

Introduction to Behavior Imaging (Part 1)

Jim Rehg Georgia Tech

UBIHealth Winter School January 13, 2014

Center for Behavior Imaging @ Georgia Tech

Schedule

- Introduction to Behavior Imaging
- Overview of face analysis and gaze tracking
- Applications to ASD and smoking cessation

Autism Quick Facts

- A developmental brain disorder with a genetic basis, but no biological marker or cure
 - Diagnosis and characterization depends entirely on observable behavior
- Difficulties in forming social bonds with parents, peers, and care-givers
- 30-50% fail to develop spoken language
- Intellectual disability in ~50% of individuals

Computational Behavioral Science

Modeling, Analysis, and Visualization of Social and Communicative Behavior

• First described in 1943 by Leo Kanner

Autism Prevalence on the Rise

Three Goals

- Early Detection
 - Symptoms are visible before age 2
 - Average age of diagnosis around 4 years
 - Technology for screening (3 times before age 3)
- Intensive Therapy
 - Therapy results in measurable improvements
 - Intensity of therapy is a key factor
 - Technology to aid in delivering therapy
- Autism Research
 - Social and communicative behavior in children
 - Tools for large scale collection and analysis of data

Behavior Imaging

Imaging technologies and medical science

- Orthopedics and dentistry
 X-RAY
- Neurology MRI / CT

Can we develop imaging technologies for the behavioral sciences?

- Large-scale measurement of behavior
- Capture of behavior under natural conditions
- Visualizations over time and across populations

NSF Expeditions in Computing

- Computational methods for sensing, modeling, and analyzing social & communicative behaviors
- Focus on interactions between children and caregivers and peers in the context of autism

Rapid-ABC (GT)

Classroom (CfD)

STAT (NEU)

Catalyze Computational Behavioral Science

Computational Behavioral Science

Turning Disabilities Into Possibilities

CALIFORNIA

Georgia Tech (HILD STUDY LAB

Georgia Tech

Computational Behavioral Science

23-11

Rapid-ABC

Protocol for eliciting social and communicative behavior

Greeting

Ball play

Book

Tickle

Recruitment: 15-30 month olds

Ousley, Arriaga, & Abowd

Computational Behavioral Science

Example

NSF

Computational Behavioral Science

Another Example

Computational Behavioral Science

Basic Questions

- How can we sense the subtle behaviors that comprise socialization, communication, and other daily activities?
- How can we model the dynamics of social interactions?
- How can we describe concepts such as social engagement computationally?

Multimodal Dyadic Behavior Dataset

- Goal: Capture key social and communicative behaviors in children aged 18-36 months
 - Recruited from the Atlanta community
 - No special focus on at-risk children (so far)
- 160 sessions of 5-minute R-ABC interactions from 121 children
 - One follow-up session 3 months later (approx. 40 kids)
- Consented for sharing with research community
- Interested researchers must have an IRB in place to receive the data

http://www.cbi.gatech.edu/mmdb/

Facial Analysis

- Faces play a key role in social behavior
- How can we automatically detect faces in images?
- How can we analyze facial expressions?

Computational Behavioral Science Modeling, Analysis, and Visualization of Social and Communicative Behavior

Faces: Terminology

- *Detection*: given an image, where is the face?
- *Recognition*: whose face is it?
- Expression Analysis: what is the face configuration?

Ann is smiling

Computational Behavioral Science

Modeling, Analysis, and Visualization of Social anImage credit: H. Rowley

Face Detection Process

Slide courtesy of Paul Viola

Detection via Classification: Main idea

We need to:

- 1. Obtain training data
- 2. Define features
- 3. Define classifier

Training examples

Computational Behavioral Science

Example: Face Detection

- Frontal faces are a good example of a class where global appearance models + a sliding window detection approach fit well:
 - Regular 2D structure
 - Center of face almost shaped like a "patch"/window

 Now we'll take AdaBoost and see how the Viola-Jones face detector works
 Slide by K. Grauman & B. Leibe

Modeling, Analysis, and Visualization of Social and Communicative Behavior

Computational Behavioral Scien

Boosting

- Build a strong classifier by combining number of "weak classifiers", which need only be better than chance
- Sequential learning process: at each iteration, add a weak classifier
- Flexible to choice of weak learner
 - including fast simple classifiers that alone may be inaccurate

Computational Behavioral Science

- We'll look at Freund & Schapire's AdaBoost algorithm
 - Easy to implement
 - Base learning algorithm for Viola-Jones face detector

AdaBoost: Intuition

Consider a 2-d feature space with positive and negative examples.

Each weak classifier splits the training examples with at least 50% accuracy.

Examples misclassified by a previous weak learner are given more emphasis at future rounds.

Figure adapted from Freund and Schapire

Computational Behavioral Science

Georgia

AdaBoost: Intuition

Figure adapted from Freund and Schapire

Computational Behavioral Science

AdaBoost: Intuition

weak classifiers

Georgia

lec

Large library of filters

Considering all possible filter parameters: position, scale, and type:

180,000+ possible features associated with each 24 x 24 window

Computational Behavioral Science

Modeling, Analysis, and Visualization of Social and Communicative Behavior

Use AdaBoost both to select the informative features and to form the classifier

AdaBoost Feature Selection

 Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (non-faces) training examples, in terms of *weighted* error.

Slide by K. Grauman & B. Leibe

Resulting weak classifier:

$$n_t(x) = \begin{cases} +1 & \text{if } f_t(x) > \theta_t \\ -1 & \text{otherwise} \end{cases}$$

For next round, reweight the examples based on errors, choose another filter/threshold combo.

Viola-Jones Face Detector: Summary

Non-faces

Train cascade of classifiers with AdaBoost

New image

- Train w/ 5K positives, 350M negatives
- Real-time detector w/ 38 layer cascade
- 6061 features in final layer
- Implementation available in OpenCV

Slide by K. Grauman & B. Leibe

Computational Behavioral Science Modeling, Analysis, and Visualization of Social and Communicative Behavior

Representing Facial Expression

- Facial expressions result from actions of facial muscles on skin and connective tissue
- Facial Action Coding System (FACS) by Paul Ekman and Wallace Friesen provides a systematic description of muscle action
- Provides an objective and quantitative description of facial expressions
- Affect (positive or negative) defined in terms of FACS codes

Muscles of the face

(From : Facial Action Coding System. Investigator's Guide by Paul Ekman, Wallace V. Friesen & Joseph C. Hager. Download from: <u>http://face-and-</u> <u>emotion.com/dataface/facs/guid</u> e/FACSIV1.html

Inner Brow Raiser (AU1)

Images from FACS manual

Inner brow raiser & brow lowerer (AU 1 + 4)

Images from FACS manual

Goal

Littlewort et. al. Face & Gesture 2011

Computational Behavioral Science

Challenges

Pose

Race

Lighting

Expression

Occlusion

Resolution

Basic Approach

- Facial feature analysis
 - Establish "face coordinate system" via landmarks
 - Local/global feature analysis to predict expression

Facial Expression Tracking

IntraFace SDK by Fernando De la Torre (CMU) Results produced by Yaser Sheikh (CMU) http://www.humansensing.cs.cmu.edu/intraface/

Computational Behavioral Science

Summary

- Face detection is a mature technology
- AdaBoost is a simple and powerful classification technology
- Facial tracking is becoming mature enough to be useful by nonexperts
- Usable expression recognition is sure to follow

Introduction to Behavior Imaging (part 2)

Jim Rehg Georgia Tech

UBIHealth Winter School January 13, 2014

Center for Behavior Imaging @ Georgia Tech

Estimating Attention via Eye Tracking

- Physiology of the eye
- Commercial gaze tracking and applications
- Wearable gaze tracking
- Example: Activities of daily living

Computational Behavioral Science

Basic Physiology of the Eye

The Eye—

"the world's worst camera"

- suffers from numerous optical imperfections...
- ...endowed with several compensatory mechanisms

Computational Behavioral Science

Spatial Vision—visual angle and receptor distribution

Retinotopic receptor distribution

Georgia

Foveal Vision

Photographic Simulation of Variable Retinal Spatial Resolution

Courtesy of Stuart Anstis

Muscles of the Eye

We must move our eyes to see

Saccades

- Rapid eye movements used to reposition fovea
- Voluntary and reflexive
- Range in duration from 10ms 100ms
- Effectively blind during transition
- *ballistic* (pre-programmed)
- *stereotyped* (reproducible)

Smooth Pursuit

- Involved when visually tracking a moving target
- Depending on range of target motion, eyes are capable of matching target velocity
- Pursuit movements are an example of a control system with built-in negative feedback

Fixations

Possibly the most important type of eye movement for attentional applications

– 90% viewing time is devoted to fixations

- duration: 150ms - 600ms

 Not technically eye movements in their own right, rather characterized by miniature eye movements:

Computational Behavioral Science

Modeling, Analysis, and Visualization of Social and Communicative Behavior

- tremor, drift, microsaccades

A Life in Fixations

- 60*2.5=150 eye fixations/minute
- 60*150=9000 eye fixations/hour
- 16*9000=144000 eye fixations/day
- 144000 is an average number of visual details processed per day

Eye Movements are Task-Dependent

Eye movements as indicators of cognitive processes (Yarbus):

- trace 1: examine at will
- trace 2: estimate wealth
- trace 3: estimate ages
- trace 4: guess previous activity
- trace 5: remember clothing
- trace 6: remember position
- trace 7: time since last visit

Estimating Attention via Eye Tracking

- Physiology of the eye
- Commercial gaze tracking and applications
- Wearable gaze tracking
- Example: Activities of daily living

Computational Behavioral Science

The Tobii T120 Eye tracker Cost: ≈ €28,000 Minutes to learn to operate Years to become an expert

Commercial Uses of Eye Tracking

Do users notice branding within 5s?

Commercial Uses of Eye Tracking

"Heat Map"

Purkinje Images

"glint" (1st Purkinje)

Imaging the Eye

Computational Behavioral Science

Pupil Center Corneal Reflection (PCCR)

- Uses geometric relation between pupil and glint to compute Point of Regard (POR)
- Very common noninvasive approach
- Basis for many commercial products (e.g. Tobii)
- Comprehensive theory developed in 2006
- Simplest geometry:

- Spherical cornea, single camera, single light source

Steps in PCCR

- Extract pupil-glint vector
 - Detect pupil center
 - Detect glint center(s)

Pupil Detection

"red eye"

Dark pupil (off-axis IR)

Bright pupil (on-axis IR)

Computational Behavioral Science

- Issues
 - Bright eye makes it easy to detect pupils (non-Asian)
 - Dark eye makes it easier to detect glints
- Modern systems (e.g. Tobii) do both

Variations in Bright Eye Response

Within individuals

Georgia

Across individuals

Computational Behavioral Science

Geometry of Corneal Reflections

Steps in PCCR

- Extract pupil-glint vector
 - Detect pupil center
 - Detect glint center(s)

- Calibrate gaze-specific mapping function
 - Parametric models: linear, homography, polynomial, etc.
 - General function approximators: neural network, gaussian processes, etc.

Estimating Attention via Eye Tracking

- Physiology of the eye
- Commercial gaze tracking and applications
- Wearable cameras, gaze, and egocentric vision
- Example: Activities of daily living

"There is nothing more powerful than an idea whose time has come" - Victor Hugo

Google Glass

Looxcie

Eye tracking cameras

Pivothead

Gaze on relevant objects

During the task = 82%

 \Box Before the task = 48%

Benefits of Wearable Eye Tracker

- Enable naturalistic movement and mobility
- Direct measurement of both scene image and point of gaze
- Limitations:
 - Expensive (\$24K)
 - May not be safe for kids
 - Power-hungry

Positive Science & UI

Computational Behavioral Science

Predicting Gaze in Egocentric Setting

Input Egocentric Video

Li, Fathi, & Rehg ICCV 13

Computational Behavioral Science

Egocentric Cues Eye, Head and Hand Coordination

Center Prior (Head Orientation)

Head Motion

Hand Location

Predicted Gaze

Computational Behavioral Science

Modeling, Analysis, and Visualization of Social and Communicative Behavior

Human Gaze

We don't use low-level image features or high-level task information

Egocentric Cues Eye, Head and Hand Coordination

Center Prior (Head Orientation)

Head Motion

Hand Location

Predicted Gaze

Computational Behavioral Science

Modeling, Analysis, and Visualization of Social and Communicative Behavior

Human Gaze

We don't use low-level image features or high-level task information

Center Prior

Egocentric Gaze Tracking

GTEA Gaze Dataset

GTEA Gaze+ Dataset

Monitor based Gaze

MIT Dataset Judd et al., ICCV 2009

Eye-Head Coordination: Head Motion

Computational Behavioral Science

Eye-Head Coordination: Head Motion

800 **Gaze Shift from Center** 600 400 200 0 -200 -400 -600 -800 L -15 10 -5 5 15 Horizontal Head Velocity

Density Map of Gaze Points

- Strong correlation
 between gaze shift and
 head velocity in
 horizontal direction
- Gaze point shifts towards the same direction (left/right) of one's head movement

Computational Behavioral Science

Modeling, Analysis, and Visualization of Social and Communicative Behavior

Yamada et al., Advances in Image and Video Technology, 2012.

Egocentric Cues Eye, Head and Hand Coordination

Computational Behavioral Science

Eye-Hand Coordination

Manipulation Point: a control point where the person is most likely to manipulate an object

Eye-Hand Coordination

Density map of Gaze offset relative to the manipulation point

Computational Behavioral Science

Temporal Model

Gaze Prediction

Results: Gaze Prediction

5 0.1 0.15 0.2 0.25 False Positive Rate (Frame)

Georgia

lec

Computational Behavioral Science

GTEA Gaze+ Dataset

- 6 Subjects
- 7 Activities (Making Pizza, Hamburger, Breakfast, Greek Salad, etc.)
- Each activity takes around 10 min, Around 100 actions in each activity

Computational Behavioral Science

Estimating Attention via Eye Tracking

- Physiology of the eye
- Commercial gaze tracking and applications
- Wearable cameras, gaze, and egocentric vision
- Example: Activities of daily living

Is gaze useful for recognizing activities?

Object-based Features

Detector response of objects in a small circle around gaze point

Spread peanut-butter on bread

Object detection and segmentation results

Knife, Bread, Peanut around gaze point

Computational Behavioral Science

Appearance Features

Histogram of color and texture in a small circle around gaze point

Spread peanut-butter on bread

Georaia

Color/texture bins assigned to pixels

Computational Behavioral Science

Action Recognition Given Gaze

We get from 27% using foreground to **47%** using gaze Bag of STIP features: 12% Bag of SIFT features: 19%

Action Recognition Accuracy Using Predicted Gaze

Average accuracy for 25 action classes

- Features from hand-object interaction: 27%
- Features around ground truth gaze: 47%
- Features around predicted gaze (Fathi, Li, Rehg, ECCV12): 29%

Computational Behavioral Science

Modeling, Analysis, and Visualization of Social and Communicative Behavior

• Features around predicted gaze (Egocentric Cues): 32.8%

Application to Object Segmentation

Gaze often falls on the foreground object

Foreground Object with 80 pixel margin

Results for Object Segmentation

- Foreground hypothesis generation
- Ranking the segments

Carreira and Sminchisescu Constrained Parametric Min-Cut for Automatic Object Segmentation, CVPR 2010

Modeling, Analysis, and Visualization of Social and Communicative Behavior

Computational Behavioral Science

Actions Change the State of Objects

Opening Coffee Jar

Fathi and Rehg Modeling Actions through State Changes CVPR 2013

Summary

- Classical gaze tracking uses the relationship between pupil center and glints (landmarks)
- This technology is now migrating into wearable platforms
- It is possible to make useful predictions about the subject's gaze by exploiting egocentric cues
- Egocentric vision is a powerful paradigm for sensing behaviors and every-day activities

Introduction to Behavior Imaging (part 3)

Jim Rehg Georgia Tech

UBIHealth Winter School January 13, 2014

Center for Behavior Imaging @ Georgia Tech

Applications of Behavior Imaging

- Applications to autism
- Possible applications to smoking cessation

Applications of BI in Autism

- Detecting response to name
- Detecting eye contact
- Recognizing gestures
- Predicting engagement in R-ABC

Computational Behavioral Science

Response to Name Protocol

Computational Behavioral Science

Overhead view using a Kinect camera

Bidwell et. al. (GT)

Computational Behavioral Science

Predicting response to name

Georgia

Computational Behavioral Science

ELAN Visualization

Computational Behavioral Science

Applications of BI in Autism

- Detecting response to name
- Detecting eye contact
- Recognizing gestures
- Predicting engagement in R-ABC

Computational Behavioral Science

Egocentric Vision

Computational Behavioral Science

Automatic Detection of Eye Contact

Key Idea #1 Detect child's face to interpret examiner's point of gaze

Key Idea #2 Detect child's gaze direction relative to camera (proxy for examiner)

Computational Behavioral Science

Modeling, Analysis, and Visualization of Social and Communicative Behavior

Omron OKAO library

Technical Details

Results

Computational Behavioral Science

Quantitative Results: Precision/Recall

Georgia

- Each curve stands for a session
 - Green dots:
 best F1 scores for each session
 - Black curve: average over all sessions

Computational Behavioral Science

Applications of BI in Autism

- Detecting response to name
- Detecting eye contact
- Recognizing gestures
- Predicting engagement in R-ABC

Computational Behavioral Science

Tracking by Detection: Hierarchy of Template Ensembles

- Tracker exploits RGB plus depth from Kinect.
- Template Ensembles dynamically updated to model object appearance.
- Tracker Hierarchy decides the best tracking strategy for each tracker.
- Tracker is automatic, and there is no intervention needed to correct lost tracks.

Tracker subsystem publicly available (AVSS 2012).

Stan Sclaroff, Liliana Presti (Boston University)

Georgia

Computational Behavioral Science

Predicting Engagement

Computational Behavioral Science

Three Approaches to Engagement

- Acoustic cues
 - Pitch, intensity, jitter, shimmer
 - Computed from child and examiner utterances
- Speech event cues (from diarization)
 - Duration and number of speech segments, patterning, etc.
- Physiological cues
 - EDA features (slope, peak amplitude, etc.)
 - Physiological linkage features (e.g. correlation)

Computational Behavioral Science

Acoustic Features

Gupta et. al. Ubicomp 2012 (USC)

Child's acoustic features better than examiner's

Computational Behavioral Science

Modeling, Analysis, and Visualization of Social and Communicative Behavior

Feature Accuracy

Prosodic	Child	59.01
Features	Psyc.	54.30
Spectral	Child	67.15
Features	Psyc.	65.17

Event Features

Georgia

Top Features

Order	Feature	Туре
1	Number of Child Speech Segments	Event
2	Number of E-to-C	Event
3	audSpec-Rfilt-sma-de[3]-upleveltime90	Spectral
4	mfcc-sma-de[7]-qregc1	Spectral
5	pcm-RMSenergy-sma-de-percentile1.0	Energy
6	Duration of cross-talk	Event
7	F3-percentile50	Formant
8	Number E-to-C / (number of E segments)	Event
9	mfcc-sma[2]-linregc1	Spectral
10	Bandwidth2-percentile25	Formant
11	F0-sma-qregc2	Prosodic

Rehg et. al. CVPR 2013 (GT & BU)

- Most informative event-based features:
 - Number of child speech segments
 - Number of examiner-to-child transitions

Affectiva Q Sensor

Picard and Goodwin

Electrodermal activity over a school day (6 year old girl)

Q[™] Sensor

Q Sensor Specs

- Modalities (sampled at 32 Hz)
 - Electrodermal activity
 - 3-axis accelerometry
 - Skin temperature
- Manually synchronized with video and audio
- Provides measurement of sympathetic nervous system activity (stress, arousal)
- No longer available commercially
 - (Hopefully) a temporary condition
 - Other vendors providing similar products (e.g. BodyMedia/Jawbone)

Computational Behavioral Science

Modeling, Analysis, and Visualization of Social and Communicative Behavior

EDA Features

Signal Features

- Tonic range
- Phasic maximum

Linkage Features

- Pearson cor. (tonic)
- Canonical cor. (phasic)

- Signal features (90% accuracy) and Linkage features (89%) were comparable
- Best combination yielded 97% accuracy

Summary of Engagement Prediction

- Examiner's behavior provides key features for engagement prediction
- Multi-modal features (acoustic, EDA, activity) are clearly informative about engagement
- Challenges
 - Going beyond "black box" prediction of ratings to identifying mid-level featueres (e.g. joint attention)
 - Single engagement rating is too coarse to capture complex behavior patterns

Summary

- Dyadic social interactions are a challenging domain for multimodal analysis
 - MMDB is a new large dataset of adult-child interactions
- Development and its derailments (e.g. autism) are a key context with potential for impact
- Technologies make automated assessments possible in lab settings

BI for Smoking Cessation

Computational Behavioral Science

Modeling, Analysis, and Visualization of Social and Communicative Behavior

- Smoking as a public health concern
- Physiological sensors
- Possible applications

Smoking as Dependence: Confessions of a Smoker

- He smoked 22-40 cigars per day.

- "To cease smoking is the easiest thing I ever did. I ought to know because I've done it a thousand times."

- "As an example to others, and not that I care for moderation myself, it has always been my rule never to smoke when asleep* and never to refrain when awake." --70th birthday speech

- * "He always went to bed with a cigar in his mouth, and sometimes, mindful of my fire insurance, I went up and took it away, still burning, after he had fallen asleep." William Dean Howells.

Samuel Langhorne Clemens

Slide by Noboru Hiroi

"Nicotine is not Addictive"

THE WHOLE TRUTH? In 1994 seven tobacco CEOs—now being investigated for perjury—swore before Congress that nicotine is not addictive

Slide by Noboru Hiroi

Nicotine is an Addictive Substance

- Smokers prefer nicotine-containing cigarettes to denicotinized cigarettes.

- Smokers experience withdrawal when switching to light cigarettes.

- Nicotine replacement alleviates withdrawal symptoms.

How easily would you develop dependence?

- 32% Nicotine
- 23% Heroin
- 17% Cocaine
- 15% Alcohol
- **11%** Stimulants other than cocaine (d-amphetamine and methamphetamine)
 - **9% Cannabis** (marijuana, hashish, or both)
 - **9%** Anxiolytics/sedative and hypnotic drugs (secobarbital, diazepam, flurazepam, alprazolam, and triazolam)
 - 8% Analgesics (morphine, propoxyphene, and codeine)

% of individuals with dependence among extra-medical users.

n=8,098, 15-54 years old. (Anthony et al., 1994)

Slide by Noboru Hiroi

Actual Causes of Death

Year 2000: 2.4 Million deaths in US

Tobacco: 435,000 (18.1%) Poor Diet and PI: 365,000 (15.2%) Alcohol consumption: 85,000 (3.5%) Microbial Agents: 75,000 (3.1%) Toxic Agents: 55,000 (2.3%) Motor Vehicle Crashes: 43,000 (1.8%) Deaths from Firearms: 29,000 (1.2%) Others: 37,000

Total: 1,124,000 (47%)

Mokdad, JAMA 2004

?

What about the other half?

The Exposome

((CW PHS)) CENTER FOR WIRELESS & POPULATION HEALTH SYSTEMS

At it's most complete, the exposome encompasses life-course environmental exposures (including lifestyle factors), from the prenatal period onwards.

AutoSense Wearable Sensor Suite

Ten wireless sensors in two wearable units Long lifetime (10+ days)

Used in 3 studies (n=60) for automated modeling of stress, conversation

Being used in 4 ongoing studies (n=85, I-4 weeks of field wearing) for automated modeling of smoking, drinking, drug usage, and craving

(Ertin, et. al., ACM SenSys 2011)

Santosh Kumar, University of Memphis

Detecting Smoking Events

- Existing devices can measure and display/store CO levels in a single breath exhaled through a mouthpiece
- CReSS can provide smoking topography
 - If subjects smokes through CReSS
- These devices require users to remember to use for each smoking
- They may also cause embarassment

piCO+ and Micro+

CReSS Pocket

Santosh Kumar, University of Memphis

Detecting Smoking from Resipiration

- By leveraging smoking topography, and
- By using other contexts (e.g., activity)

Santosh Kumar, University of Memphis

60

Running

Walking

Conversation

(Ali, et. al., ACM IPSN, 2012)

Stress

Applications in Smoking Cessation

- Identifying person-specific triggers for relapse
- Quantifying the effect of environmental stimuli on smoking behavior
- Supporting just-in-time interventions for more effective smoking cessation

Summary

- Reduction in smoking is a significant public health issue
- Physiological sensing can provide a detailed portrait of smoking-related behavior: smoking acts, conversation, and stress
- More work is needed to develop and test existing behavioral theories based on field data

Georgia Tech Collaborators

Dr. G. Abowd Dr. M. Clements

Dr. A. Fathi

Y. Li

Georgia

lec

Dr. A. Rozga

Dr. R. Arriaga

Computational Behavioral Science

Modeling, Analysis, and Visualization of Social and Communicative Behavior

Conclusion

- Behavior imaging technology has great potential to revolutionize the measurement of behavior
- Applications range from child developmental disorders to health-related behaviors
- Join us in creating this new discipline!

Questions?

Computational Behavioral Science

Modeling, Analysis, and Visualization of Social and Communicative Behavior