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For high dimensional data a large portion of features are often not informative of the class of the objects.

Random forest algorithms tend to use a simple random sampling of features in building their decision

trees and consequently select many subspaces that contain few, if any, informative features. In this

paper we propose a stratified sampling method to select the feature subspaces for random forests with

high dimensional data. The key idea is to stratify features into two groups. One group will contain

strong informative features and the other weak informative features. Then, for feature subspace

selection, we randomly select features from each group proportionally. The advantage of stratified

sampling is that we can ensure that each subspace contains enough informative features for

classification in high dimensional data. Testing on both synthetic data and various real data sets in

gene classification, image categorization and face recognition data sets consistently demonstrates the

effectiveness of this new method. The performance is shown to better that of state-of-the-art

algorithms including SVM, the four variants of random forests (RF, ERT, enrich-RF, and oblique-RF),

and nearest neighbor (NN) algorithms.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Random forest (RF) builds a classification ensemble with a set
of decision trees that grow using randomly selected subspaces of
data [1–5]. Experimental results have shown that random forest
classifiers can achieve a high accuracy in data classification
[6,4,2]. Interest in random forests continues to grow with recent
theoretical analyses [7–9] and applications research in bioinfor-
matics [10–14] and computer vision [15–19].

A key step in building a RF is generating different subspaces of
features at each node of each unpruned decision tree that makes
up the forest. Several subspace selection methods have been
developed [5,1,4,2,3]. A simple random sampling of the available
features is a common approach to selecting subspaces [2].

The performance of a RF depends on the performance of each
decision tree, and the diversity of decision trees in the forest.
Breiman [2] formulated the overall performance of a set of trees
as the average strength and the average correlation between the
trees. He showed that the generalization error of a RF classifier is
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bounded by the ratio of the average correlation between trees
divided by the square of the average strength of the trees.

For high dimensional data a large proportion of the features
may not be informative of the class of an object. The common
random sampling method may select many subspaces that do not
include informative features. As a consequence, the decision trees
generated from these subspaces may suffer a reduction in their
average strength, thus increasing the error bounds for the RF.

The main aim of this paper is to propose and develop a stratified
sampling method for feature subspace selection for generating the
decision trees of a RF. It is particularly relevant for high dimensional
data. Our idea is to introduce a stratification variable to divide
features into two groups: strong informative features and weak
informative features. We then randomly select features from each
group, ensuring we have representative features from each group.
This approach ensures that each subspace contains enough useful
features for classification purpose in high dimensional data.

In this paper we use both synthetic data sets and real world
data sets from gene classification, image categorization and face
recognition to demonstrate the proposed method’s effectiveness.
The performance of the proposed method is shown to better that
of the current state-of-the-art algorithms including SVM, the four
variants of random forests (RF, ERT, enrich-RF, and oblique-RF),
and the kNN and naive Bayes algorithms.
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The remainder of the paper is organized as follows. In Section 2,
we review random forests. In Section 3, we present the stratified
sampling method for feature subspace selection. In Section 4, we
present and discuss the experimental results on various data sets.
Conclusions and future work are presented in Section 5.
2. Random forests

A RF model consists of an ensemble of decision tree models. The
concept of building multiple decision trees was introduced by
Williams [20]. Ho [21] then developed the concept of taking a
subspace of features when building each tree within the ensemble.
Breiman [2] then developed the RF algorithm as it is commonly
known today by introducing further randomness into the process.

The common algorithm can be described as follows. Given a
training data set X taken from a space S of N features:
1.
 Use bagging [22] to generate K subsets {X1,X2, . . . ,XK } by
randomly sampling X with replacement.
2.
 For each data set Xk, use the CART [23] to build a decision tree.
At each node in building a decision tree, randomly sample a
subspace of p features (p5N) from S, and compute all possible
splits based on the p features. The best split (e.g., the largest
Gini measure) is used to continue with the divide and conquer
process. Continue until a stopping criteria are met: i.e., all data
are pure with respect to the class, have identical values for
each attribute, or the number of instances remaining in the
data subset is less than nmin.
3.
 Combine the K unpruned trees h1ðX1Þ, h2ðX2Þ, y, hK ðXK Þ into a
RF ensemble, and use a vote among the trees as the ensemble
classification decision.

An ensemble learner with excellent generalization accuracy has
two properties: high accuracy of each component learner and high
diversity in component learners. The theoretical and practical perfor-
mance of ensemble classifiers is well documented [24,25].

Breiman [2] employs two randomization procedures to
achieve diversity. Sufficiently diverse trees can be constructed
using randomly selected training samples for each of the indivi-
dual trees, and randomly selected subspaces of features for
splitting at each node within a tree. Geurts et al. [3] proposed
to extremely randomize trees by randomizing the attribute
splitting threshold. Such randomization procedures were found
to enhance the independence of individual classifiers in the
ensemble and thus obtaining improved accuracy.

Random feature subspace sampling is the most common method
to deliver diversity amongst decision trees due to its simplicity,
efficiency and resulting classification performance. Despite its
popularity, random subspace sampling may not be a good strategy
to deal with high dimensional data. Recent methods build more
discriminative subspaces by a weighting features individually [26].
The weights are computed with respect to the feature’s correlation
with the class feature. The resulting weights are treated as a
probability by which a feature will be selected for inclusion in a
feature subspace. This approach has been shown to deliver impress-
ive improvements in the classification performance of individual
trees, primarily because the subspaces will contain features more
relevant to the class. However, the chances of introducing more
correlated trees are also increased since the features with large
weights are likely selected repeatedly. Our approach, introduced in
this paper, uses a stratified sampling technique for feature subspace
selection, in order to improve the independence of the resulting
decision trees.

Stratified sampling is a well-known technique with many
applications for large scale data management [27–29]. In stratified
random sampling the population are divided into smaller sub-
groups called strata. Random sampling is then applied within each
subgroup or stratum.

One of the advantages of stratified sampling is that it can capture
key population characteristics. When we apply stratified sampling
for feature subspace selection, a set of strong informative features
forms a core stratum, and the weak informative features forms
another stratum. As discussed above it is advantageous to guarantee
the inclusion of informative features in a subspace when construct-
ing a decision tree. Adding weakly informative features will offer
considerable diversity amongst the resulting decision trees.

Based on these ideas, we introduce stratified random forests. The
method builds random decision trees using stratified feature sub-
space sampling for each node within the tree building process. This
method is described in the following section where we also show that
it is robust in subspace diversity and is computationally efficient.
3. Stratified feature subspace selection

In this section, we first discuss the problem of a simple
random sampling method for feature subspace selection. Then
we introduce a stratified sampling method. Finally, we develop a
new random forest algorithm, the stratified random forest (SRF).

3.1. High dimensional data issue

The classification performance of a decision tree depends on
the correlation of the selected features to the class feature. To
increase the strength of a tree we are required to select feature
subspaces that contain features that are well correlated to
the class feature. However, for high dimensional data, there are
usually relatively few features that have high a correlation to the
class feature.

Suppose we have only H features that are informative (i.e.,
highly correlated to the class feature) for classification purposes.
The remaining N�H features are then not informative. If a decision
tree is grown in a subspace of p features, often with p5N, then the
total number of possible subspaces is

N

p

 !
¼

N!

ðN�pÞ!p!

The probability of selecting a subspace of p41 features without
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In high dimensional data, NbH, and therefore the above prob-
ability is close to 1. That is, there is a very high chance that a
subspace selected by a simple random sampling method will not
contain any informative features. As a result, the trees generated
will not be useful for classification purposes, and so the overall
average strength of the trees is reduced. We propose the stratified
sampling method to ensure all generated subspaces contain some
informative features.

3.2. Stratified sampling method

The stratified sampling method introduced in this paper
ensures the inclusion of strongly correlated features in all feature
subspaces whilst also avoiding the same features being repeat-
edly selected. In this way we increase the overall average strength
of the models and reduce the overall incidence of correlated trees.
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Let A be a set of N features {A1,A2, . . . ,AN} describing a space S.
Let Y be a feature identifying the classes of objects. We consider a
non-negative function j as a measure of the informativeness of
an input feature Ai with respect to the class feature Y. The
resulting value of ji is normalized as follows:

yi ¼
jiPN

k ¼ 1 jk

ð1Þ

where yi is then in between 0 and 1 and measures the relative
informativeness of feature Ai with respect to the set of features A.
We call a feature Ai strong (weak) if yi is large (small). We can
then stratify the set A into two groups as As and Aw by the
following procedure:
(i)
 Sort the set of features based on fyig in descending order.

(ii)
 Specify a threshold a and divide A into two disjoint groups

so that A¼As [ Aw, As \ Aw ¼ |, and As ¼ fAiAA9yioag and
Aw ¼ fAiAA9yiZag.
The stratified sampling of a subspace with p (41) features can
now be accomplished by selecting individual features at random
from the two subgroups. The features are selected in proportion
to the relative sizes of the two groups. That is, we randomly
selected ps ¼ p� Ns=N features from the strong feature group,
where Ns is the size of the strong feature group and N is the total
number of features. We also randomly sample pw ¼ p�ps features
from the weak feature group. These are then merged to form a
subspace for tree construction. We specify p must contain at least
one from each group. In this way, we can guarantee that the
subspace at any node contains both strong and weak features.

For high dimensional data with a large portion of less infor-
mative features, the stratified sampling method will now provide
more accurate results than conventional RF in classification. This
is demonstrated in Section 4. We now analyze the subspace
diversity that results from the proposed stratified sampling
method.

3.2.1. Subspace diversity analysis

Let Ns and Nw be the numbers of features in As and Aw,
respectively, NsþNw ¼N, where N is the number of features in
A. The possible number of the selections of ps features from As is
given by

Cs ¼
Ns

ps

 !
¼

Ns!

ðNs�psÞ!ps!

The possible number of the selections of pw features from Aw is
given by

Cw ¼
N�Ns

p�ps

 !
¼
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The subspace diversity C can be calculated by the total number of
possible subspaces:
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If Ns5N, the diversity of subspaces can be represented as

C �
ðNsÞ

ps ðNÞðp�psÞ

ps!ðp�psÞ!
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ps

Ns

� �ðps�1Þ
This formula shows that the diversity of subspaces increases as p

increases as ps increases. The stratified sampling method is
sufficient in subspace diversity. For example, suppose the total
number of features N¼100, the number of strong informative
features Ns¼50, and we sample a subspace of 10 features
containing five strong features. There are over 4 billions possible
subspaces. If we set the subspace size p¼ intðlog2ðNÞþ1Þ ¼ 7 as
suggested in [2], where int(x) is the first integer larger than x, we
will also have over 300 millions of different subspaces.

3.3. The SRF algorithm

The proposed algorithm (stratified random forest or just SRF) to
build a random forest model from training data X with the stratified
sampling method for feature subspace selection is summarized as
follows:
1.
 For each feature Ai, compute its informativeness ji with an
non-negative informative function j, and normalize the
resulting value to yi according to (1).
2.
 Specify a stratification threshold a to divide A into two groups
As and Aw.
3.
 Use bagging [22] to generate K subsets {X1,X2, . . . ,XK }.

4.
 Grow a decision tree hiðXiÞ for each data set Xi. At each node,

randomly sample a feature subspace with pð41Þ features from
As and Aw proportionally. Use a Boolean test function t on p

features to divide the data into left and right children nodes.
Continue this process until a stopping criteria are met: all data
are pure or have identical value for each attribute, or the
number of instances is less than nmin.
5.
 Combine the K unpruned trees h1ðX1Þ, h2ðX2Þ, y, hK ðXK Þ into
a random forest ensemble and use voting to make the final
classification decision.

3.3.1. Implementation

In the SRF algorithm, the informative function j is used to
evaluate the informativeness or predictive power of features.

We use the Fisher discriminant projection in the optimal
direction of the features for calculating informativeness ji for
the feature Ai. The projection computes s¼wT x to relate to a class
y in terms of input features x¼ ðx1, . . . ,xNÞ, where w¼ ðw1, . . . ,wNÞ

refers to the weights of the projection. When the feature is
important (not important), the value of the weight is large
(small). Therefore we use the absolute value of weight wi as the
informativeness ji of the feature Ai [30]. In the experiments of
Section 4, we will use this informative measure to generate SRF.

According to the values of ji and its normalized value yi, the
optimal solution of the stratification threshold a can be deter-
mined by minimizing the bound on generalization error of RF
PEnrrð1�s2Þ=s2 [2]. For computational efficiency we employ the
average of fyig to be the stratification threshold.

Each tree is now built recursively in a top-down manner. We
start building each tree from the training set. At each node, a
feature subspace is randomly selected. To split the data we use a
Boolean test on wT xrt or wT x4t where t is the average value of
means of the projected samples with respect to different class
subsets. That is, t¼ ð1=CÞ

PC
i ¼ 1

~mi where C is the number classes
and ~mi is the projected mean of samples labeled by class ci.

In summary, there are three parameters in the SRF algorithm:
the subspace size p, the number of trees K and the minimum
number of instances for splitting a node (nmin). In [2], K is usually
set 100, and nmin is set to 1. For high dimensional data, more trees
may be necessary. We thus use K¼500 trees and nmin ¼ 1 as our
default values. Unless otherwise stated, we use the default setting
in all experiments in order to maximize the computational
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advantage. The value of p for the size of subspace controls the
strength and randomness of the generated trees. With p¼N we
are essentially using a CART decision tree model builder, which
produces trees with minimal diversity. With p¼1 we produce
completely random trees. In [2], it is suggested to use
p¼ intðlog2Nþ1Þ, where intðxÞ refers to the first integer that is
equal to or larger than x. In Section 4, we will consider the
performance for different values of p in the proposed algorithm.

3.3.2. Computational complexity

We consider there are M observations (instances), N features
(attributes), and p features in a subspace (p5N). In the worst
case, the use of LDA multivariate method to build a decision tree
requires OðpM2

Þ operations. If we set the subspace size p to be
about intðlog2Nþ1Þ, as suggested in [2], the required computa-
tional complexity is OðlogðNÞM2

Þ. More precisely, we need to solve
a least squares problem at each node with a training data matrix
of size M0-by-p, computation is fast using a linear time algorithm
[31] and requires OðpM0Þ operations, where M0 is the number of
instances in a node. Roughly speaking, the computational com-
plexity is OðlogðNÞMÞ to generate the nodes at the same level of
a tree. Suppose the tree height is h, the total computational
complexity would be OðlogðNÞMhÞ. In the case when the tree is
extremely unbalanced (h�OðMÞ), then the computational com-
plexity is OðlogðNÞM2

Þ. For a balanced tree (h� OðlognÞÞ, the
computational complexity is OðlogðnNÞMÞ.

The stratification is done before starting to learn the forest. But
we note that it is available to re-compute the weak/strong features
after every split. For such procedure, it is likely that a node observes
a new distribution over weak/strong features only based on local
learning data at each node. Now the stratification task is to select
features into the subspaces based on the observed distribution. We
note that an additional cost of OðM0NÞ at each node is required for
re-computing strong/weak features, where M0 is the size of local
learning data in the node and N is the number of features.

3.3.3. Re-computation of the weak/strong features

We note that the stratification in SRF is pre-computed for each
feature based on its univariate distribution before starting to learn
the forest. It is computationally efficient for high dimensional data,
but it may not be applicable for data sets with strong interactions
among features. After a split of data, due to interactions, the
informativeness of features will changed. The interactions among
features are overlooked in our approach. We use LDA as multi-
variate splitting method. But it is linear and hence also does not
capture interactions. The informative features may change during
tree generation, whilst the pre-computed informative features are
still used for every split. Thus, the performance of resulting forest
may be degraded. An intuitive way to remedy this problem is to re-
compute the informative features after every split. It is easy to
come with data sets with strong interactions among the features,
and the re-compute mode is useful than that of pre-compute mode
in these data sets. We experiment to investigate how would these
two different strategies in computing weak/strong features affect
the performance of SRF. The experimental results illustrate the
advantages and disadvantages of the two methods. Refer to Section
5 for detailed analysis and discussion.
1 Available at http://www.csie.ntu.edu.tw/cjlin/libsvm/.
2 http://people.csail.mit.edu/fergus/iccv2005/bagwords.html.
4. Experimental results

A series of experiments were conducted on nine synthetic data
sets, 12 gene data sets, two image classification data sets and two
face recognition data sets. All data sets are high dimensional.
Recent work [32] performed an empirical evaluation of different
supervised learning algorithms (SVM, ANN, LR, NB, KNN, RF,
Bagging, boosted trees, PRC) on various dimensions, and con-
cluded that SVM and RF perform consistently better than the
other algorithms. To evaluate the performance of our stratified

random forest (SRF), we compare it with each of an SVM, two
variants of the random forest algorithm (the conventional random
forest (RF) by Breiman and extremely randomize trees (ERT) by
Geurts), and the nearest neighbor (NN) and naive Bayes (NB)
algorithms.

Below we describe the implementations and parameter set-
tings for the different algorithms. We train the SVM with a linear
kernel using LibSVM.1 We vary the value of the regularization
parameter by factors of 2 ranging from 2�5 to 215. The optimal
regularization parameter with the highest validated accuracy on
the training set is chosen. For both variants of random forest type
methods all trees are generated using CART. Unless otherwise
stated 500 trees are generated and a feature subspace size of
log2Nþ1 is used to build random forest classifiers. We also
evaluate the performance of different parameter settings in the
following tests (e.g., the size of the feature subspace, tree depth,
and the number of trees). For the NN classifier, we use a cosine
distance with the same weight for each feature. For naive Bayes,
we use the implementation as used for image classification in the
ICCV courses.2

To evaluate the performance we use two metrics: the test error
(ERR) and the area under the ROC curve (AUC). The AUC can
be used for binary classification problems. Hand and Till [33]
introduced an extension to the standard two-class ROC for multi-
class problems. They derived a formulation that measures the
unweighted pairwise discriminability of classes as follows:

AUCtotal ¼
2

9C9ð9C9�1Þ

X
fci ,cjg

AUCðci,cjÞ ð2Þ

where 9C9 is the number of classes and AUCðci,cjÞ is the area under
the two-class ROC curve involving the classes ci and cj.

We used Breiman’s method described in [2] to calculate the
average Strength, the average Correlation and c=s2 as measures of
the generalization error of a random forest. Following Breiman’s
notation in [2], we denote Strength as s and Correlation as r. Let X

be a training data and Y be the class labels. Let hkðXkÞ be the kth
tree classifier grown from the kth training data Xk sampled from X

with replacement. Assume the random forest contains K trees.
Given xiAX, the out-of bag proportion of votes for xi on class j is

Q ðxi,jÞ ¼

PK
k ¼ 1 IðhkðxiÞ ¼ j; xi=2XkÞPK

k ¼ 1 Iðxi=2XkÞ
ð3Þ

where Ið�Þ is the indicator function. Q ðxi,jÞ is the number of trees in
the random forest, which were trained without xi and classified xi

into class j, divided by the number of training data sets not
containing xi.

The out-of bag estimate for strength s is computed as follows:

s¼
1

n

Xn

i ¼ 1

Q ðxi,yiÞ�max
jayi

Q ðxi,jÞ

� �
ð4Þ

where n is the number of objects in X and yi indicates the true
class of xi.

The out-of bag estimate for correlation r is computed as
follows:

r¼
1
n

Pn
i ¼ 1ðQ ðxi,yiÞ�maxQjayðxi,jÞÞ

2
�s2

1
K

PK
k ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkþpkþðpk�pkÞ

2
q� �2

ð5Þ

http://www.csie.ntu.edu.tw/cjlin/libsvm/
http://people.csail.mit.edu/fergus/iccv2005/bagwords.html


Table 1
Description of nine benchmark data sets.

Name Attributes Instances Classes

Credit-g 24 1000 2

Diabetes 8 768 2

Ecoli 7 336 8

Glass 9 214 6

Ionosphere 34 351 2

Liver-disorder 6 345 2

Sonar 60 208 2

Soybean 35 685 19

Vehicle 18 846 4

3 The lines for other synthetic data sets are similar.
4 Available at http://www.gems-system.org and http://www.upo.es/eps/bigs/

datasets.html.
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where

pk ¼

Pn
i ¼ 1 IðhkðxiÞ ¼ yi; xi=2XkÞPn

i ¼ 1 Iðxi=2XkÞ
ð6Þ

and

pk ¼

Pn
i ¼ 1 IðhkðxiÞ ¼

bjðxi,YÞ; xi=2XkÞPn
i ¼ 1 Iðxi=2XkÞ

ð7Þ

wherebjðxi,YÞ ¼ arg max
jayi

Q ðx,jÞ ð8Þ

is the class that obtains the maximal votes among all classes but
the true class.

Given the strength and correlation, the out-of bag estimate of
the c=s2 measure can be computed with r=s2.

4.1. Synthetic data

In the first set of experiments, we generated high dimensional
data sets with a small portion of strong features and a large
portion of non-informative features. We used nine benchmark
data sets (see Table 1) from the UCI data repository to generate
high dimensional synthetic data sets.

Given a UCI benchmark data set with a set of features A, we
generate a synthetic data set by adding the set B of noisy features
by using uniform distributions. Here B is non-informative to the
class feature. As a result, the synthetic data set contains two set of
features A and B, where A is the set of original features and B is set
of the non-informative features. In the experiments, we studied
and considered different numbers of non-informative features,
and the number 9B9 of noisy features is controlled by k. More
precisely, we set 9B9¼ k9A9 and tested the total number of features
by increasing k starting from 2 until total number (9A9þ9B9) of
features is greater than 1000.

For each synthetic data set, a random 10% of the data was
set aside as testing data. The out-of-bag estimates were used to
evaluate the strength, correlation and the ratio c=s2, while the
separated 10% testing data set was used to evaluate the testing
error. To avoid bias, we repeated the procedure 80 times and
reported the average performance of these trials.

4.1.1. Results on synthetic data sets

Fig. 1 shows the strength of trees with respect to the number
of non-informative features in the data set. In the figure, the x-
axis refers to the number k multiplying the number of original
features in each UCI data set. The solid lines with square records
are the results for the stratified random forest (SRF), whilst the
dashed lines are the results of random forest (RF) and extremely
randomized trees (ERT).

We observe from the figure that the tree strengths of three
methods are comparable among themselves when the number
of non-informative features is small. As the number of non-
informative features increases, the tree strengths of Breiman’s
method and extremely randomized trees drop significantly, while
the tree strength of the proposed method is still stable. Fig. 2
shows the correlation of trees with respect to the number of non-
informative features in the data set. We see from the figure that
the correlations of trees of the three methods are not significantly
different. According to Figs. 1 and 2, we find that the proposed
stratified sampling method can increase the tree strength without
much increase of the correlation of trees.

Fig. 4 shows the relation between the ratio c=s2 and the
number of non-informative features in the data set.3 According
to Fig. 4, we can see that almost every SRF plot is below the plots
for RF and ERT for c=s2 on all data sets. Also when the number of
non-informative features increases, the ratio c=s2 of the proposed
method still keeps no much degradation. These results imply that
the proposed method can reduce the generalization error of
random forests in high dimensional data classification, especially
when the data contains many non-informative features.

According to the experimental results, obvious improvement
in test error is observed on all data sets. Fig. 3 shows the results of
the average testing error with respect to the number of non-
informative features for the three random forest methods. The
proposed method consistently outperforms Breiman’s method
and extremely randomized trees by the method of Geurts et al.
The improvement becomes more and more significant as the
number of non-informative features increases.

4.2. Gene data sets

Gene data is usually high-dimensional with many non-
informative features and only a small number of training obser-
vations available. For this experiment we compare performance
across a wide range of gene data sets as described in Table 2.
The table is divided into two parts. The upper part includes four
binary classification data sets. The bottom part includes eight
multi-class data sets.4 In summary, these 12 data sets have
between 2 and 26 distinct classes, between 60 and 308 instances
(patients) and from 2000 to 16,063 features (genes). The number
of features is significantly larger than the number of instances in
all data sets (the instance per feature rate of these data sets is
listed in Table 2).

4.2.1. Results on gene data sets

In these experiments the subspace size is controlled by a
multiplier k. Specifically, we set p¼ kðlog2Nþ1Þ, and increase the
value of k from 5 to 50 by a factor of 5. We test the performance of
the three random forest algorithms at each subspace size p using
fivefold cross-validation. We report the average ERR and AUC
results over the different trials. The detailed results are shown in
Figs. 5 and 6. The solid lines with square records are the results
for SRF, whilst the dashed lines are the results of RF and ERT. We
can see that almost every SRF plot is below the plots for RF and
ERT for ERR and above for AUC. These show a clear advantage
offered by SRF in reducing the test error and increasing the AUC
for high dimensional data. The improvement weakly depends on a
good choice of the optimal subspace size in the SRF. The perfor-
mance of the SRF is clearly better than those of RF and ERT for
different subspace sizes.

Fig. 7 further shows the strength and correlation of SRF and RF
with respect to different feature subspace sizes. Here, we present

http://www.gems-system.org
http://www.upo.es/eps/bigs/datasets.html
http://www.upo.es/eps/bigs/datasets.html
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Fig. 1. Strength (mean and std-dev) changes against the number of non-informative features on the nine synthetic data sets.

Y. Ye et al. / Pattern Recognition 46 (2013) 769–787774
results on four gene data sets in the upper part of Table 2.5 From
Fig. 7, we can observe the improvement in tree strength and note
that the improvement becomes more significant as the size of the
feature subspace increases. The tree strength of RF remains about
the same. We can also observe that the correlation amongst the
trees for the two methods is not significantly different. Experi-
mentally, we find that the SRF can increase the tree strength
without changing the correlation significantly. According to Brei-
man’s [2] analysis we will obtain a better error bound for SRF.

We also evaluated the robustness of SRF against two input
parameters (the number of trees K, and the minimum number of
nmin instances for splitting a node). We test the values of K

from 20 to 200 while the other parameters are fixed (p¼ 50�
ðlog2Nþ1Þ and nmin ¼ 1). The results can be seen in Table 3. When
the number of trees increases, the error rates and variances
decrease since the ensemble containing more trees will fit the
data much better. We still find that the performance of SRF is
better than those of RF and ERT. We also test the values of nmin

from 1 to 10 while holding other parameters fixed (p¼ 50�
ðlog2Nþ1Þ and K¼200), with the results shown in Table 4. We
5 Results on other data sets are similar.
find that the performance of SRF, RF and ERF is not significantly
affected, and SRF is still best among the three.

Fig. 8 shows the performance of each learning method (only
using the strong features and using all features) on the 12 gene
data sets. For SVM method, we try linear kernel (SVM-L) and
polynomial kernel (SVM-P) with parameter selection following
cross-validation. For the k NN classifier, k is selected from range
5 to 50. Then we perform fivefolds with selected optimal para-
meters and report the mean test error results for using strong
features and all features. For the three random forest type
methods we consider the average results of each across different
feature subspaces trials (corresponding to the results shown in
Figs. 5 and 6). We report the results on the average mean of the
test error for different trials. We can see from Fig. 8 that the
performance of RF and ERT is not significant change while
training only on the strong features, this mainly due to the
decision trees generated only on strong features may suffer an
increase in correlation. Whilst SRF method is a good alternative
for tradeoff between strength and correlation and have better
performance. We can clearly see that SRF achieves the best
performance across all comparison methods and all gene data
sets. In additional, the performance of SRF using all features is
better than those of only using strong features. This result implies
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Fig. 2. Correlation changes against the number of non-informative features on the nine synthetic data sets.
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that it is good to using all feature to add randomness in SRF, so
that the ensemble learning with stratified feature subspace
selection is better.
4.2.2. On the effect of subspace size

Experimental improvements are demonstrated on the gene
data sets in comparison to Breiman’s random forest (RF) and
Geurts’ extremely randomized trees (extremely-RT or ERT) with
subspace size chosen of order logN. Instead of extremely-RT, there
are also a lot of interesting related works of improving random
forest. For instance, the enriched random forests (enriched-RF
or ERF) algorithm proposed in [26] uses probability sampling
to select subspaces, which can also be viewed as a stratified
sampling method, but based on one distribution over all features.
Concretely, enriched-RF uses a specific informative measure to
create one distribution over all features, reflecting their strength
and probability to be selected and let a node sample feature
subspaces from this distribution. The larger the probability, the
higher the chance to be included in the subspaces. Here, the
informativeness of the features can be evaluated from univariate
measures or multivariate measures. Univariate measures, such as
chi-square (CHI), calculate the discriminative power of each
feature individually. On the other hand, multivariate measures,
such as Fisher’s linear discriminant function (LDA), output the
informativeness of all features simultaneously. Both univariate
measures and multivariate measures can be used in enriched-RF
and SRF to measure the strength of each feature. Univariate
measures are more computationally efficient in practice, while
multivariate measures are more effective for finding informative
features with interactions. In SRF, we use LDA as a specific
multivariate measure methodology to measure the strength of
the features. Specially, the computational cost required is O(MN)
with a training data matrix of size M-by-N, where M is the
number of samples and N is the number of features. But using
an efficient algorithm implementation in [31], LDA can be
computed with O(Mn) time, where nðrNÞ. Therefore, it is also
computational feasible to handle high dimensional data.

Another related work is regarding random forest generated
with strong splits. A random forest can be generated from
univariate splits or multivariate splits. Univariate split (e.g., Gini
measure or information gain) is to identify one best feature at
each node for data splitting. While multivariate split relies on
combining multiple features together in the splitting process.
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Fig. 3. Testing error (mean and std-dev) changes against the number of non-informative features on the nine synthetic data sets.
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Finding strong splits based on multivariate splits is a recent
research topic in decision trees. One popular method is the
oblique random forests (oblique-RF or ORF) proposed in [34],
which applies linear discriminative models to learn the splitting
rule, resulting decision boundaries that are arbitrary and oblique
to the axes. This approach has been shown to deliver impressive
improvements in classification performance of data with many
correlated numerical features and few samples [34].

We experiment to compare our SRF method with random
forests learning by these two closely related approaches
(enriched-RF and oblique-RF) on the gene data sets. It would be
interesting to see how results change with different subspace size
settings. Thus we use different specifical setting of subspace sizes:
log2Nþ1,

ffiffiffiffi
N
p

, N=10, N=4 and N=2. Table 5 shows the test error
results of SRF, RF, enriched-RF and oblique-RF with varying sub-
spaces sizes. Examining the results of enrich-RF shows that enrich-
RF performs better than RF when small subspaces are chosen, but it
fall behind RF with large subspace, i.e., p¼N=10. Enrich-RF do
better in small subspaces because of the subspaces will contain
more relevant features using probability sampling based on the
effective distribution over features. However, the chances of intro-
ducing more correlated trees are also increased since the features
with large weights are likely selected repeatedly. Examining the
results of oblique-RF shows that oblique-RF outperforms RF,
regardless of the subspace sizes. Because gene data sets consist of
many correlated numerical features. For simple univariate splits
currently used in RF, one optimal feature is chosen to the learning
data at each node for separating classes, leading to deeply nested
decision rules and complex decision boundaries. Whilst oblique-RF
relies on stronger splits with multiple features, combining the effect
of multiple features in the splitting results in decision boundaries
that appears to be smoother and better adapted to correlated
numerical data [34].

Our SRF method takes into account both stratified sampling for
feature subspace selection and strong splits for data splitting in RF. As
can be seen, the performance of SRF is clearly in favor of all other RF
methods (RF, enriched-RF, oblique-RF) across all data sets and sub-
space sizes. This result indicates that it is advantageous to combine
stratified sampling and strong splits to learn RF. Here, we give a
further analysis of the characteristics of the SRF method in terms of
comparing with enriched-RF and oblique-RF. Enriched-RF uses one
distribution over all features to select subspaces, features are selected
based on probability on the distribution. Whilst SRF is based on weak/
strong feature stratification, this is another distribution and features
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Fig. 4. c=s2 (mean and std-dev) changes against the number of non-informative features on the: (a–d) credit-g, diabetes, ionosphere and soybean synthetic data sets.

Table 2
Description of 12 gene data sets.

Name Att. Ins. Class Instance per feature

Colon 2000 62 2 0.0310

DLBCL 5469 77 2 0.0141

Embryonal-T 7129 60 2 0.0084

Prostate-tumor 10,509 102 2 0.0097

Leukemia1 5327 72 3 0.0135

9-tumors 5727 60 9 0.0105

Brain-tumor1 5920 90 5 0.0152

Leukemia2 11,225 72 3 0.0064

11-tumors 12,533 174 11 0.0139

Lung-cancer 12,600 203 5 0.0161

14-tumors 15,009 308 26 0.0205

GCM 16,063 190 14 0.0118
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are randomly selected from weak/strong subsets. It is shown in
Table 5 that RF can be improved when larger subspaces are chosen.
But using probability sampling on one distribution may impose a bias
to features with large weights, especially for large subspaces. The
decision trees generated from these subspaces may suffer a reduction
in diversity. On the other hand, the SRF method that select subspaces
based on stratified sampling on distributions over weak/strong
features is relatively insensitive to the choice of subspace sizes. The
main different between these two sampling methods is that we select
features based on the proportion in the SRF method. Therefore, we
have less strong features compared with weak features. Meanwhile,
we select weak/strong features randomly, again offer considerable
diversity in subspaces. Such randomization procedure enhances the
independence of individual trees in RF and obtaining better results.

Oblique-RF directly applies LDA-like split at each node with a
set of randomly selected features, while SRF performs the strati-
fication before starting to learn the forest and makes use of more
discriminative subspaces for splitting. Experimentally, we find
that a RF model learn from subspaces with stratified sampling is
better than one without. Interestingly, we observe that SRF(LDA)
with feature distribution in stratification induced by LDA infor-
mative measure has the highest overall performance. The
SRF(LDA) method employs LDA-like model for both informative
measure and splitting measure. Both of them have desired
properties for handling data with many correlated numerical
features, mixing them would help to obtain better RF for high
dimensional gene data.

We also compare the best test error achieved by different
methods when the optimal subspace size is chosen for each
method. The result is given in Fig. 9. We can see that our proposed
SRF approach performs better than the oblique-RF method which
improves over both RF and enrich-RF. SRF consistently gives
significantly lower test error performance on all data sets.

In summary, SRF method is very effective for the classification of
high dimensional gene data. Gene data has three special character-
istics: (i) many weak-informative features are included (e.g., see
Fig. 10(a) and (b)); (ii) many features are correlated; (iii) the number
of training samples is very small with respect to the high dimension-
ality. These characteristics present considerable challenges for con-
structing decision trees with good strength. RF generated with a
simple random sampling strategy for selecting feature subspaces
could achieve a good correlation but will have a high probability of
missing informative features. Thus the average strength of trees will
be decreased. Our SRF method overcomes this problem by utilizing
more discriminative subspaces and stronger splits in tree generation.
We have shown that SRF is effective for high dimensional gene data
classification and can obtain better results against other RF methods.

4.3. Image classification data sets

Image classification has emerged as an important area in
computer vision. Many of the most popular current methods for
image classification are to sample patches from the image by
using a bag-of-features representation. In our experiments we
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Fig. 5. Testing error (mean and std-dev) changes against the size of feature subspace on the 12 gene data sets.
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present a comparison of results for the image classification task
on two benchmark data sets: Caltech categories6 and horses.7 For
the Caltech problem, we use a subset of 100 images from the
Caltech face data set and 100 images from the Caltech background
data set following the demonstration of image classification in
ICCV.8 The horse data contains a positive class of 170 horse
images and a negative class of 170 images which do not include
horses. We randomly chose half of the data as the training data
set and the other half as the testing data set.
6 http://www.vision.caltech.edu/html-files/archive.html.
7 http://pascal.inrialpes.fr/data/horses.
8 http://people.csail.mit.edu/torralba/shortCourseRLOC/.
A popular and powerful approach to classifying images is to treat
them as a collection of visual words. Several quantization (coding)
techniques have been explored to learn the visual dictionary (textons)
for this image representation process [35–37]. The most common
visual coding method is based on k-means vector quantization. A
visual descriptor function (e.g., SIFT [38]) is used to extract local
features by sampling subwindows at random from the training
images, either at sparse points of interest or within dense regions
[39]. The collection of descriptors are then clustered using a k-means
approach. The set of estimated cluster centers are treated as universal
visual words to produce a visual codebook. For classification an
image is represented by a histogram of visual words. Any classifier
can be used for the purpose of image classification. Advanced
methods for learning visual words can be found in [17,40,15].

http://www.vision.caltech.edu/html-files/archive.html
http://pascal.inrialpes.fr/data/horses
http://people.csail.mit.edu/torralba/shortCourseRLOC/
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Fig. 6. AUC (mean and std-dev) changes against the size of feature subspace on the 12 gene data sets.
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In our experiments we explore the effectiveness of the proposed
SRF method as a classifier. We use traditional k-means quantiza-
tion as a visual coding method to generate the visual codebook and
control the number of centers to produce the different vocabularies
(dimensions). In Fig. 11, we show the informativeness of each
feature of the Caltech and Horse data sets of codebook sizes of
5000 and 15,000. We see from the figure that the group of strong
features and the group of weak features are quite distinguished for
both data sets with various codebook sizes. We expect quite good
performance from SRF.

Next we compare the performance of SRF with SVM, naive
Bayes [41], and again the two other variants of random forests
(RF and ERT) over different codebook sizes. We measure the
performance in terms of the classification error rate (ERR) and
area under ROC curve (AUC).

We choose a feature subspace p¼ 10� ðlog2Nþ1Þ as a good
trade-off between speed and accuracy. The classification perfor-
mance and computational time run on a 3.0 GHz Linux server are
shown in Fig. 12 and Tables 6 and 7, respectively. As illustrated in
Fig. 12, SRF consistently outperforms the other four methods
across various codebook sizes. Fig. 12(a) and (b) also shows the
clear robustness of SRF. The SRF curves are relatively stable with
respect to different codebook sizes. However, the curves of the
other four methods change significantly. In Tables 6 and 7 we find
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Table 3
Test error (mean7std-dev%) against different K on four gene data sets.

Data set Method 20 trees 50 trees 80 trees 100 trees 200 trees

colon RF 22.673.8 19.972.5 19.172.4 18.872.1 19.271.9

ERT 24.472.6 23.273.9 21.272.6 22.672.2 18.672.1

SRF 13.171.4 12.871.5 12.570.7 12.871.4 11.871.0

DLBCL RF 8.973.2 8.171.1 8.072.3 8.371.9 7.971.0

ERT 11.872.5 12.372.9 12.072.1 11.872.4 8.171.0

SRF 0.670.5 0.570.4 0.570.4 0.570.4 0.570.9

Embryonal-T RF 42.073.8 40.172.9 38.973.1 38.873.9 40.871.7

ERT 42.474.8 40.973.3 39.972.5 40.872.8 41.571.7

SRF 21.973.6 22.472.2 21.871.9 21.072.6 20.571.8

Prostate-T RF 10.474.0 8.871.5 8.171.9 8.271.5 8.070.6

ERT 14.272.6 10.672.8 9.571.8 9.672.0 8.771.8

SRF 3.572.6 2.871.6 2.970.9 2.470.7 2.570.7

Table 4
Test error (mean7std-dev%) against different nmin on four gene data sets.

Data set Method 1 instance 2 instances 4 instances 6 instances 10 instances

colon RF 19.271.9 19.272.1 18.071.6 18.871.5 18.271.3

ERT 18.672.1 22.072.0 22.871.9 21.272.9 22.072.5

SRF 11.871.0 12.571.3 12.271.1 12.671.4 12.671.4

DLBCL RF 6.971.0 6.571.9 6.971.4 6.471.6 6.371.9

ERT 8.171.0 10.871.2 10.571.4 10.971.7 11.071.6

SRF 0.570.9 0.570.4 0.570.4 0.570.4 0.570.4

Embryonal-T RF 40.871.7 39.672.3 39.972.3 39.772.2 39.871.8

ERT 41.571.7 38.571.8 38.772.0 39.170.9 38.971.5

SRF 20.571.8 21.372.1 20.671.5 20.972.1 20.571.8

Prostate-T RF 8.070.6 7.671.4 7.671.2 7.871.6 7.771.0

ERT 8.771.8 8.271.6 9.371.3 8.371.4 8.771.6

SRF 2.570.7 2.270.5 2.670.5 2.670.7 2.770.4
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Fig. 8. Testing error (mean and std-dev) changes against the number of features on the 12 gene data sets.
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that the running time of each method increases with increases in
codebook size.

We also consider a more up-to-date vision data, namely
PASCAL VOC 2007. The PASCAL VOC 2007 data9 contains about
10,000 images split into train, validation and test sets, and labeled
with 20 object classes. In our experiment, we use the MATLAB
code of a recent work [42] which investigated several popular
9 Available at http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/.
encoding methods on this data set. The baseline encoding method
in [42] with hard quantization histogram and an additive w2

kernel map to all codes is used to build the bag of visual words
data model for the learning classifiers, as it is shown that the
baseline encoding method can achieve good performance for the
PASCAL VOC 2007 data set [42]. We compare SRF with standard
RF and linear kernel SVM implemented with LibSVM. The perfor-
mance is evaluated as Area Under ROC curves (AUC) across all
classes. Table 8 shows the AUC of SRF and SVM on the PASCAL
VOC 2007 data set. Experimentally, we find that the proposed SRF

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/


Table 5
Test error (mean7std-dev%) of different random forest algorithms against different subspace sizes on four gene data sets.

Data set Method log2Nþ1
ffiffiffiffi
N
p

N=10 N=4 N=2

colon Random forest 20.8711.5 20.6715.8 17.776.6 17.776.6 17.776.6

Enrich-RF(CHI) 19.276.9 17.776.6 21.275.1 21.275.1 21.275.1

Enrich-RF(LDA) 17.776.6 17.776.6 17.776.6 16.275.9 17.776.6

Oblique-RF 17.776.6 11.577.3 12.979.5 14.5710.5 16.0712.5

SRF(CHI) 17.678.6 11.979.5 12.979.5 12.979.5 16.0712.5
SRF(LDA) 16.877.5 11.377.3 11.377.3 12.979.5 13.676.6

DLBCL Random forest 12.878.6 12.878.6 5.375.6 7.875.4 7.978.6

Enrich-RF(CHI) 7.875.4 7.872.7 10.477.4 10.477.4 10.477.4

Enrich-RF(LDA) 6.073.7 6.073.7 6.778.2 6.778.2 6.778.2

Oblique-RF 6.974.4 2.973.5 2.973.5 6.778.2 7.978.6

SRF(CHI) 6.574.4 1.373.0 2.673.5 2.673.5 1.373.0
SRF(LDA) 5.373.0 2.673.5 1.372.8 2.673.5 1.373.0

Embryonal-T Random forest 44.4713.9 39.778.6 36.2710.2 39.875.0 44.777.1

Enrich-RF(CHI) 39.7712.0 34.879.0 34.778.0 38.778.0 38.778.0

Enrich-RF(LDA) 39.779.3 34.8714.8 34.878.7 38.275.6 43.078.7

Oblique-RF 37.4713.5 32.5711.2 34.877.6 36.5712.8 38.2711.4

SRF(CHI) 36.778.6 31.877.6 31.7711.8 36.5714.1 38.2711.4
SRF(LDA) 30.0711.7 26.8711.5 20.678.1 38.2711.4 38.2711.4

Prostate-T Random forest 12.772.5 7.974.5 6.974.4 5.974.1 6.975.6

Enrich-RF(CHI) 7.972.7 6.972.7 8.979.6 7.976.9 7.976.9

Enrich-RF(LDA) 5.974.1 6.972.7 8.979.6 7.977.5 7.977.5

Oblique- RF 9.977.1 4.974.0 3.974.3 3.974.0 5.976.5
SRF(CHI) 7.472.7 4.474.9 2.774.3 3.974.0 5.976.5
SRF(LDA) 6.272.7 2.574.4 2.572.7 3.974.0 5.976.5
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Fig. 11. Distributions of feature informativeness on Caltech and Horse image data.
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method compares favorably against RF and SVM in AUC (0.8192
versus 0.7893 and 0.8838).
4.4. Face recognition data sets

In this section we consider the problem of human face recogni-
tion and present experiments on two publicly available databases.
We conduct dimension reduction on the face recognition problem
using the Eigenface [43] and use features selected randomly10 to
compare the performance across various feature dimensions.

The extended Yale B database consists of 2414 face images of
38 individuals [44]. The AT &T ORL data set consists of 400 face
images of 40 individuals [45].11 We randomly choose half of the
images of each individual for training and the remaining images
for testing. We perform dimension reduction and compute the
10 We randomly select pixels from the face image as features.
11 The cropped and aligned faces for these two data sets are available at

http://www.zjucadcg.cn/dengcai/Data/FaceData.html.
recognition rate with various features. The feature space dimen-
sions used are 30, 56, 120, and 504. As the data is reduced to
lower dimensions, the subspace size for the SRF algorithm is set to
d=2, where d is the reduced dimension.

Fig. 13 shows the recognition performance against various
feature dimensions for five different classifiers: SVM, NN, RF, ERT,
and SRF. We can see that SRF consistently outperforms the other
four different classifiers across different feature dimensions.
More specifically, the best recognition rate for SRF on the YaleB
database using Eigenface features (Fig. 13(a)) is 95.86%. This
compares well with the maximum recognition rates using RF,
ERT, SVM and NN, using Eigenfaces, which were 91.70%, 92.30%,
92.61% and 92.12%, respectively. Similarly, the best recognition
rate of SRF is 94.86% by using random features (Fig. 13(b)), where
the recognition rates of RF, ERT, SVM and NN are 93.40%, 93.60%,
92.12% and 90.95%.

For the ORL database, the performance of SRF is quite con-
sistent with respect to various Eigenfaces, being between 94.0%
and 94.5% (see Fig. 13(c)). The performances of the other methods
(RF, ERT, SVM and NN) are between 91.5% and 93.5%, 92.0% and

http://www.zjucadcg.cn/dengcai/Data/FaceData.html
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Table 6
Computational time (seconds) for Caltech data set over various codebook sizes.

Visual

words

size

Caltech data set

SRF RF ERT

Stratified

sampling

Trees

growing

Avg.

depth

Trees

growing

Avg.

depth

Trees

growing

Avg.

depth

1000 0.14 23.17 2.01 130.32 4.24 164.35 4.81

3000 0.05 27.79 2.01 209.36 5.59 270.62 6.56

5000 0.08 32.01 2.15 284.08 6.63 309.72 7.67

7000 0.11 40.82 2.34 310.74 7.64 379.77 8.97

10,000 0.18 63.71 2.72 338.10 9.25 364.34 11.08

12,000 0.23 92.73 2.78 352.20 9.94 411.20 11.81

15,000 0.53 124.65 3.06 427.94 11.87 495.07 14.19

Table 7
Computational time (seconds) for Horse data set over various codebook sizes.

Visual

words

size

Horse data set

SRF RF ERT

Stratified

sampling

Trees

growing

Avg.

depth

Trees

growing

Avg.

depth

Trees

growing

Avg.

depth

1000 0.06 30.63 2.02 290.00 5.53 342.44 6.62

3000 0.13 36.62 2.15 383.42 7.58 457.38 9.03

5000 0.21 43.20 2.26 413.85 9.41 495.41 11.26

7000 0.21 51.33 2.40 455.09 10.59 556.77 12.69

10,000 0.31 68.05 2.76 480.74 11.92 607.73 14.34

12,000 0.61 104.01 2.84 527.02 12.52 672.28 14.95

15,000 0.66 148.34 3.19 563.08 13.69 692.03 16.60
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93.0%, 93.0% and 93.5% and 89.5% and 90.0% respectively. Also,
SRF using random features (Fig. 13(d)) outperforms the other four
methods on this data set, achieving a maximum recognition rate
of 93.50%.
5. Discussions

In the experiment, we compare the proposed SRF method with
variants of random forest methods: conventional random forest
(RF), extremely randomized trees (ERT), enrich random forest
(enrich-RF), and oblique random forest (oblique-RF). Different
randomization techniques are used for tree growing in these
compared methods. In general, the performance of a random
forest depends on the performance of each tree, and the diversity
of trees in the forest. Actually, analysis of these methods leads to
better understanding of the ensemble methods with trees.

The accuracy of random forest methods is influenced by the
subspace size p. Table 5 shows how the test error of different
random forest methods varies with different p values. We observe
that there are two types of trends: monotonically decreasing
and then asymptotically stable, decreasing followed by increas-
ing. In hindsight, the results make sense: with small subspaces
p¼ log2Nþ1, most of the features are not included at each node
to develop the tree. As a result, important features are missed,
leading to poor performance. On the other extreme, with a high
value of p¼N, all features are considered for the search of the
optimal split during tree generation. It has impact on deteriorat-
ing the diversity of the induction algorithms that seek for the
best split locally at each tree node. In this case, the ensemble
algorithms degenerate, and equivalent to single decision tree
algorithms. For a medium number of p, the random forest
methods can capture the randomization that they should have.
From the results in Table 5, we can observe that RF requires larger
subspace setting, e.g., p¼N=10 in order to achieve excellent
performance. In contract, enrich-RF, oblique-RF and our proposed
SRF perform well under the setting of p¼

ffiffiffiffi
N
p

.
It is also well known that for random forest ensemble

methods, the behavior of prediction error is a monotonically
decreasing function of number of trees K. We can see from
Table 3 that the higher the value of K, the better the accuracy.
The choice of an appropriate value of K will thus essentially
depend on the resulting compromise between computational



Table 8
The results of area under ROC curves (AUC) for SVM and SRF across all classes.

Plane Bike Bird Boat Bottle

SVM 0.9072 0.7559 0.6556 0.8774 0.7617

RF 0.8675 0.7444 0.6415 0.8025 0.7474

SRF 0.9537 0.8839 0.8679 0.9238 0.8134

Bus Car Cat Chair Cow

SVM 0.9003 0.8393 0.8260 0.8133 0.8436

RF 0.8866 0.8578 0.8279 0.8092 0.7935

SRF 0.9396 0.9148 0.8947 0.8553 0.8869

Table Dog Horse Motorbike Person

SVM 0.8581 0.6583 0.8627 0.8483 0.7367

RF 0.8480 0.6825 0.8558 0.8301 0.7266

SRF 0.8705 0.8497 0.9340 0.9125 0.8325

Plant Sheep Sofa Train TV Mean

SVM 0.7728 0.8636 0.8096 0.9220 0.8707 0.8192

RF 0.6737 0.7241 0.7797 0.8820 0.8060 0.7893

SRF 0.8284 0.8710 0.8364 0.9257 0.8817 0.8838
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Fig. 13. Recognition rates on YaleB and ORL data sets using various feature dimensions: (a), (c) using Eigenface features. (b), (d) using random features.
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requirements and accuracy. Different randomization methods
may have different convergence profiles on different problems.
In general, the extremely randomized trees method converges
more slowly compared to other tree ensemble methods (RF and
SRF) due to the totally randomized trees involved.

An interesting observation is that the performance of extre-
mely randomized trees by the method of Geurts et al. appears
considerably worse than or equal to those of standard RF on the
synthetic data sets and gene data sets, which seems to contradict
the original paper on extremely randomized trees. In [3], Geurts
et al. have evaluated the performance of extremely randomized
trees in 24 different data set with relevant features. The attribute
size is not large (between 2 and 617), and the number of instances
is much more than the number of attributes in these data sets
(the number of instances per attribute, i.e., instance size divided
by attribute size M=N, is between 10 and 1000). It is shown that
the classification performance of extremely randomized trees is
as accurate as, or even more accurate than RF as well as other
ensemble methods on these data sets [3]. Thus we expect that
extremely randomized trees can achieve good performance on
data sets with relevant features and sufficient training instances.
But, in our experiment, the synthetic data sets that we compiled
include many noisy features. Whilst, for the gene data, the
number of learning instances is insufficient compared to the large
number of attributes (M=N is only between 0.003 and 0.031). In
the case of handling a large number of noisy features and using
insufficient learning instances, there is a high chance to miss the
informative features in decision trees by using extremely random



Table 9
Test error (mean7std-dev%) of pre-computed SRF and re-computed SRF on gene

data sets.

Data set Pre-computed

SRF (strong)

Pre-computed SRF Re-computed SRF

Colon 12.979.5 11.379.5 11.079.5

DLBCL 2.673.0 1.373.0 1.373.0

Embryonal-T 34.9710.6 31.7711.8 31.0711.2

Prostate-T 3.974.0 2.774.3 2.574.3

Table 10
Computing times (mean7std-dev seconds) of pre-computed SRF and re-com-

puted SRF on gene data sets.

Data set Pre-computed

SRF (strong)

Pre-computed SRF Re-computed SRF

Colon 60807136 48507273 12,6007249

DLBCL 74907445 52307308 17,30071420

Embryonal-T 60507170 47807273 16,60071190

Prostate-T 95307212 72907233 28,10072170
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sampling strategy, and the number of instance in the data set is
not large enough to generate numerous nodes to make the
resulting forest produce promising performance.

We also experiment to compare the performances between
three implementations of our proposed SRF method: pre-
computed SRF (strong), pre-computed SRF and re-computed
SRF. In the pre-computed SRF (strong) method, we only select
strong features into the subspaces. On the other hand, in the pre-
computed SRF method and the re-computed SRF method, we
include both strong and weak features. In this comparison, we
generate 200 trees for each compared method and report their
best results with optimal subspace setting. Tables 9 and 10
provide, respectively, classification accuracy and CPU times (in
seconds) for three compared methods, averaged over fivefold
cross-validation on gene data sets. All the comparisons are
performed in a computer with 2.66 GHz CPU and 3.5 GB RAM.

Regarding classification accuracy, Table 9 shows that re-
computed SRF is able to deliver better performance than pre-
computed SRF with only strong features. This result indicates that
interactions among features in a tree generation will have an
impact on strong features. Given the pre-computed weak/strong
features, we do not advocate using only strong features, but
instead, ensuring the use of weak features together with strong
features in tree generation. We believe that it is beneficial to
include weak features into the subspaces because a weak feature
may become a high informative feature after the split. We note
that the pre-computed SRF method selecting both strong and
weak features can deliver similar performance in comparison to
re-computed SRF. Indeed, pre-computed SRF with both weak and
strong features consistently produces promising results across all
the experiments. Regarding computational time, Table 10 shows
that pre-computed SRF is significantly faster than that of the re-
computed SRF. The pre-computed SRF is on the average 3 times
faster than the re-computed SRF.

In summary, pre-computed SRF by performing stratification
before generating the trees is more computational efficient in
comparison to re-computed SRF. But pre-computed SRF does not
consider feature interactions. This shortcoming can be overcome
to certain content by including the weak features into the
subspaces. The implementation of re-computed SRF, on the other
hand, has an advantage in handling feature interactions. Re-
computed SRF delivers excellent performance on high dimensional
data sets. However, re-computing requires additional operations,
and the computational complexity is linearly on the number of
features. When there is large number of features, the computa-
tions would become rather expensive. The choice of an appro-
priate implementation of SRF will essentially depend on the
compromise between computational requirement and accuracy.
6. Conclusion

In this paper we have presented a stratified sampling method
to select subspaces of features for building decision trees with
random forests. The motivation for this new subspace feature
selection method is to increase the strength and maintain the
diversity of the trees in random forest for high dimensional data.
This should result in a reduction of the generalization error and
an increase in classification accuracy.

We introduce a stratified sampling method in contracts to the
common random sampling method for high dimensional data.
The approach identifies two groups of features: strong and weak
features. The tree building algorithm then randomly chooses
features from each group in building a tree.

Experimental results on several high dimensional data sets in
gene classification, machine learning, computer vision and face
recognition problems are presented. They show that for a very
minimal additional computational cost, random forests with high
classification accuracy can be built. We demonstrated that the
performance of the proposed SRF method is better than current
state-of-the-art algorithms including SVM, four common variants
of random forest ensemble methods (RF, ERT, enrich-RF, and
oblique-RF), nearest neighbor (NN), and naive Bayes (NB).
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