations for a convex quadratic programming
(42). &
7.2. Initialization for training algorithm of Rank-CVM

In order to apply the above FW method to our Rank-CVM, we
have to initialize a solution vector and some other key quantities.
According to (38), the elements in the matrix H are

Yjj0

ii0
¼
Xq

k ¼ 1

hj
kih

j0

ki0
ðxT

i xi0 þ1Þþ
1

Ci
djj0

ii0
; i,i0 ¼ 1,:::,l, j¼ 1,:::,li, j0 ¼ 1,:::,li0 ,

ð53Þ

where djj0

ii0
¼ 1, if i¼ i’, j¼ j’ and djj0

ii0
¼ 0 otherwise. This element in

(53) corresponds to the jth row of the ith instance and the j’th
column of the i’th instance. But, the diagonal elements only have l

different values,

Yjj
ii ¼ 2 ðxT

i xiÞþ1
� �

þ
1

Ci
; i¼ 1,:::,l and any j: ð54Þ

We search for the i’th instance which minimize the above (54), i.e.,

i0 ¼ argmin
i ¼ 1,:::,l

Yjj
ii: ð55Þ

Therefore, according to the unit simplex constraint, we choose
an initial solution as

ajð1Þ
i ¼

1, if i¼ i0,j¼ 1,

; i¼ 1,:::,l, j¼ 1,:::,li,

0, otherwise,

8><
>: ð56Þ

where the superscript (1) indicates the initial solution. In (56), the
first component of the i’th instance is set to be 1 only. In this case,
the initial objective function value is

W ð1Þ
ðaÞ ¼ ðxT

i xiÞþ1
� �

þ
1

2Ci0
ð57Þ

and the initial bð1Þki becomes

bð1Þki ¼
h1

ki

0

if i¼ i0,

otherwise,
; i¼ 1,:::,l, k¼ 1,:::,q,

(
ð58Þ

where h1
ki denotes the first element of the row vector hki. This

indicates that the initial bð1Þ
ki0
ðk¼ 1,:::,qÞ are set to be the first

column vector of Hi’. The gradient vector of the objective function
in (37) is

gi ¼
Xl

j ¼ 1

Xq

k ¼ 1

ðhT
kihkjÞaj ðx

T
i xjÞþ1

� �
þ

1

Ci
ai,or g ¼Ha: ð59Þ

where gi corresponds to ai of the ith instance, and
g ¼ gT

1 ::: gT
l

h iT
. Therefore the initial gradients are

gjð1Þ
i ¼

Xq

k ¼ 1

hj
kih

1
ki0 ðx

T
i xi0 Þþ1

� �
þ

1

Ci
if i¼ i0,j¼ 1,

; i¼ 1,:::,l,j¼ 1,:::,li:Xq

k ¼ 1

hj
kih

1
ki0 ðx

T
i xi0 Þþ1

� �
otherwise,

8>>>>>>><
>>>>>>>:

ð60Þ
7.3. Some useful recursive formulae for training algorithm of Rank-

CVM

After the above quantities have been initialized, we derive
some useful recursive formulae in this sub-section. At the pth
(p¼1, 2,y) iteration, assume the minimum gradient component
to be gj0 ðpÞ

i0
. According to the special case 3 in Section 7.1, the

J. Xu / Pattern Recognition 46 (2013) 885–898892
corresponding solution of linear programming becomes

ajðpÞ
i ¼

1, if i¼ i0,j¼ j0,

; i¼ 1:::,l, j¼ 1,:::,li,

0, otherwise,

8><
>: ð61Þ

where aj
i denotes the jth component of the ith instance. The

quantity z(p) is used to decide whether the iterative procedure
should be terminated, and to calculate the step size (43),

zðpÞ ¼ gðpÞ
� �T

ðaðpÞ�aðpÞÞ ¼ HaðpÞ
� �T

aðpÞ
	

� HaðpÞ
� �T

aðpÞ
� �

¼ gj0 ðpÞ
i0
�2WðaðpÞÞ: ð62Þ

The denominator for estimating the step size (43) becomes

ðdðpÞÞTHdðpÞ ¼ aðpÞ�aðpÞ
	
T

H aðpÞ�aðpÞ
	

¼Yj0 j0

i0 i0
�2gj0 ðpÞ

i0
þ2WðaðpÞÞ:

ð63Þ

Therefore, the step size (43) is

lðpÞ ¼min �
gj0 ðpÞ

i0
�2WðaðpÞÞ

Yj0 j0

i0 i0
�2gj0 ðpÞ

i0
þ2WðaðpÞÞ

,1

8<
:

9=
;: ð64Þ

Next we update some key quantities. For the solution vector a,
we have its vector form:

aðpþ1Þ ¼ ð1�lðpÞÞaðpÞ þlðpÞaðpÞ ð65Þ

and its component form,

ajðpþ1Þ
i ¼

ð1�lðpÞÞajðpÞ
i þl

ðpÞ

ð1�lðpÞÞajðpÞ
i

if i¼ i0, j¼ j0,

otherwise,
; i¼ 1,:::,l, j¼ 1,:::,li:

8<
:

ð66Þ

The recursive formula for bki is

bðpþ1Þ
ki ¼ hkia

ðpþ1Þ
i ¼ ð1�lðpÞÞbðpÞki þl

ðpÞhkia
ðpÞ
i

¼

ð1�lðpÞÞbðpÞki þl
ðpÞhj0

ki if i¼ i0,

; i¼ 1,:::,l, k¼ 1,:::,q:

ð1�lðpÞÞbðpÞki , otherwise,

8>><
>>:

ð67Þ

For the objective function value W(a), we have

Wðaðpþ1ÞÞ ¼
1

2
aðpþ1Þ
� �T

H aðpþ1Þ
� �

¼ ð1�lðpÞÞ2WðaðpÞÞþlðpÞð1�lðpÞÞgj0 ðpÞ
i0
þ

1

2
lðpÞ
	
2

Yj0j0

i0i0
: ð68Þ

The recursive formula for gradient vector is

gðpþ1Þ ¼Haðpþ1Þ ¼ ð1�lðpÞÞHaðpÞ þlðpÞHaðpÞ ¼ ð1�lðpÞÞgðpÞ þlðpÞHaðpÞ,

ð69Þ

and the corresponding component form is

gjðpþ1Þ
i ¼ ð1�lðpÞÞgjðpÞ

i þl
ðpÞYjj0

ii0
; i¼ 1,:::,l, j¼ 1,:::,li: ð70Þ

Our Rank-CVM utilizes the same discriminant functions (15) or
(27) as Rank-SVM, so we only need to update bki, which can be
referred to as a proxy solution to replace a in Rank-CVM. Now,
our new method has an analytical step size (64), and some
efficient recursive formulae for the objective function value
(68), gradients (70) and proxy solution (67), which can speed up
the training procedure of Rank-CVM dramatically.

7.4. A fast training algorithm for Rank-CVM

Now, we list our fast training algorithm for Rank-CVM as
follows, in which two terminated indexes are used at the same
time, i.e., e and M for the objective function value and maximal
epochs, and the time complexity of the most time consuming
computations are given too.

Step 1: Set two terminated indexes: e and M, and then initialize

bðpÞki ðk¼ 1,:::,q,i¼ 1,:::,lÞ using (58), gjðpÞ
i ði¼ 1,::,l,j¼ 1,:::,liÞ using

(60) and W(p)(a) using (57), where p¼1.
Step 2: Search for the minimal component of gradient vector,
i.e., gj0 ðpÞ

i0
(O(lt)).

Step 3: Calculate z(p) according to (62). If 9z(p)9oe, then stop.
Step 4: Estimate the step size l(p) according to (64).
Step 5: Update bðpþ1Þ

ki (O(4ql)) using (67), gjðpþ1Þ
i (O((3qþ6)lt))

using (70) and W(pþ1)(a) using (68).
Step 6: Let p¼pþ1. If p reaches to (M� lt), then stop; else go to
Step 2.

When FW is applied to Rank-SVM, at its each iteration or
epoch, the entire solution vector of size lt is updated at the same
time. For the sake of comparison, in the above training procedure
for our Rank-CVM, each epoch indicates to execute lt iterations.

7.5. Time complexity analysis

For Rank-SVM, it is pointed out that the time complexity of any
epoch is denoted by Oðql2t Þ at most [16]. In our Rank-CVM, the most
computational time comes from updating the gradient vector
of length lt in Step 5 where the elements Yjj0

ii0
are recalculated,

updating the proxy solution in Step 5, and searching for the minimal
gradient component in Step 2, whose total time complexity is
O((3qþ7)ltþ4ql). Since one epoch indicates to execute lt iterations
in our Rank-CVM, the time complexity is Oðð3qþ7Þl2t þ 4qlltÞ. This
means that for any epoch, the time complexity of our Rank-CVM is
at least three times as high as that of Rank-SVM.

To achieve a e-accuracy solution, the number of iterations
depends on Oð2:H:FD

2=eÞ according to Theorem 1. Now we
estimate such a quantity at the worst case for Rank-SVM and
our Rank-CVM respectively. Since each column of H consists of
‘‘þ1’’, ‘‘-1’’ and q-2 ‘‘0 s’’, we have

99HT H99F r99H992

F ¼ 2lt ð71Þ

and thus

99ðHT HÞ � K99F rKmax99ðHT HÞ99F r2ltK
max, ð72Þ

where Kmaxindicates the absolute maximum of kernel matrix
elements. Additionally, for any instance, we have the inequalities,
ðq�1Þr Li

�� �� Li

�� ��r q=2
� �

1� q=2
� �� �

,where Ub c represents floor opera-
tion, e.g., 2:9b c ¼ 2. For Rank-SVM, we estimate,

:H:Rank�SVM

F ¼ :ðHT HÞ � K:F r2ltK
max,

ðDRank�SVM
Þ
2r:C:2

2r ltC
2=ðq�1Þ2: ð73Þ

For Rank-CVM, we have :D:F r
ffiffiffi
lt

p
q=2
� �

q� q=2
� �� �

=C and
uTa¼1, and thus

:H:Rank-CVM

F ¼ 99ðHT HÞ � KþðHT HÞþD99F r99ðHT HÞ

�K99Fþ99H
T H99Fþ99D99F

r2ltK
max
þ2ltþ

ffiffiffi
lt

p
q=2
� �

q� q=2
� �� �

=C,

ðDRank-CVM
Þ
2
¼max

p
99dðpÞ992

2 ¼max99
p

aðpÞ�aðpÞ992

2

rmax
p

99aðpÞ992

2þ99a
ðpÞ992

2

	

rmax

p
99aðpÞ991þ99a

ðpÞ991

	

¼max

p
uTaðpÞþuTaðpÞ
	

¼2:

ð74Þ

Since one epoch represents one iteration in Rank-SVM and lt
iterations in our Rank-CVM, with RBF kernel ðKmax

¼ 1Þ, at the worst

J. Xu / Pattern Recognition 46 (2013) 885–898 893
case the number of epochs for Rank-SVM and Rank-CVM are

ORank-SVM
ð4l2t C2=ðq�1Þ2=eÞ, ð75Þ

ORank-CVM 16þ4 q=2
� �

q� q=2
� �� �

=C
ffiffiffi
lt

ph i
=e

	

: ð76Þ

It can be observed that Rank-CVM needs much less epochs
than Rank-SVM to achieve a e-accuracy solution.
8. Experiments

In this section, we compare our Rank-CVM with four existing
multi-label classification approaches including Rank-SVM experi-
mentally. Before presenting our experimental results, we briefly
introduce four existing methods and nine benchmark data sets.

8.1. Four existing multi-label methods

In this paper, we selected four existing multi-label classifica-
tion methods: Rank-SVM [15], ADTree [24], BP-MLL [6] and
ML-kNN [9], which will be compared with our Rank-CVM experi-
mentally. It is worth noting that the first three methods and our
Rank-CVM belong to algorithm extension methods considering all
training instances and all labels at the same time, while ML-kNN
is a typical hybrid method based on the OVR data decomposition
trick. We downloaded the original C/Cþþ software package of
ADTree from [42] and the Matlab ones of BP-MLL and ML-kNN
from [43]. For ADTree, we utilize its original name rather than
ADTBoost.MR in [6,9], and slightly modified its software to
calculate the ranking loss. On the other hand, we accept their
recommended parameter settings. For ADTree, the number of
boosting rounds is set to be 50. For BP-MLL, the number of hidden
neurons is 20% of the number of input neurons, the training
epochs is set to be 100 and the regularization constant is fixed to
be 0.1. For ML-kNN, the Laplacian estimator (s¼1) is used and the
number of nearest instances k¼10.

In order to improve the training efficiency of Rank-SVM, we
utilized an analytical step size (64) and coded its implementation
using C/Cþþ language, in which the free C language package
LPSOL5.5 based on improved simplex method from [44] is
adopted as our linear programming solver.

8.2. Nine data sets

To compare our Rank-CVM with the aforementioned four
classification methods, we collected seven existing benchmark
data sets: Emotions, Image, Scene, Genbase, Medical, Slashdot,
and Yeast from [43,45,46], and constructed two new biological
data sets: Plant and Human, as summarized in Table 1, according
Table 1
Statistics for nine benchmark data sets used in our experiments.

Data set Domain Instances Features Classes Average

labels

Variables

Train Test

Emotions[45] Music 391 202 72 6 1.87 2793

Image[43] Scene 1200 800 294 5 1.24 5342

Scene[45] Scene 1211 1196 294 6 1.07 6278

Plant Biology 588 390 440 12 1.08 6959

Genbase[45] Biology 463 199 1185 27 1.35 14808

Human Biology 1862 1244 440 14 1.19 28036

Medical[45] Text 645 333 1449 45 1.25 34878

Slashdot[46] Text 2269 1513 1079 22 1.18 55306

Yeast[45] Biology 1500 917 103 14 4.24 58248
to the number of variables to be solved in the training algorithms
of Rank-CVM and our Rank-SVM in the last column. Table 1 also
shows some useful statistics of these data sets, such as, the
number of instances in the training and test sets, the number of
features, the number of labels, and the average labels. These data
sets cover four distinct domains: text, scene, music and biology.

For seven existing data sets, the Image and Slashdot are
partitioned into training and test sets randomly according to
60% versus 40% by us, while the other five training and test sets
are downloaded directly from their web sites [45]. For more
detailed information and description for these seven data sets,
please refer to their corresponding web sites and references
therein [43,45,46].

In bioinformatics, an important task is to develop computa-
tional methods to predict the subcellular locations of proteins
according to their sequences. It has been observed that some
multiplex proteins can simultaneously exist at two, or move
between, two or more different location sites. Such a problem
was identified as a multi-label classification, handled by the OVR
decomposition trick simply, and evaluated by accuracy of each
class [13]. But, this problem is dealt with under standard multi-
label classification setting in this paper. We downloaded 978 and
3106 sequences for Plant and Human species from [47], and
extracted 440 features (20 amino acid, 20 pseudo-amino acid and
400 dipetide compositions) from each protein sequence under the
default setting using the free off-line software PseAAC-Builder
from [48]. The Plant and Human include 12 location sites (cell
membrace, cell wall, chloroplast, cytoplasm, endoplasmic reticu-
lum, extracellular, golgi apparatus, mitochondrion, nucleus, per-
oxisome, plastid, and vacuole), and 14 ones (centriole, cytoplasm,
cytoskeleton, endoplasm reticulum, endosome, extracell, golgi,
apparatus, lysosome, microsome, mitochondrion, nucleus, peroxi-
some, plasma membrace, and synapse) respectively. Their aver-
age labels are 1.08 and 1.19. Finally we parse these two sets into
training and test data sets randomly in terms of 60% versus 40%.
8.3. Tuning two key parameters for Rank-CVM and Rank-SVM on

training sets

In this work, the RBF kernel Kðx,yÞ ¼ expð�g:x�y:2

2Þ is tested
for Rank-SVM and our Rank-CVM, where g denotes the kernel
scale factor. Additionally, such two methods involve a regulariza-
tion constant C. To reach an acceptable classification performance,
M¼50 are recommended without achieving a e¼10�3 accuracy
solution for Rank-SVM in [6,9], whereas e¼10�3 is quickly
satisfied within 1–2 epochs for our Rank-CVM. In this case, we
set e¼10�3 and M¼50 for such two SVM-type methods. There-
fore, now there are two key tunable parameters: g and C. To
reduce the search space of possible parameter combinations, we
construct a lazy procedure to tune such two key parameters on
training sets using three-fold cross validation, in which through
fixing one parameter by turns we investigate a proper criterion
function (some measure mentioned in Section 2, or some combi-
nation of these measures) as a function of the other parameter,
and then detect a corresponding optimal value.

First, we validate whether all five measures defined in Section
2 have an identical optimal g or C value. For the Emotions data set,
we investigate five measures as different functions of 13 different
g values: 22,21,...,2�10 given C¼1, and 10 different C values:
28,27,...,2�1 given g¼2�1, as shown in Fig. 3. It is found out that
the different measure corresponds to a slightly different optimal g
or C value, e.g., g¼2�1 or 2�2 in Fig. 3(a), and C ¼ 20,21 or 22 in
Fig. 3 (b). This means that it is improper to use one of the five
measures as a criterion function to tune two key parameters.

Fig. 3. Five measures as functions of different parameter (g or C) on Emotions.

J. Xu / Pattern Recognition 46 (2013) 885–898894
Therefore we define a tradeoff criterion function as follows:

Criterion function¼ Ranking lossþHamming lossð Þ=2: ð77Þ

According to (77), we conducted our lazy tuning procedure for
our Rank-CVM and Rank-SVM on nine training data set listed in
Table 1, as shown in Fig. 4. Fig. 4(a) shows the criterion function
(77) as a function of 13 g values from 22 to 2�10 given C¼1, whose
curves behave smoothly. Fig. 4(b) displays the criterion (77) as a
function of 10 different C values from 28 to 2�1 given the optimal
g values form Fig. 4(a), whose curves oscillate slightly. According
to Fig. 4, the optimal g and C values, and their corresponding
criterion function values are detected and listed in Table 2. It is
inspiring that tuning C value indeed reduces the criterion function
values, since all C values but one for Rank-CVM on Image is greater
than 1. Among nine sets, our Rank-CVM performs better than
Rank-SVM on five sets. But note that such two methods have no
statistically significant difference based on the paired Wilcoxon
sign ranked test with 5% significance level [49].

8.4. Performance comparison with four existing methods on test sets

In this sub-section, we compare our Rank-CVM with four
existing methods: Rank-SVM, ADTree, BP-MLL, and ML-kNN using
a train-test mode. According to those optimal parameter combina-
tions in Table 2 for Rank-SVM and Rank-CVM from training sets,
and those recommended parameter settings for the other three
methods in Section 8.1, we retrained all five multi-label classifica-
tion methods on nine training sets, and then verified their perfor-
mance using nine independent test sets in Table 1 respectively. The
detailed experimental results are shown in Tables 3–7 according to
five different measures, where the best value of each data set
among five methods is highlighted in boldface. To compare these
methods statistically, we choose our Rank-CVM as a baseline, and
compare whether our method is statistically equal to, or better or
worse than, one of the remained four methods, denoted by ‘‘¼¼ ’’,
‘‘*’’ and ‘‘)’’ respectively, using the paired Wilcoxon sign ranked test
with 5% significance level [49]. The statistical comparison results
are listed in the last row (denoted by W-test) of Tables 3–7.

In Table 3, Rank-CVM and Rank-SVM achieve two and seven
best coverage values, which looks like that Rank-SVM is superior
to our Rank-CVM. But based on the statistical test, there is no
statistically significant difference between such two methods.
Furthermore, our Rank-CVM performs statistically better than the
remained three methods: ADTree, BP-MLL and ML-kNN.

In Table 4 of one error measure, our Rank-CVM and Rank-SVM
work the best on five and four data sets respectively. On the
Genbase data set, Rank-CVM, ADTree and BP-MLL achieve the
same one error value. According to the Wilcoxon test, our Rank-
CVM performs as well as Rank-SVM, and better than ADTree,
BP-MLL and ML-kNN.

As to the average precision in Table 5, our Rank-CVM and
Rank-SVM behave the best on four and five data sets. Based on the
statistical test, again, our Rank-CVM is as good as Rank-SVM, and
superior to ADTree, BP-MLL, and ML-kNN.

In Table 6 of ranking loss, our Rank-CVM and Rank-SVM work
the best on two and seven data sets. Since the difference between
such two algorithms is small, no significant difference is detected
by the statistical test. According to the Wilcoxon test, our Rank-
CVM is better than ADTree, BP-MLL and ML-kNN.

As per Hamming loss in Table 7, Rank-CVM, Rank-SVM,
ADTree and ML-kNN work the best on one, five, one and two
data sets. It is surprising that no statistical significant difference is
detected between our Rank-CVM and the other four multi-label
classifiers.

Fig. 4. Two key parameter tuning procedure on training sets for Rank-CVM and Rank-SVM.

Table 2
The optimal g and C values, and corresponding criterion function values for nine

training sets.

Data set Rank-CVM Rank-SVM

g C Criterion g C Criterion

Emotions 2�2 21 0.17682 2�1 21 0.17687

Image 2�2 20 0.15834 2�2 21 0.15505
Scene 2�4 24 0.07317 2�3 26 0.07557

Plant 2�6 24 0.14179 2�6 21 0.14190

Genbase 2�2 25 0.00224 2�2 23 0.00165
Human 2�5 21 0.11404 2�5 21 0.11267
Medical 2�5 27 0.01721 2�4 25 0.01752

Slashdot 2�3 22 0.06981 2�4 22 0.07147

Yeast 20 21 0.18122 20 22 0.17853

J. Xu / Pattern Recognition 46 (2013) 885–898 895
From Tables 3–7, it is illustrated that our Rank-CVM performs
as well as Rank-SVM, and better than the other three existing
state-of-the-art multi-label classification techniques: ADTree,
BP-MLL and ML-kNN.
8.5. Computational time comparison between Rank-CVM and Rank-

SVM

In this sub-section, we compare the training and test time
between Rank-CVM and Rank-SVM on nine data sets with the same
parameter settings as in the above sub-section, where the test time is
measured by the number of support vectors. Our computational
platform is one desk computer with Intel Core i5 micro-processor
including four 2.8 G CPUs and 8 G RAM, and MFC6.0.

Table 7
Hamming loss measure from five methods on nine data sets.

Data set Rank-CVM Rank-SVM ADTree BP-MLL ML-kNN

Emotions 0.20627 0.20380 0.25660 0.21782 0.20875

Image 0.15300 0.15200 0.19175 0.22950 0.17225

Scene 0.08877 0.08417 0.11859 0.29097 0.09894

J. Xu / Pattern Recognition 46 (2013) 885–898896
In the training phases of nine data sets, our Rank-CVM experi-
mentally converges within one epoch for satisfying e¼10�3,
whereas Rank-SVM is terminated by 50 epochs, which verifies
our theoretical analysis according to Theorem 1 in Sub-Section 7.5,
that is, our Rank-CVM needs much less epochs than Rank-SVM.
In Fig. 5(a), we investigate the training time as a function of
the number of variables (listed in the last column of Table 1) in
Table 4
One error measure from five methods on nine data sets.

Data set Rank-CVM Rank-SVM ADTree BP-MLL ML-kNN

Emotions 0.29208 0.28218 0.37129 0.30693 0.30198

Image 0.25750 0.25000 0.38750 0.52625 0.32375

Scene 0.19398 0.20067 0.31940 0.82692 0.24247

Plant 0.60513 0.61026 0.73077 0.94872 0.66410

Genbase 0.00000 0.00503 0.00000 0.00000 0.00503

Human 0.51608 0.51447 0.61415 0.88746 0.60370

Medical 0.13514 0.13814 0.18919 0.36036 0.26426

Slashdot 0.38929 0.39458 0.50496 0.40582 0.66424

Yeast 0.25736 0.22574 0.25518 0.23664 0.23446

W-test ¼¼ * * *

Table 5
Average precision measure from five methods on nine data sets.

Data set Rank-CVM Rank-SVM ADTree BP-MLL ML-kNN

Emotions 0.80105 0.80575 0.73629 0.77910 0.79073

Image 0.83278 0.83740 0.75262 0.63793 0.79163

Scene 0.88314 0.87442 0.80664 0.46483 0.85118

Plant 0.58294 0.58912 0.48275 0.23581 0.53646

Genbase 0.99619 0.99456 0.99422 0.99145 0.99144

Human 0.65166 0.65134 0.57115 0.33170 0.58114

Medical 0.89898 0.89445 0.84046 0.75889 0.79572

Slashdot 0.70452 0.70662 0.60862 0.69645 0.47754

Yeast 0.73944 0.76902 0.73723 0.75049 0.75846

W-test ¼¼ * * *

Table 6
Ranking loss measure from five methods on nine data sets.

Data set Rank-CVM Rank-SVM ADTree BP-MLL ML-kNN

Emotions 0.15751 0.15318 0.22847 0.17992 0.16148

Image 0.13385 0.13146 0.21292 0.33948 0.17552

Scene 0.06695 0.07736 0.11796 0.39452 0.09308

Plant 0.17199 0.15842 0.22815 0.52593 0.21099

Genbase 0.00412 0.00115 0.00390 0.00762 0.00647

Human 0.12450 0.12424 0.16927 0.41341 0.16112

Medical 0.01708 0.01953 0.02966 0.03043 0.04245

Slashdot 0.09089 0.08764 0.12767 0.09016 0.17847

Yeast 0.18038 0.16200 0.18726 0.17504 0.17150

W-test ¼¼ * * *

Plant 0.10620 0.10769 0.09551 0.09850 0.08697
Genbase 0.00149 0.00149 0.00093 0.00335 0.00462

Human 0.08860 0.08883 0.08331 0.09239 0.08309
Medical 0.01081 0.01074 0.01522 0.02002 0.01708

Slashdot 0.04368 0.04443 0.04957 0.04521 0.052785

Yeast 0.22901 0.19263 0.21234 0.20922 0.19801

W-test ¼¼ ¼¼ ¼¼ ¼¼

Fig. 5. The comparison of training time on nine data sets for Rank-CVM and Rank-

SVM. (a) The training time as a function of the number of variables in log-scale.

(b) The ratio of training time of Rank-SVM to our Rank-CVM.

Fig. 6. The number of support vectors from Rank-CVM and Rank-SVM.

Table 3
Coverage measure from five methods on nine data sets.

Data set Rank-CVM Rank-SVM ADTree BP-MLL ML-kNN

Emotions 1.85149 1.80693 2.20792 1.95050 1.87620

Image 0.81500 0.80375 1.10000 1.62750 0.96625

Scene 0.43896 0.49415 0.68645 2.06270 0.56856

Plant 2.00513 1.84359 2.59744 5.98460 2.42310

Genbase 0.47236 0.29146 0.45226 0.59799 0.55276

Human 1.92122 1.90997 2.49598 5.79020 2.40510

Medical 1.24324 1.42943 1.95195 2.02100 2.72370

Slashdot 2.36550 2.28949 3.15400 2.33110 4.26240

Yeast 6.79171 6.29335 6.51908 6.42310 6.41440

W-test ¼¼ * * *
Rank-SVM and our Rank-CVM in log-scale, where 1:17� 10�6l1:95
t

for Rank-SVM and 2:13� 10�7l1:85
t for Rank-CVM are fitted

and shown in dotted lines. Further, we calculate the ratio of
training time of Rank-SVM to our Rank-CVM, as shown in Fig. 5(b),
where the ratio is at least 9.88 from Image, at most 16.56 from Yeast,
13.72 on an average. Therefore, Rank-CVM averagely runs 3.64 times
as slow as Rank-SVM for each epoch, which is less than the
theoretical value 4.04 estimated from Sub-Section 7.5.

For SVM-type classification algorithms, the test time is mainly
determined by the number of support vectors, since evaluating
kernel functions would spend the most fraction of test time. In
this study, a training vector is regarded as a support vector if only
its one non-zero coefficient occurs in its q discriminant functions
(27). Fig. 6 shows the ratio of the number of support vectors to

J. Xu / Pattern Recognition 46 (2013) 885–898 897
training vectors on nine data sets for Rank-CVM and Rank-SVM.
The average ratios over nine training data sets are 85.50% for our
Rank-CVM and 98.98% for Rank-SVM respectively. This means
that the solution sparseness of such two methods is not good
enough. But it is verified that the sparseness of Rank-CVM are
statistically significantly better than that of Rank-SVM according
the Wilcoxon signed rank test with 5% significance level.

According to the training time and the number of support
vectors, it can be demonstrated that our Rank-CVM runs much
faster than its rival Rank-SVM in the training and test phases.
9. Conclusions

The existing multi-label support vector machine (Rank-SVM) is a
typical algorithm extension method, which considers all instances
and all labels simultaneously to characterize label correlation
sufficiently, resulting into an extremely complicated quadratic
programming problem. Therefore it is highly desirable to design
and implement a novel SVM-type multi-label algorithm. In this
paper, a novel SVM-type algorithm for multi-label classification, i.e.,
Rank-CVM, is presented, which is derived through integrating
Rank-SVM and binary core vector machine (CVM). Our quadratic
programming problem has a special unit simplex constraint. When
the Frank–Wolfe method is applied, our Rank-CVM has analytical
solution and step size, and several recursive formulae for objective
function, and gradient vector and proxy solution, at any iteration.
All these tricks speed up the training procedure of our Rank-CVM
greatly. Theoretical analysis shows that our Rank-has a lower time
complexity than Rank-SVM. For nine data sets, our novel method
runs on average 13 times faster and has less support vectors
than Rank-SVM in the training phase under Cþþ environment.
Experimental study also demonstrates that our Rank-CVM achieves
rather competitive performance, compared with five typical
multi-label classification methods, including Rank-SVM, ADTree,
BP-MLL and ML-kNN, according to five indicative performance
measures.

In future we will conduct a detailed model selection work to
search optimal key parameters more efficiently for our Rank-CVM
and construct a feature selection technique using our Rank-CVM.
Acknowledgments

This work is supported by Natural Science Foundation of China
under grant no. 61273246 and 60875001.
References

[1] G. Tsoumakas, I. Katakis, Multi-label classification: an overview, International
Journal of Data Warehousing and Mining 3 (3) (2007) 1–13.

[2] A.C.P.L.F. de Carvalho, A.A. Freitas, A tutorial on multi-label classification
techniques, in: A. Abraham, A.E. Hassanien, V. Snasel (Eds.), Function Approxi-
mation and Classification, Foundations of Computational Intelligence, vol. 5,
Springer, Berlin/Heidelberg, 2009, pp. 177–195.

[3] G. Tsoumakas, I. Katakis, I. Vlahavas, Mining multi-label data, in: O. Maimon,
L. Rokach (Eds.), Data Mining and Knowledge Discovery Handbook, second
ed., Springer, New York, 2010, pp. 667–685.

[4] T. Joachims, Text categorization with support vector machines: learning with
many relevant features, in: Proceedings of the 10th European Conference on
Machine Learning (ECML1998), Lecture Notes in Computer Science, vol. 1398,
Chemnitz, Germany, 1998, pp. 137–142.

[5] R.E. Schapire, Y. Singer, Boostexter: a boosting-based system for text
categorization, Machine Learning 39 (2/3) (2000) 135–168.

[6] M.L. Zhang, Z.H. Zhou, Multilabel neural networks with application to
function genomics and text categorization, IEEE Transactions on Knowledge
and Data Engineering 18 (10) (2006) 1338–1351.

[7] F. Brucker, F. Benites, E. Sapozhnikova, Multi-label classification and extract-
ing predicted class hierarchies, Pattern Recognition 44 (3) (2011) 724–738.
[8] M.R. Boutell, J. Luo, X. Shen, C.M. Brown, Learning multi-label scene
classification, Pattern Recognition 37 (9) (2004) 1757–1771.

[9] M.L. Zhang, Z.H. Zhou, ML-kNN: a lazy learning approach to multi-label
learning, Pattern Recognition 40 (5) (2007) 2038–2048.

[10] A. Jiang, C. Wang, Y. Zhu, Calibrated Rank-SVM for multi-label
image categorization, in: Proceedings of 2008 IEEE International Joint
Conference on Neural Networks (IJCNN2008), Hongkong, China, 2008,
pp.1450–1455.

[11] J.D. Wang, Y.H. Zhao, X.Q. Wu, X.S. Hua, A transductive multi-label learning
approach for video concept detection, Pattern Recognition 44 (10/11) (2011)
2274–2286.

[12] P. Pavlidis, J. Weston, J. Cai, W.N. Grundy, Combining microarray expression
data and phylogenetic profiles to learn functional categories using support
vector machines, in: Proceedings of the 5th Annual international Conference
on Computational Molecular Biology (RECOMB2001), Montreal, Canada,
2001, pp. 242–248.

[13] K.C. Chou, H.B. Shen, Cell-PLoc 2.0: an improved package of web-servers for
predicting subcellular location of proteins in various organisms, Natural
Science 2 (10) (2010) 1090–1103.

[14] K. Trohidis, G. Tsoumakas, G. Kalliris, I. Vlahavas, Multi-label classification of
music into emotions, in: Proceedings of the 9th International Conference on
Music Information Retrieval (ISMIR2008), Philadelphia, PA, USA, 2008,
pp. 325–330.

[15] A. Elisseeff, J. Weston, A kernel method for multi-labelled classification, in:
Proceedings of the 14th Conference on Neural Information Processing
Systems (NIPS2001), Vancouver, British Columbia, Canada, 2001, pp. 681–
687.

[16] A. Elisseeff, J. Weston, Kernel Methods for Multi-labelled Classification
and Categorical Regression Problems, Technical Report, 2001, BIOwulf
Technologies /http://www.kyb.tuebingen.mpg.de/bs/people/weston/publica
tionsS .

[17] W. Cheng, E. Hullermeier, Combining instance-based learning and logistic
regression for multi-label classification, Machine Learning 76 (2/3) (2009)
211–225.

[18] K. Dembczynski, W. Waegeman, W. Cheng, E. Hullermeier, On label depen-
dencies in multi-label classification, in: Workshop Proceedings of Learning
from Multi-label Data, Haifa, Israel, 2010, pp. 5–12.

[19] M. Frank, P. Wolfe, An algorithm for quadratic programming, Naval Research
Logistic Quarterly 3 (1/2) (1956) 95–110.

[20] J. Guelat, P. Marcotte, Some comments on Wolfe’s away step, Mathematical
Programming 35 (1) (1986) 110–119.

[21] I.W. Tsang, J.T. Kwok, P.M. Cheung, Core vector machines: fast SVM training
on very large data sets, Journal of Machine Learning Research 6 (2005)
363–392.

[22] I.W. Tsang, J.T. Kwok, J.M. Zurada, Generalized core vector machines, IEEE
Transactions on Neural Networks 17 (5) (2006) 1126–1140.

[23] H. Ouyang, A. Gray, Fast stochastic Frank–Wolfe algorithms for nonlinear
SVMS, in: Proceedings of the 10th SIAM International Conference on Data
Mining (SDM2010), Columbus, Ohio, USA, 2010, pp. 245–256.

[24] F.D. Comite, R. Gilleron, M. Tommasi, Learning multi-label alternative
decision tree from texts and data, in: Proceedings of the 3rd International
Conference on Machine Learning and Data Mining in Pattern Recogni-
tion (MLMD2003), Lecture Notes in Computer Science, vol. 2734, Leipzig,
Germany, 2003, pp. 35–49.

[25] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, second ed., John Wiley
and Sons, New York, 2001.

[26] J. Ramon, O. Luaces, A. Bahamonde, Multi-label classification with a
probabilistic thresholding strategy, Pattern Recognition 45 (2) (2012)
876–883.

[27] M. Petrovskiy, Paired comparisons method for solving multi-label
learning problem, in: Proceedings of the 6th International Conference
on Hybrid Intelligent Systems (HIS2006), Auckland, New Zealand, 2006, p. 42.

[28] J. Furnkranz, E. Hullermeier, E.L. Mencia, K. Brinker, Multi-label classification
via calibrated label ranking, Machine Learning 73 (2) (2008) 133–153.

[29] G. Madjarov, D. Gjorgjevikj, S. Dzeroski, Two Stage architecture for multi-
label learning, Pattern Recognition 45 (3) (2012) 1019–1034.

[30] G. Tsoumakas, I. Vlahavas, I. Katakis, Random k-labelsets for multi-label
classification, IEEE Transactions on Knowledge and Data Mining 23 (7) (2011)
1079–1089.

[31] A. Clare, R.D. King, Knowledge discovery in multi-label phenotype
data, in: Proceedings of the 5th European Conference on Principles of
Data Mining and Knowledge Discovery (PKDD2001), Lecture Notes in
Computer Science, vol. 2168, Freiburg, Baden-Württemberg, Germany,
2001, pp. 42–53.

[32] V.N. Vapnik, Statistical Learning Theory, John Wiley and Sons, New York,
1998.

[33] M.L. Zhang, J.M. Pena, V. Robles, Feature selection for multi-label naı̈ve Bayes
classification, Information Science 179 (19) (2009) 3218–3229.

[34] J. Reed, B. Pfahringer, G. Holmes, Classifier chain for multi-label classification,
Machine Learning 85 (3) (2011) 333–359.

[35] J.H. Xu, An extended one-versus-rest support vector machine for multi-label
classification, Neurocomputing 74 (17) (2011) 3114–3124.

[36] M.L. Zhang, ML-RBF: RBF neural networks for multi-label learning, Neural
Processing Letters 29 (2) (2009) 61–74.

http://www.kyb.tuebingen.mpg.de/bs/people/weston/publications
http://www.kyb.tuebingen.mpg.de/bs/people/weston/publications

J. Xu / Pattern Recognition 46 (2013) 885–898898
[37] L. Wang, M. Chang, J. Feng, Parallel and sequential support vector machines
for multi-label classification, International Journal of Information Technology
11 (9) (2005) 11–18.

[38] S.P. Wan, J.H. Xu, A multi-label classification algorithm based on triple class
support vector machine, in: Proceedings of 2007 IEEE International Con-
ference on Wavelet Analysis and Pattern Recognition (ICPRWA2007), Beijing,
China, 2007, pp. 1447–1452.

[39] J.Y. Li, J.H. Xu, A fast multi-label classification algorithm based on double
label support vector machine, in: Proceedings of 2009 International Con-
ference on Computational Intelligence and Security (CIS2009), vol. 2, Beijing,
China, 2009, pp. 30–35.

[40] C.C. Chang, C.J. Lin, Training nu-support vector classifiers: theory and
algorithm, Neural Computation 13 (9) (2001) 2119–2147.

[41] R.E. Fan, P.H. Chen, C.J. Lin, Working set selection using second order
information for training support vector machines, Journal of Machine Learn-
ing Research 6 (2005) 1889–1918.
[42] F.D. Comite, R. Gilleron, M. Tommasi, ADTree, 2003 /http://www.grappa.

univlille3.fr/ftp/Softs/ADTree.tgzS.
[43] M.L. Zhang, Matlab software of BP-MLL and ML-kNN, and Image data set,

2009 /http://cse.seu.edu.cn/people/zhangmlS.
[44] S. Stiena, LPSOL5.5, 2006 /http://www.cs.sunysb.edu/algorithm/implement/

lpsolve/implement.shtmlS.
[45] G. Tsoumakas, Multi-label data sets, 2009 /http://mulan.sourceforge.net/

datasets.htmlS.
[46] J. Read, Slashdot data set, 2011 /http://meka.sourceforge.net/#datasetsS.
[47] H.B. Shen, Cell_PLoc 2.0 data sets, 2010 /http://www.csbio.sjtu.edu.cn/

bioinf/Cell-PLoc-2/DataS.
[48] P.F. Du , PseAAC-Builder, 2011 /http://www.sourceforge.net/projects/pseb/

filesS.
[49] J. Demsar, Statistical comparison of classifiers over multiple data sets, Journal

of Machine Learning Research 7 (2006) 1–30.
Jianhua Xu received his Ph.D. in Pattern Recognition and Intelligent Systems in 2002 (Department of Automation, Tsinghua University, Beijing, China). Since 2005, he is a
professor in Computer Science, Nanjing Normal University, Nanjing, China. From September 2008 to September 2009, he was a visiting scholar at Department of Statistics,
Harvard University, Cambridge MA, USA. His research interests are focused on pattern recognition, machine learning, and their applications to bioinformatics.

http://www.grappa.univlille3.fr/ftp/Softs/ADTree.tgz
http://www.grappa.univlille3.fr/ftp/Softs/ADTree.tgz
http://cse.seu.edu.cn/people/zhangml
http://www.cs.sunysb.edu/algorithm/implement/lpsolve/implement.shtml
http://www.cs.sunysb.edu/algorithm/implement/lpsolve/implement.shtml
http://mulan.sourceforge.net/datasets.html
http://mulan.sourceforge.net/datasets.html
http://meka.sourceforge.net/#datasets
http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/Data
http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/Data
http://www.sourceforge.net/projects/pseb/files
http://www.sourceforge.net/projects/pseb/files

	Fast multi-label core vector machine
	Introduction
	Multi-label classification setting and evaluation
	Previous work
	Data decomposition methods
	Algorithm extension methods
	Hybrid methods

	Binary support vector machine and core vector machine
	Multi-label support vector machine
	Multi-label core vector machine
	A fast training algorithm for Rank-CVM
	Frank-Wolfe algorithm
	Initialization for training algorithm of Rank-CVM
	Some useful recursive formulae for training algorithm of Rank-CVM
	A fast training algorithm for Rank-CVM
	Time complexity analysis

	Experiments
	Four existing multi-label methods
	Nine data sets
	Tuning two key parameters for Rank-CVM and Rank-SVM on training sets
	Performance comparison with four existing methods on test sets
	Computational time comparison between Rank-CVM and Rank-SVM

	Conclusions
	Acknowledgments
	References

