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This paper presents an extension of m-mediods based modeling technique to cater for multimodal

distributions of sample within a pattern. The classification of new samples and anomaly detection is

performed using a novel classification algorithm which can handle patterns with underlying multi-

variate probability distributions. We have proposed two frameworks, namely MMC-ES and MMC-GFS,

to enable our proposed multivarite m-mediods based modeling and classification approach workable

for any feature space with a computable distance metric. MMC-ES framework is specialized for finite

dimensional features in Euclidean space whereas MMC-GFS works on any feature space with a

computable distance metric. Experimental results using simulated and complex real life dataset show

that multivariate m-mediods based frameworks are effective and give superior performance than

competitive modeling and classification techniques especially when the patterns exhibit multivariate

probability density functions.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In recent research, there has been a growth of research attention
aimed at the development of sophisticated approaches for pattern
modeling and data classification. Detecting anomalous events is an
important ability of any good classification system. Classification of
unseen samples and anomaly detection require building models of
normality. Once the models of normal classes are learnt, these can
then be used for classifying new unseen trajectory data as normal
(i.e. belonging to one of the modeled classes) or anomalous (not
lying in the normality region of modeled classes).

Various machine learning techniques have been proposed for
modeling of normal patterns and performing classification using
the generated model of normality. Statistical approaches dealing
with classification and anomaly detection are based on approx-
imating the density of training data and rejecting test patterns
that fall in regions of low density. Khalid and Naftel [9] and
Hu et al. [7,8] models normal motion patterns by estimating single
multivariate Gaussian for each class. Khalid and Naftel performs
classification using Mahalanobis classifier and anomaly detection
using Hotelling’s test. In [7], the probability of a sample belonging
to each pattern is calculated and the sample is classified to the
pattern with the highest probability. However, if the probability of
association of sample to the closest pattern is less then a thresh-
old, the sample is deemed anomalous. Approaches using GMM to
ll rights reserved.

Khalid).
model normality distribution have also been proposed [1–3].
Various techniques [4–6] based on hidden Markov models
(HMM) have also been presented for modeling and classification
of temporal data. Owen and Hunter [10] use Self-Organizing
Feature Maps (SOFM) to learn normal patterns. While classifying
unseen samples, if the distance of the sample to its allocated class
exceeds a threshold value, the trajectory is identified as anom-
alous. Marsland et al. [11] propose a novelty filter referred to as
Grow When Required (GWR) network that uses SOM, based on
habituation, to learn the environment and to discover novel
features. The proposed approach is suitable for online use. GWR
can add and delete nodes whenever the network in its current
state does not sufficiently match the evolving pattern.

Approaches using support vector machines (SVM) have also
been proposed [12–14]. These approaches are based on the
principal of separating data belonging to different classes by
identifying an optimal hyper plane between them. SVM based
approaches involve computation of pairwise distances and time-
consuming optimizations. Zhang et al. [12] propose a hybrid
approach using SVM and nearest neighbor classifier for content
based image recognition with the multiclass setting. Rasch et al.
[13] perform classification and anomaly detection using one-class
SVM. Various Mahalanobis distance metric learning approaches
have also been applied for data clustering and classification
[15–19]. Certain discriminative learning methods such as Fisher
Discriminative Learning (FDA) [20] have been proposed for
improving the performance of classifier. FDA is a supervised
dimensionality reduction mechanism which computes a transfor-
mation matrix to maximize inter-class and minimize intra-class
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scatter. FDA caters for the global distribution of the pattern and
gives poor performance in the presence of multivariate distribu-
tion of samples within a pattern. An extension of FDA, referred to
as local FDA (LFDA) [21] has been proposed to work in the
presence of multivariate distribution of samples within a pattern
by preserving the local structure of data. LFDA based supervised
dimensionality reduction has been combined with well known
classifiers such as GMM to improve classifier’s performance [22].
However, LFDA can only be applied in feature spaces with a
calculable mean and is not applicable to general feature spaces.

In our previous work [28], we have proposed m-mediods based
Modeling and Classification approach for features in Euclidean
Space (MC-ES). m-mediods based approach models a pattern by a
set of cluster centers of mutually disjunctive sub-classes (referred
to as mediods) within the pattern. The modeling mechanism is
influenced by HSACT-LVQ based clustering mechanism as pro-
posed in our previous work [9]. It has been shown that hierarch-
ical semi-agglomerative approach using a neural network, such
as HSACT-LVQ, outperforms hard clustering techniques such as
k-Means. k-Means is initialized with the number of cluster centers
that are equivalent to the expected number of groupings in the
dataset. The cluster centers itself is normally initialized to a
randomly picked sample from dataset. This type of hard clustering
does not guarantee that the network will identify and distinguish
all major groupings. k-Means may organize the cluster centers to
represent variations within one major grouping of the data by
allocating more than one cluster center to that group. This may be
caused by the initialization of more than one cluster center close
to or within the distribution of a single pattern. Allocation of more
than one output neuron to a pattern will result in having a single
cluster center representing multiple patterns. k-Means, therefore,
produce poor clustering and classification results due to poor
initialization. On the other hand, our HSACT-LVQ algorithm avoids
this problem by initializing itself with greater number of cluster
centers than the number of groupings to be identified in the
dataset. Finer clusters are then merged, based on their similarities,
to generate coarse clusters representing the desired number of
sub-classes (mediods). The modeling technique, proposed in [28]
referred to as m-mediods modeling, models the class containing n

members with m-mediods known a-priori. Once the m-mediods
model for all the classes have been learnt, the MC-ES approach
performs classification of new samples and anomaly detection by
checking the closeness of said samples to the models of different
classes using hierarchical classifier. The anomaly detection module
required specification of threshold which is used globally for all
the patterns. However, this approach had unaddressed issues like
manual specification of threshold for anomaly detection, identifi-
cation of appropriate value of threshold for anomaly detection and
anomaly detection of patterns with different scale and orientation
which is used globally for all the patterns. These issues are
addressed by a localized m-mediods based approach (LMC-ES) as
proposed in [23] which enables us to automatically select a local
significance parameter for each pattern taking into consideration
the distribution of individual patterns.

LMC-ES can effectively handle patterns with different orienta-
tion and scale and has been shown to give superior performance
than competitors including GMM, HMM and SVM based classi-
fiers. However, there are still open issues (i) Modeling, classifica-
tion and anomaly detection in the presence of multivariate
distribution of samples within a pattern, (ii) Soft classification
in the presence of multimodal pattern distribution to minimize
misclassification, (iii) Modeling and classification in feature
spaces for which we can not compute mean.

The contribution of this paper is to present an extension of
m-mediods based modeling approach, wherein the multimodal
distribution of samples in each pattern is represented using
multivariate m-mediods. An approach for multivariate model-
based classification and anomaly detection is also presented. The
proposed mechanism is based on a soft classification approach
which enables the proposed multivariate classifier to adapt to the
multimodal distribution of samples within different patterns. We
have proposed two frameworks for multivariate m-mediods
based modeling and classification applicable to two different
feature spaces:
1.
 Finite dimensional features in Euclidean space

2.
 General feature spaces with a computable pairwise similarity

measure

This enables our multivariate m-mediods based approach to be
used for classification and anomaly detection in any feature space
with a given distance function.

The remainder of the paper is organized as follows. In Section 2,
an overview of the general working of proposed multivariate
m-mediods based modeling and classification approach is pre-
sented. Section 3 presents a framework of multivariate modeling
and classification for finite dimensional features in Euclidean
space with a calculable mean. In Section 4, a modification of
multivariate modeling and classification framework to operate
in any feature space with a computable similarity function is
presented. Comparative evaluation of proposed multivariate m-
mediods and previously proposed localized m-mediods [23] based
frameworks is presented in Section 5. Experiments have been
performed to show the effectiveness of proposed system for
modeling, classification and anomaly detection in the presence
of multimodal distribution of samples within a pattern, as com-
pared to competitors. These experiments are reported in Section 6.
The last section summarizes the paper.
2. Overview of our classification approach

Classification and anomaly detection in the presence of multi-
variate distributions of sample within a pattern is a challenging
task. Fig. 1 gives an overview of our general multivariate modeling
and classification framework to effectively cope with this chal-
lenge. The proposed classifier, like any other classifier is composed
of two main modules: construction of multivariate m-mediods
based model to cater for variation in distribution of samples
belonging to a particular pattern and using the generated model
for classification of unseen samples and anomaly detection. The
module for construction of m-mediods based model is composed of
three steps. In step 1, we model a pattern using a set of m-mediods
representing mutually disjunctive sub-classes, possessing different
probability densities. The proposed approach is motivated by the
observation that any distribution of samples within a pattern can
be represented by well separated and distributed representative
samples (mediods). The resulting model can be visualized as a bag
of quantized sub-samples belonging to the pattern. In multivariate
settings, there is a variation in density of samples belonging to a
pattern. Our approach tends to identify mediods in a fashion that
the number of identified mediods in different parts of the distribu-
tion is proportional to the density of samples. The approach to
identify the mediods is different for different feature spaces. After
the identification of m -mediods, we identify the set of possible
normality ranges for each modeled pattern (in step 2) to be
used later for classification and anomaly detection. Instead of
identifying a single normality range at a pattern level, we propose
to automatically determine a normality range at a mediod level
customized according to the sample distribution around a given
mediod (step 3). Hence, a single pattern will be containing multiple
mediods having different normality ranges enabling the proposed



Fig. 1. Overview of our proposed m-mediods based modeling and classification framework.
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approach to model variations in the distribution of samples within
a pattern. The multivariate m-Mediods based models of patterns
learned in first module is used by second module for classifying
unseen samples and anomaly detection. The classification and
anomaly detection in Euclidean feature spaces and generic feature
spaces is based on the adaption of merged and unmerged approach
respectively, as proposed in our previous work [23].
3. Multivariate modeling and classification for finite
dimensional features in Euclidean space (MMC-ES)

In this section, we present a framework for multivariate
modeling and classification using m-mediods approach that is
applicable to features in Euclidean space with calculable mean.

3.1. Multivariate m-mediods based modeling

Given a feature space representation of training data for each
pattern, we wish to model the underlying distribution of samples
within a pattern using training data. Modeling of pattern using
multivariate m-mediods approach in Euclidean space is a three
step process, (i) identification of m-mediods, (ii) computation of
set of possible normality ranges for the pattern and (iii) selection
of customized normality range for each mediod.

3.1.1. Step 1: identification of m-mediods

The algorithm for identification of mediods using finite dimen-
sional features in Euclidean space is based on the adaptation of
neural gas based learning algorithm [24]. Let DBðiÞ be the labeled
training instances associated to pattern i and W the weight vector
associated to each output neuron. The modeling algorithm com-
prises the following steps:
1.
 Initialize the SOM network with a greater number of output
neurons than the desired number of mediods m to avoid the
modeling algorithm from stucking into the problems of local
minima. A series of experiments have been conducted, using
patterns with different statistical distributions, to determine
a good value for the number of output neurons. We have
observed that a good value for the number of output neurons
can be obtained as:

#output ¼

x if xo1504x4 ðm� 2Þ

m� 2 if xoðm� 2Þ

150 if x4150

8><
>: ð1Þ

where x¼ sizeðDBðiÞÞ=2.

2.
 Initialize weight vectors Wi (where 1r ir#output) from the

PDF Nðm,SÞ estimated from training samples in DBðiÞ.

3.
 Identify k-Nearest Weights (k-NW) to current training sam-

ple using:

k-NWðF,W,kÞ ¼ fCAW98RAC,SAW�C,

JF�RJrJF�SJ49C9¼ kg ð2Þ

where F is the training sample, W is the set of weight
vectors, C is the set of k closest weight vectors, J:J is the
Euclidean distance function. The k closest output neurons to
F is updated in the specific iteration of learning process. For a
given training cycle t, k¼ dðtÞ where dðtÞ is a neighborhood
size function whose value decreases gradually over time as
specified in Eq. (5).
4.
 Train the network by updating a subset of the weights (C) using

Wcðtþ1Þ ¼WcðtÞþaðtÞzðjÞJF�WcðtÞJ 8Wc AC ð3Þ

where Wc is the weight vector representation of output neuron
c, j is the order of closeness of Wc to F ð1r jrkÞ, zðj,kÞ ¼
expð�ðj�1Þ2=2k2Þ is a membership function that has value
1 when j¼1 and falls off with the increase in the value of j,
aðtÞ is the learning rate of SOM and t is the training cycle index.
5.
 Decrease the learning rate aðtÞ exponentially over time
using:

aðtÞ ¼ 1�e2ðt�tmaxÞ=tmax ð4Þ

where tmax is the total number of learning iterations.

6.
 Decrease the neighborhood size exponentially with training

iterations as:

dðtÞ ¼ dinit 1�e2ðt�tmaxÞ=tmax

� �l m
ð5Þ

where dinit is the neighborhood size at the start of learning
process. We set dinit ¼ 5 after rigorous experimental evaluation.
7.
 Iterate through steps 3–6 for all the training iterations.
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8.
 Ignore output neurons with zero membership.

9.
 Select the closest pair of weight vectors (i,j) (indexed by

(a,b)) given by the condition

ða,bÞ ¼ arg minði,jÞ ½ðWi�WjÞ
T
ðWi�WjÞ � ð9Wi9þ9Wj9Þ�

1=2 8i,j 4 ia j

ð6Þ

where 9:9 is the membership count function. Scaling the
distance between two weight vectors by their membership
counts discourages the merging of weight vectors that are
modeling a dense distribution of samples. Merge the
selected pair of weight vectors using

Wab ¼
9Wa9�Waþ9Wb9�Wb

9Wa9þ9Wb9
ð7Þ
10.
 Repeat step 9 till the number of weight vectors gets
equivalent to #mediods. Append weight vector Wk to the list
of mediods MðiÞ modeling the pattern i.
3.1.2. Step 2: computation of possible normality ranges

After the identification of mediods MðiÞ for pattern i, we intend
to identify and pre-compute a set of possible normality ranges
for a given pattern. Values of normality ranges for a given pattern
is determined by the inter-mediod distances within a given
pattern. Hence, different patterns will have different set of
possible normality ranges depending on the distribution of
samples, and in turn mediods, within a pattern. In this step, a
set of possible normality ranges DðiÞ for the pattern i is computed
as follows:
1.
 Identify the closest pair of mediods (i,j) (indexed by (p,q)) from
MðcÞ as follows:

ðp,qÞ ¼ arg min
ði,jÞ

distðMi,MjÞ 8i,j4ia j ð8Þ

where dist(.,.) is the distance function which is Euclidean for
MMC-ES framework.
2.
 Populate the distance array for the current number of mediods
using

DðcÞl ¼ ðp,q,distðMp,MqÞÞ ð9Þ

where l is the current number of mediods.

3.
 Merge the closest pair of mediods using

Mpq ¼
9Mp9�Mpþ9Mq9�Mq

9Mp9þ9Mq9
ð10Þ
4.
 Iterate through steps 1–3 till the number of mediods gets
equivalent to 1.

3.1.3. Step 3: selection of customized normality range for each mediod

After the identification of mediods and a set of possible
normality ranges for a given pattern, we select different normality
range for each mediod depending on the distribution of samples
from the same and different patterns around a given mediod. The
normality range is selected to minimize false positives (false
identification of training samples from other pattern as a normal
member of pattern that is being modeled) and false negatives
(classification of normal samples of the pattern being modeled as
anomalies). The algorithm for selection of customized normality
range for each mediod, to enable multivariate m-mediod based
modeling of pattern, comprises of following steps:
1.
 Initialize significance parameter t with the number of med-
iods (m) used to model pattern c.
2.
 Sequentially input labeled training instances belonging to all
classes and identify the closest mediod, indexed by r, using:

r¼ arg min
k

distðQ ,MkÞ 8k ð11Þ

where Q is the test sample.

3.
 Perform an anomaly test using the anomaly detection system,

as proposed in Section 3.2, assuming a one class classifier
containing only pattern c represented by mediods set MðcÞ.
4.
 Increment false positive count FP(r), corresponding to closest
mediod Mr, each time when the sample is a normal member
of pattern c but is identified as anomalous.
5.
 Increment false negative count FN(r), corresponding to closest
mediod Mr, each time when the sample is misclassified to
pattern c.
6.
 Iterate through steps 2–5 for all the samples in DB.

7.
 Calculate Significance Parameter Validity Index ðSPVIÞ to

check the effectiveness of current value of t for a particular
mediod using:

SPVIðk,tÞ ¼ b� FPðkÞþð1�bÞ � FNðkÞ 0rbr1 8k ð12Þ

where b is a scaling parameter to adjust the sensitivity of
proposed classifier to false positives and false negatives
according to specific requirements.
8.
 Set t¼ t�1.

9.
 Iterate through steps 2–8 till t¼ 1.
10.
 Identify the value of significance parameter for a given
mediod as:

t
z}|{

ðc,kÞ ¼ arg min
t

SPVIðt,kÞ 8MkAMðcÞ ð13Þ

where t
z}|{

ðc,kÞ is the dynamic significance parameter that
have a different normality range for each mediod depending
on the local density.
The space complexity of the proposed modeling algorithm is
Oð9DB9þoutputÞ. For large datasets, 9DB9b#output and the space
complexity reduces to Oð9DB9Þ. The time complexity of our
algorithm is the sum of time complexities of the three steps
and is equivalent to Oððtmaxn#outputnlogð#outputÞÞÞþOðð#mediodsnlog
ð#mediodsÞÞÞþOð9DB92

n#mediodsnlogð#mediodsÞÞ where
�
 #outputnlogð#outputÞ is the time complexity of ranking of nodes
w.r.t. the closeness to the training sample in each iteration

�
 #mediodsnlogð#mediodsÞ is the time complexity of possible

normality range

�
 9DB92

n#mediodsnlogð#mediodsÞ is the time complexity for selecting
customized normality range for each mediod.
3.2. Classification and anomaly detection

Once the multivariate m-mediods based model for all the
classes have been learnt, the classification of unseen samples to
known classes and anomaly detection is performed by checking
the closeness of unseen sample to the models of different classes.
We use a k-NM classifier in which the unseen sample is posed as a
query to the entire set of mediods (M) belonging to different
classes and k nearest mediods from M are identified. Instead of
applying a voting mechanism as in case of conventional k-NN
classifier, we try to classify the sample to the class of the closest
mediod given it lies in the customized normality range of the
mediod as identified during the modeling phase. However, if the
sample lies outside the normality range of the closest mediod, we
check its closeness w.r.t. the next closest mediod. This process
continues till the sample lies in the normality range of one of the k

mediods in which case it is classified as a normal member of the
corresponding mediod. The sample is marked as anomalous if the
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sample does not fall in the normality range of any of the k closest
mediods. The value of k in the proposed k-NM classifier is chosen
using the experimental analysis as suggested in Section 6.5. The
classification and anomaly detection algorithm, in the presence of
multivariate settings, comprises the following steps:
1.
 Identify k nearest mediods to unseen sample Q as:

k�NMðQ ,M,kÞ ¼ fCAM98RAC,SAM�C,

DistðQ ,RÞrDistðQ ,SÞ49C9¼ kg ð14Þ

where M is the set of all mediods from different classes and C
is the ordered set of k closest mediods starting from the
nearest mediod.
2.
 Initialize nearest mediod index ı to 1.

3.
 Set r to the index of ıth nearest mediod and c to the index of its

corresponding class.

4.
 Initialize index l with m.

5.
 Select the most similar pair of mediods in MðcÞ along with the

distance between them, for the current number of mediods l as:

ðp,q,dpqÞ ¼DðcÞl ð15Þ

where dpq contains the distance between mediods indexed by p

and q.

6.
 Q is classified as normal member of class c if:

DistðQ ,MrÞrdpq ð16Þ
7.
 If the condition specified in Eq. (16) is not satisfied, decre-
ment the index l by 1.
8.
 Merge the most similar pair of mediods using

Mpq ¼
9Mp9�Mpþ9Mq9�Mq

9Mp9þ9Mq9
ð17Þ
9.
 Iterate steps 3–8 till l gets equivalent to the significance
parameter t

z}|{
ðc,kÞ. If the test trajectory Q has yet not been

identified as a valid member of class c, it is considered to be
an outlier w.r.t. to the mediod r belonging to class c.
10.
 Increment the index ıth index by 1.

11.
 Iterate steps 3–10 till ı gets equivalent to k. If Q has not been

classified as a normal member of any class, it is marked as
anomalous.
The time complexity of MMC-ES based classification and anomaly
detection algorithm is Oð9M9þOðknðmnlogðmÞ�tnlogðtÞÞÞ for
anomalous samples where 9M9 is the total number of mediods
in M. However, for most of the normal samples the time complex-
ity is Oð9M9þOðmnlogðmÞ�tnlogðtÞÞ. The time complexity can be
further reduced by using efficient indexing structure like kd-trees
to index 9M9 mediods for efficient k-NM search.
4. Multivariate modeling and classification for general feature
spaces with a computable pairwise similarity measure (MMC-GFS)

The framework of multivariate m-mediods based modeling
and classification, as presented in Section 3, works only with
feature spaces with calculable mean. However, for complex
feature spaces, it is not always possible to calculate a mean. This
section provides a modified multivariate m-mediod based frame-
work for any feature space, given that there is a computable
pairwise similarity measure.
4.1. Multivariate m-mediods based modeling

The proposed algorithm for modeling of pattern in general
feature spaces is a three step process.
4.1.1. Step 1: Identification of m-mediods

The algorithm for identification of mediods using finite dimen-
sional features in general feature space with a computable
similarity matrix is based on the affinity propagation based
clustering algorithm [25]. Let DBðiÞ be the classified training
samples associated to pattern i and W the weight vector asso-
ciated to each output neuron. The modeling algorithm comprises
the following steps:
1.
 Form the affinity matrix AARn�n defined by

Aða,bÞ ¼
exp

�distðsa,sbÞ

2s2

� �
ifaab

PðaÞ otherwise

8><
>: ð18Þ

Here si and sj are the feature vector representation of training
samples, s is the scaling parameter and P(a) is the preference
parameter indicating the suitability of sample a to be selected
as a mediod. We set P(a) to the median of affinities of sample
a with n samples.
2.
 Initialize availability matrix Iða,bÞ ¼ 0 8a,b.

3.
 Update responsibility matrix R as

Rða,bÞ ¼ Aða,bÞ� max
8c s:t: ba c

fIða,cÞ,Aða,cÞg ð19Þ
4.
 Update availability matrix I as

Iða,bÞ ¼

min f0,Rðb,bÞþ
P

8c s:t: caa4cab

f0,Rðc,bÞgg if aab

P
8c s:t: aa c max f0,Rðc,aÞg otherwise

8<
:

ð20Þ
5.
 Identify the exemplar for each sample as

xa ¼ arg max
b
½Iða,bÞþRða,bÞ� ð21Þ
6.
 Iterate through steps 3–5 till the algorithm is converged or
maximum number of learning iterations (tmax) is exceeded.
The algorithm is considered to have converged if there is no
change in exemplar identification for certain number of
iterations (tconvergence).
7.
 If the number of exemplars identified are smaller than the
desired number of mediods, set higher values of preference
and vice versa. The algorithm is repeated till the desired
number of exemplars are identified. An appropriate value for
identification of desired number of mediods is searched using
a bisection method.
8.
 Append exemplars xa to the list of mediods MðiÞ modeling the
pattern i.
4.1.2. Step 2: computation of possible normality ranges

After the identification of mediods MðiÞ for pattern i, a set of
possible normality ranges DðiÞ for the pattern i is computed using
the Step 2 of modeling algorithm as specified in Section 3.1.2.
However, instead of using Euclidean distance as distance function
in Eqs. (8) and (9), appropriate distance function for a particular
feature space should be incorporated.

4.1.3. Step 3: selection of customized normality range for each

mediod

Customized normality ranges for each mediod, to enable
multivariate m-mediod based modeling of pattern, is selected
using the algorithm similar to the one presented in Section 3.1.3.
A distance function appropriate to a given feature space has to be
utilized in Eq. (11). Instead of performing the anomaly detection
in step 3 using MMC-ES based anomaly detection system, we
apply the anomaly detection algorithm of MMC-GFS framework
as proposed in Section 4.2.
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The space complexity of the proposed modeling algorithm in
general feature space is Oð3nn2Þ. The time complexity of our
algorithm is the sum of time complexities of the three steps. The
time complexity of step 1 is Oðonðn2þn2nlogðnÞÞÞ where
�
 Oðn2Þ is the time complexity of affinity matrix computation

�
 Oðn2nlogðnÞÞ is the time complexity of message passing to

compute availability and responsibility matrix

�
 o is the number of times the modeling algorithm is repeated

to identify m mediods. It has been observed that the value of o
normally lies in the range 3–10.

The time complexity of steps 2 and 3 is similar to the time
complexity of modeling algorithm as specified in Sections 3.1.2
and 3.1.3, respectively.

4.2. Classification and anomaly detection

Once the m-mediods based model for all the classes have been
learnt, the classification of unseen samples to known classes and
anomaly detection is performed using following steps:
1.
 Identify k nearest mediods, from the entire set of mediods (M)
belonging to different classes, to unseen sample using Eq. (14).
2.
 Initialize nearest mediod index ı to 1.

3.
 Set r to the index of ıth nearest mediod and c to the index of its

corresponding class. z}|{

4.
 Initialize index l with the value of significance parameter t ðc,kÞ.

5.
 Identify the closest pair of mediods in set MðcÞ and their

corresponding distance, for the current number of mediods l,
using DðcÞ as:

ðp,q,dpqÞ ¼DðcÞl ð22Þ

where dpq contains the distance between mediods indexed by
p and q.
6.
 Test sample Q is considered to be a valid member of class c if:

DistðQ ,MrÞrdpq ð23Þ
7.
 If the condition specified in Eq. (23) is not satisfied, increment
the index ı by 1.
8.
 Iterate steps 3–7 till ı gets equivalent to k. If the test trajectory
Q has not been identified as a valid member of any class, it is
considered to be an outlier and deemed anomalous.

The time complexity of MMC-ES based classification and
anomaly detection algorithm is Oð9M9ÞþOðkÞ for anomalous
samples However, for most of the normal samples the time
complexity is Oð9M9Þ. The time complexity can be further reduced
by using efficient indexing structure like kd-trees to index 9M9
mediods for efficient k-NM search.
5. Relative merits of proposed modeling and
classification algorithms

In this section, we provide a comparative evaluation of the
proposed multivariate m-mediods and localized m-mediods [23]
based frameworks (LMC-ES) for modeling, classification and
anomaly detection. These frameworks can be characterized in
terms of the following attributes:
�
 Ability to deal with multimodal distribution within a pattern

�
 Time complexity of generating m-mediods based model of

known patterns

�
 Time complexity of classification and anomaly detection using

learned models of normality
�
 Scalability of modeling mechanism to cope with increasing
number of training data

For the ease in understanding of the comparative analysis,
simulation of the working of proposed modeling and classification
algorithms for arbitrary shaped patterns having multimodal
distributions is presented in Fig. 2. In the left image of Fig. 2,
each point represents the training sample and instances belong-
ing to the same class are represented with same color and marker.
Squares superimposed on each group of instances represent the
mediods used for modeling the pattern. Normality region gener-
ated using different frameworks for classification and anomaly
detection is depicted in the right image of Fig. 2. Test sample is
considered to be a normal member of the class if it lies within the
normality region, else it is marked as anomalous. Visualization of
LMC-ES, MMC-ES and MMC-GFS based modeling is provided in
Fig. 2(a)–(c) respectively.

Multivariate modeling using MMC-ES and MMC-GFS frame-
works caters for the multimodal distribution within a pattern. On
the other hand, LMC-ES framework always assumes a unimodal
distribution within a pattern and hence can not cater for the
dynamic distribution of samples within a pattern. It is apparent
from Fig. 2 that MMC-ES and MMC-GFS frameworks have gener-
ated more accurate models that have accommodated the variation
in sample density within a given pattern. Particularly, normality
region generated using MMC-ES framework appears to be least
affected by the multivariate distribution of training samples.

LMC-ES framework performs a hard classification of unseen
sample. A sample is classified to a pattern represented by the
majority of mediods from a set of k nearest mediods. The sample
may not lie in the normality region of a pattern to which it is
classified and hence deemed anomalous. However, it is likely that it
may still fall in the normality region of the second closest but less
dense pattern having larger normality range. The hardness of LMC-ES
based classification algorithm will result in the misclassification of
such samples. However, the classification and anomaly detection
algorithms proposed in MMC-ES and MMC-GFS do not give a hard
decision and checks for the membership of test w.r.t. different
patterns until it is identified as a valid member of some pattern or
it has been identified as anomalous w.r.t. k nearest mediods. This
relatively softer approach enables the MMC-ES and MMC-GFS based
classification algorithm to adapt to the multimodal distribution of
samples within different patterns. This phenomena is highlighted in
Fig. 3. The samples, represented by ‘� ’ marker, will be classified to
blue pattern but is marked as anomalous using LMC-ES classifier as it
falls outside the normality range of dense mediods belonging to the
closest pattern. On the other hand, soft classification technique as
proposed in MMC-ES and MMC-GFS frameworks will correctly
classify the sample as normal members of green pattern.

Algorithms to generate m-mediods model, as proposed in
MMC-ES framework and LMC-ES framework, are efficient and
scalable to large datasets. On the other hand, the modeling
algorithm of MMC-GFS is relatively inefficient and is not scalable
to large datasets due to the requirement of affinity matrix
computation. The space and time complexity is quadratic which
is problematic for patterns with large number of training sample.
The complexity problem can be catered by splitting the training
sample into subsets and selecting candidate mediods in each
subset using algorithm specified in Section 4.1.1. The final selec-
tion of mediods can be done by applying the same algorithm
again but now using the candidate mediods instead of all the
training sample belonging to a given pattern. The classification
algorithm of MMC-GFS framework is relatively efficient as com-
pared to MMC-ES framework. This efficiency gain is due to the
non-iterative unmerged anomaly detection with respect to a
given mediod. The anomaly detection is done by applying a single



Fig. 2. m-mediods based modeling of patterns using (a) LMC-ES framework, (b) MMC-ES framework, (c) MMC-GFS framework. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Scenario for evaluating the adaptation of classification algorithms as proposed in different m-mediods based frameworks.
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threshold to the distance of the test sample from its ıth closest
mediod as specified in Eq. (23). On the other hand, MMC-ES
implements iterative merged anomaly detection, which is more
accurate but time consuming. as compared to the modeling
algorithm proposed in MMC-GFS framework. The time complex-
ity of merged anomaly detection is OðmnlogðmÞ�tnlogðtÞÞ.
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6. Experimental results

In this section, we present some results to analyze the
performance of the proposed multivariate m-mediods based
modeling, classification and anomaly detection as compared to
competitive techniques.

6.1. Experimental datasets

Experiments are conducted on synthetic SIM1 and SIM2 and
real life ASL [9,26–30] datasets. Details of these datasets can be
found in Table 1.

6.2. Experiment 1: evaluation of m-mediods based frameworks for

classification and anomaly detection

The purpose of this experiment is to evaluate the performance
of proposed MMC-ES, MMC-GFS and LMC-ES based frameworks
for classification of unseen data samples to one of the known
patterns. The effectiveness of the proposed frameworks to per-
form anomaly detection is also demonstrated here. The experi-
ment has been conducted on simulated SIM1 and SIM2 dataset.
Training data from simulated datasets is shown in Fig. 4. Test data
for SIM1 dataset is obtained by generating 500 samples from a
uniform distribution such that ðx,yÞAðUð1;12Þ,Uð1;12ÞÞ. Test data
for SIM2 dataset is obtained by generating 1000 samples from a
uniform distribution such that ðx,yÞAðUð0;20Þ,Uð0;20ÞÞ.

We have used 50 mediods to model a class using its member
samples. The classification and anomaly detection results for SIM1

and SIM2 datasets, using LMC-ES, MMC-ES and MMC-GFS frame-
works are presented in Fig. 5(a)–(c) respectively. Training samples
are represented using ‘þ ’ marker whereas classified normal samples
are represented by small circles. Data points belonging to same class
are represented with same color and marker. Samples from test data
Table 1
Overview of datasets used for experimental evaluation.

Dataset Description # of trajec

SIM1 Simulated dataset comprising of two

dimensional coordinates

Arbitrary #

SIM2 Simulated dataset comprising of two

dimensional coordinates generated

randomly along two concentric circles

Arbitrary #

ASL Trajectories of right hand of signers as

different words are signed. Dataset consists

of signs for 95 different word classes with 70

samples per word.

6650

Fig. 4. Training data from (a) SIM1
which have been identified as anomalous are represented with a
black ‘� ’ marker. It is apparent from Fig. 5 that multivariate m-
mediods based classification system as proposed in MMC-ES and
MMC-GFS framework performs better classification and anomaly
detection while catering for multimodal distribution within the
modeled pattern. On the other hand, LMC-ES based framework
performs univariate modeling of patterns and therefore the classi-
fication system does not adjust well to the variation of density
within a pattern, specifically for multivariate class distributions in
SIM1 dataset, as highlighted in Fig. 5(a).
6.3. Experiment 2: comparison of proposed classifiers with

competitive techniques

The purpose of this experiment is to compare the performance
of classifiers as proposed in LMC-ES, MMC-ES and MMC-GFS
frameworks. For comparison of our results with competitive
techniques, we establish a base case by implementing three
different systems for comparison including Mahalanobis, GMM
and LFDA-GMM classifier. Real life ASL dataset is used for the
experiment. Signs from different numbers of word classes are
selected. Classified training data is obtained by randomly selecting
half of the samples from each word class leaving the other half to
be used as test data. Trajectories from ASL dataset are represented
using DFT-MOD based coefficient feature vectors [28]. Patterns are
modeled using 20 mediods per pattern. We have computed single
multivariate Gaussian for modeling of patterns for Mahalanobis
classifier. Modeling of patterns and classification of unseen sam-
ples using GMM is based on the approach as described in [30].
Each class is modeled using a separate GMM. The number of
modes to be used for GMM-based modeling is automatically
estimated using a string of pruning, merging and mode-splitting
processes as specified in [30]. We have implemented LFDA-GMM
classifier as proposed in [22]. After modeling of normal patterns,
tories Extraction method Labeled (Y/N)

Simulation Y

Simulation Y

Extracting (x,y) coordinates of the mass of

right hand from files containing complete

sign information

Y

dataset and (b) SIM2 dataset.



Fig. 5. Classification of test data, based on SIM1 and SIM2 classes, using (a) LMC-ES framework, (b) MMC-ES framework, (c) MMC-GFS framework.
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the test data is classified using different approaches. Classification
accuracies are computed by comparing the classification results
with the ground truth. The experiment is repeated with different
numbers and combinations of word classes. Each classification
experiment is averaged over 50 runs to reduce any bias resulting
from favorable word selection.

The accuracy of different classifiers for wide range of word
classes from ASL dataset is presented in Table 2. Based on these
results, we can see that the multivariate m-mediods based classifier
as proposed in MMC-ES and MMC-GFS frameworks yield a superior
classification accuracy as compared to other classifiers closely
followed by univariate LMC-ES framework and LFDA-GMM. GMM
yields good results for lower number of classes but its performance
deteriorates for higher number of word classes. However, applying
LFDA based supervised transformation before generating GMM
model enhances the effectiveness of GMM classifier as obvious
from the classification accuracies of LFDA-GMM classifier. It can
also be observed from Table 2 that the relative accuracy of proposed
m-mediods based MMC-ES, MMC-GFS and LMC-ES classifiers
increases with an increase in the number of classes as compared
with competitive techniques; thus making them more scalable for
larger number of classes. The superior performance of MMC-ES
and MMC-GFS, as compared to competitive techniques, can be
explained by the fact that the proposed multivariate m-mediods
based frameworks do not impose any restriction on the probability
distribution function of modeled patterns. The proposed frame-
works can effectively model arbitrary shaped patterns and can
effectively handle variation in sample distribution within a pattern
as demonstrated in Figs. 2 and 5. On the other hand, the compe-
titive approaches impose assumptions on the PDF of patterns
(normally Gaussian). These approaches do not have the capacity
to handle multivariate distribution within a pattern. As a result, the



Table 2
Classification accuracies for different number of classes from ASL dataset.

ASL (#classes:#samples)

Classifiers 2:70 4:140 8:280 16:560 24:840

MMC-ES 0.99 0.95 0.92 0.88 0.85

MMC-GFS 0.99 0.94 0.91 0.86 0.83

LMC-ES 0.98 0.92 0.88 0.83 0.78

Mahalanobis 0.95 0.88 0.82 0.75 0.71

GMM 0.97 0.92 0.83 0.74 0.69

LFDA-GMM 0.98 0.91 0.88 0.82 0.79

Fig. 6. Percentage anomaly detection accuracies for different number of classes

from ASL dataset.
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model generated by these approaches will not give an accurate
representation of complex patterns and hence result in poor
classification performance as compared to the proposed multi-
variate m-mediods based approaches.

Similar experiment with ASL dataset (using similar experi-
mental settings) has been conducted by Bashir et al. [29] using
their proposed GMM and HMM-based classification system. They
reported classification accuracies of 0.96, 0.92, 0.86 and 0.78 for
2, 4, 8 and 16 word classes respectively. A comparison of these
classification accuracies with the results obtained using our
approach reveals that classifiers from m-mediods classifier family
performs better than GMM and HMM-based recognition system
[29] despite the fact that our proposed classification approach is
conceptually simpler and computationally less expensive.

6.4. Experiment 3: quantitative evaluation of anomaly

detection algorithms

Here we provide a quantitative evaluation and comparison of
m-mediods based anomaly detection algorithms, as proposed in
MMC-ES, MMC-GFS and LMC-ES frameworks, with competitors.
We implemented three different anomaly detection techniques
based on statistical test as proposed in [9], Grown When Required
(GWR) novelty filter as proposed in [11] and one-class classifier
based anomaly detection as proposed in [31]. Naftel et al. [9]
performs anomaly detection by using Mahalanobis classifier and
conducting Hotelling’s T2 test. Tax et al. [31] perform anomaly
detection by generating model of one class (referred to as target
class) and distinguishing it from samples belonging to all other
classes. There generation of model of the target class is done using
SVM and GMM. For SVM-based one class classifier (OCC-SVM), we
have used RBF kernel for the modeling of target class. For GMM-
based one class classifier (OCC-GMM), we have used the approach
as specified in Experiment 2 to generate the GMM-based model.

The experiment has been conducted using different numbers of
word classes from ASL dataset. We have extracted half of the
samples belonging to each word class for training purposes
leaving the other half of the samples to be used as test data.
DFT-MOD based coefficient feature vector representation of sign
trajectories from training data is generated and used to generate
models as required by the different classification approaches.
MMC-ES, MMC-GFS and LMC-ES framework based model of each
class is generated using the algorithm as presented in Sections 3.1,
4.1 and [23] respectively. Patterns are modeled using 20 mediods
per pattern.

Once the model learning phase is over, anomaly detection
using different techniques is carried out using test dataset. We
would expect that few instances drawn from class X would be
recorded as anomalous when tested against the same class,
whereas nearly all instances would be detected as anomalous
when tested against a different class Y. The experiment is
repeated with different numbers and combinations of word
classes. Each anomaly detection experiment is averaged over 50
runs to reduce any bias resulting from favorable word selection.

Fig. 6 reports the result in terms of percentage of correct anomaly
detection using various number of word classes from ASL dataset.
The results demonstrate the superiority of anomaly detection using
m-mediods based MMC-ES, MMC-GFS and LMC-ES frameworks. The
anomaly detection accuracies obtained using multivariate anomaly
detection algorithms as presented in MMC-ES and MMC-GFS frame-
works are higher than univariate LMC-ES based anomaly detection
algorithm. MMC-ES, MMC-GFS and LMC-ES perform better than
OCC-SVM, OCC-GMM, GWR and Mahalanobis framework-based
Naftel’s method. The superior performance of proposed approach
as compared to state-of-the-art techniques is due to the fact that our
approach gives importance to correct classification of normal
sample and to the filtration of abnormal samples during the model
generation phase. On the other hand, OCC-SVM generates good
model of normal classes but classifies many of the abnormal
samples as member of normal classes whereas GWR gives extra
importance to filtering abnormal samples and in the process,
identifies many normal samples as abnormal.

6.5. Experiment 4: evaluation of parameters of proposed algorithms

The purpose of this experiment is to evaluate the effect of
important parameters on the performance of proposed classifica-
tion and anomaly detection algorithm. The accurate modeling of
known classes is dependant on the number of mediods m used to
model a given class. Similarly, classification using k nearest
mediod is somewhat dependant on the value of k. We will analyze
the effect of selecting different values of these parameters on
classification and anomaly detection accuracy of proposed algo-
rithm. We have selected MMC-ES framework for the evaluation of
these parameters.

The experimental setup is similar to the one as presented in
Experiment 3. We have used fixed number (#classes¼ 24) of ASL
classes in the experiment. To analyze the effect of m on the
modeling process, we have repeated the experiment using differ-
ent number of mediods. Classification and anomaly detection
accuracies using proposed k-NM (k¼9) approach for different
value of m are presented in Fig. 7. The accuracy is low for small
values of m and increases with the increase in the number of m

used to model the pattern. However, increasing the value of m



Fig. 7. Percentage classification and anomaly detection accuracies for different

values of m.

Fig. 8. Percentage classification and anomaly detection accuracies for different

values of k.
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above certain level does not have significant impact on accuracy
whilst increasing the computational complexity of proposed
algorithm. This is explained by the fact that using smaller number
of mediods to model a pattern will result in generation of coarse
representation of a give pattern and hence poor classification and
anomaly detection accuracies. Increasing the number of mediods
will result in modeling of finer details of multivariate distribution
of samples within pattern and hence more accurate results. Based
on these results, we recommend to set mZ20 for good classifica-
tion results. Although, higher values of m results in higher
computational complexity, the k-NM based classification can
always be speeded up with indexing. To analyze the effect of
different value of k on the accuracy of proposed k-NM approach,
we have repeated the above experiment by keeping the value of
m constat (m¼5) but varying the values of k and the results are
presented in Fig. 8. The classification and anomaly detection
accuracies increase with the increase in the value of k and flattens
out for higher values of k.
7. Discussion and conclusions

In this paper, we have presented an extension of localized
m-mediods based modeling technique to cater for multimodal
distribution of samples within a pattern. The strength of the
proposed approach is its ability to model complex patterns
without imposing any restriction on the distribution of samples
within a given pattern. Once the multivariate m-mediods model
for all the classes have been learnt, the classification of new
trajectories and anomaly detection is then performed using a
proposed soft classification and anomaly detection algorithm
which is adaptive to multimodal distributions of samples within
a pattern. Two variations of multivariate m-mediods based frame-
work, namely MMC-ES and MMC-GFS, are proposed which
enables the proposed approach to be used for modeling, classifi-
cation and anomaly detection in any feature space with a
computable similarity function. MMC-ES is a specialized frame-
work tuned for feature vector spaces with a computable mean
whereas MMC-GFS is a general framework for any feature space
with a computable affinity matrix.

Experimental results are presented to show the effectiveness
of proposed multivariate MMC-ES and MMC-GFS frameworks
based classifiers. Modeling of pattern and classification using
proposed frameworks is unaffected by variation of sample dis-
tribution within a pattern as demonstrated in Fig. 5. Quantitative
comparison of MMC-ES and MMC-GFS based classifiers with
competitive techniques demonstrates the superiority of our
multivariate approach as it performs consistently better than
commonly used Mahalanobis, GMM and HMM-based classifiers.

Experiments are also conducted to show the effectiveness of
anomaly detection capabilities of proposed frameworks. Anomaly
detection results for different classes of ASL datasets, using
different variants of proposed anomaly detection algorithm, are
presented. It has been shown that anomaly detection using
multivariate MMC-ES and MMC-GFS frameworks gives better
anomaly detection accuracies as compared to the univariate
LMC-ES approach. Although LMC-ES enables the anomaly detec-
tion system to adapt to the normality distribution of individual
classes, it is insensitive to the variation of distributions within a
pattern which results in degradation of its performance as
compared to MMC-ES and MMC-GFS frameworks. Comparison
of proposed anomaly detection algorithms with an existing
approach demonstrates the superiority of our approach as they
consistently perform better for different number of classes.
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