

Hard Sensors for Soft Phenomena

Winter School on Ubiquitous Computing Ubi-Health Project Tonantzintla, Pue. Mexico, 6-17 Angélica Muñoz-Meléndez, PhD Computer Science Dept. - INAOE munoz@inaoep.mx

About this talk

The goal is to give an introduction to sensors and the difficulties to measure **phenomena related to human activity** from the perspective of a researcher working with multiple physical devices, such as robot teams.

Overview

1. Concepts about sensors

3

- 2. Finding patterns
- 3. Designing sensors
- 4. Final remarks

Concepts

Tuesday, January 7, 14

4

Concepts (1)

transducer: device that converts variations of a signal in one form of energy into another form of energy.

In Robotics and Electronics, a transducer is commonly a device that coverts a physical non-electrical signal into an electrical signal, i.e., a microphone converts "sound", air pressure, into an electrical signal.

Signals converted from transducers can be recorded, amplified, processed, and so on.

sensor: a transducer that converts a physical stimuli into electrical signal that a microprocessor can read.

Concepts (2)

Strictly speaking, a sensor is a kind of transducer. However both terms are commonly interchanged.

Sensors enable a machine, e.g. a robot, a smartphone, to perceive both its internal state and its surrounding.

Concepts (3)

Most sensors fall into two categories according to their output:

Digital sensors return discrete values, e.g. contact with an object.

Analog sensors return continuous values, e.g. lightning intensity.

However to be processed for a microprocessor or PC, most signals are converted into a format suitable for digital systems, using for instance an Analog to Digital converter (A/D converter).

Concepts (4)

Sensors can also be passive or active:

Passive sensors only receive signals, e.g. a photoresistor or light sensor.

Active sensors emit energy that is reflected by external objects and measure the returned energy, e.g. a camera equipped with a flash, an ultrasonic sensor.

Concepts (5)

Passive sensors are non-intrusive and tightly dependent on environmental conditions, whereas active sensors are intrusive and can affect the conditions upon which a stimuli is measured.

Intrusiveness is a **major concern** when measuring parameters of **living organisms**.

Concepts (6)

Sensors can also be classified as inner or outer sensors.

Inner or proprioceptive sensors measure the own individual parameters of the holder, e.g. position of its joints, level of its battery, etc.

Outer or external sensors measure parameters of the holder's surrounding area, e.g. humidity, color of objects, etc. These can also be classified as contact and non-contact sensors, e.g. switches and videocameras, respectively.

Concepts (7)

- **Range or field of view (fov)**: the set of values of a physical stimuli to which a sensor is able to react, e.g. $-10^{0} 50^{0}$, 0 5kg.
- **Sensitivity**: a measure of the degree of variation in the signal returned by a sensor according to changes of the physical stimuli that is measured, e.g. 1⁰, 1 gr.

Concepts (8)

Noise and **artifacts**: abnormalities, non-sense or unwanted information produced by interferences when measuring or transmitting a signal.

Concepts (9)

The quality of the output of a sensor depends on the manner as the physical stimuli is transformed into digital values.

Examples of de transformations for an 8bit processor (Jones & Flynn, 1999).

Figure 5.7: It is always necessary to consider how the quantity measured by a sensor will be mapped into the range of digital values available to the microprocessor. (a) The linear mapping illustrated here would map an arm joint angle of \mathbb{O}° from the vertical to the number 0 and an angle of 90° to 255. (b) A linear mapping of illumination units to numbers would map 250 illumination units to the number 64 and 1,000 illumination units to 255. (c) A logarithmic mapping gives a larger dynamic range, from 0.1 illumination units to 1,000 illumination units for an 8-bit (0 to 255) A/D converter.

Concepts (10)

"Mood devices"

The operation of physical sensors might be affected by various factors, such as power supply, natural lightning, temperature/ humidity of the environment, magnetic materials, etc.

Consult datasheet to know the average sensor's performance documented by the designer and to know how much you can trust a sensor!

11-22 DOM: NO

Introduction The TPA81 Thermopile Array Technical Specification Introduction The TPA81 is a thermopile array detecting infra-red in the 2um-22um range. This is the wavelength of radiant heat. The Pyro-electric sensors that are used commonly in burglar alarms and to switch on outside lights, detect infra-red in the same waveband. These Pyro-electric sensors can only detect a change in heat levels though - hence they are movement detectors. Although useful in robotics, their applications are limited as they are unable to detect and measure the temperature of a static heat source Another type of sensor is the thermopile array. These are used in non-contact infra-red thermometers. They have a very wide detection angle or field of view (FOV) of around 100° and need either shroudin

applications are limited as they are unable to detect and measure the temperature of a static heat source. Another type of sensor is the thermopile array. These are used in non-contact infra-red thermometers. They have a very wide detection angle or field of view (FOV) of around 100° and need either shrouding or a lens or commonly both to get a more useful FOV of around 12°. Some have a built in lens. More recently sensors with an array of thermopiles, built in electronics and a silicon lens have become available. This is the type used in the TPA81. It has a array of eight thermopiles arranged in a row. The TPA81 can measure the temperature of 8 adjacent points simultaneously. The TPA81 can also control a servo to pan the module and build up a thermal image. The TPA81 can detect a candle flame at a range 2 metres (6ft) and is unaffected by ambient light!

Spectral Response

The response of the TPA81 is typically 2μ m to 22μ m and is shown below:

Field of View (FOV)

The typical field of view of the TPA81 is 41° by 6° making each of the eight pixels 5.12° by 6°. The array of eight pixels is orientated along the length of the PCB - that's from top to bottom in the diagram below. Pixel number one is nearest the tab on the sensor - or at the bottom in the diagram below.

Sensitivity

Here's some numbers from one of our test modules:

For a candle, the numbers for each of the eight pixels at a range of 1 meter in a cool room at 12 $^\circ$ C are: 11 10 11 12 12 29 15 13 (All $^\circ$ C)

You can see the candle showing up as the 29°C reading. At a range of 2 meters this reduces to 20°C -

Tuesday, January 7, 14

Health

Health

Health

Health

Finding patterns

UB) UB) UB) UB) Health Health Health Health

Tuesday, January 7, 14

15

Finding patterns (1)

How can we exploit the information provided by a sensor?

How can we associate raw readings with events of interest?

How can we identify **patterns/regularities** in data sets related to "soft phenomena" (human actions, human parameters, etc.) that are by definition uncertain, incomplete and noisy?

Finding patterns (2)

A naive experiment: counting people that traverse a corridor in two senses using cheap and discrete sensors.

Tuesday, January 7, 14

Finding patterns (3)

Experimental setup: back 1,

front 🕇

and main board \Rightarrow

Tuesday, January 7, 14

18

1 TPA81 thermopile array from Devantech,

1 Lilypad main board (ATMega

328) from Arduino.

1 SE-10 motion sensor,

Finding patterns (4)

Test1: 1'20", one person traversed the corridor from left to right, and then from right to left. 1 record each second. Raw output from SE-10 sensor and

TPA81 sensor **↓**

Finding patterns (5)

Test2: 5 hours (1:45 pm - 6:45 pm) several persons traversed the corridor in both senses. 1 record each second.

UBI

Health Health

Raw output from SE-10 sensor and

20

ambient pixel of TPA81 sensor **↓**

Tuesday, January 7, 14

Health Health

UBI

Finding patterns (6)

Test2: 5 hours (1:45 pm - 6:45 pm) several persons traversed the corridor in both senses. 1 record each second.

↑ Test2: Raw output from pixel1 to pixel8 of TPA81 sensor, from lefttop figure to right-bottom figure.

Finding patterns (7)

Finding patterns (8)

10.01. X.

test2-Shours xis

4.

....

의 🗟 🗟 🚔 🛅 🗈 🍯

Test2: 5 hours (1:45 pm - 6:45 pm) several persons traversed the corridor in both senses. 1 record each second. **People can be detected from periods or rows of high values**

14

13 13 12

井

1111

井

12111

뀸

test2-Shours.csv

Ready

New (Abeu 3	save mint imp	ort Copy	y Paste Format	Und Und	lo Redo	Aut	toSum Sort	A-Z Sort	Z-A (Gallery Tool	box Zoom Help															
				Sheets	0	harts	- 5	imartArt Gri	aphics	We	rdArt			0					0	test	-Shours	vle					
0	A	8	C	DE	1	FC		H	1		K	L M								testa	c-snours						
32	31	0:00:30	179	27	10	10	34	18	15	13	15	14	0	-		100	1 Pa	-	D	1 ma		. 7	Α.	Z.		100	
33	32	0:00:31	179	27	11	11	14	18	15	13	14	14		100			40	- LD	~	C S J	. (51 .	4	ZO	A.S			30
34	- 33	0:00:32	179	27	12	12	34	29	15	13	15	15	New	Onen	Saus Drint	Image	+ Com	Passe	Format	Une	to Redo	AutoSum	Sort A-2	Sort Z-A	Callery	Toolbox	
35	34	0:00:33	179	27	11	11	- 14	19	16	13	14	13	INCOM	open	save rint		e copy	Paper	Pormar	- Ulin	Neuro	Marcasam	JUILIN	3011 6-74	Garrery	100.000	
10	- 35	0:00:34	179	27	11	10	24	29	19	1.1	15	10				-	Sheets		Charts	_	SmartArt	Graphics	We	rdArt			
18	- 12	0:00:35	179	22	1.2	10	14	10	16	14	14	14	0	A	8	C T	0	¢	F G	- T	HII	TAT	KIL	M	N		0 1=
29	38	0:00:37	179	27	11	13	10	20	21	10	16	14	17441	17440	4:53:28	180	18	11	13	24	15 1	4 13	13	13			
40	39	0:00:38	180	27	11	10	34	18	15	13	15	14	17442	17441	4:53:29	1.80	18	12	13	14	15 1	4 13	13	13			
41	40	0:00:39	252	27	11	10	14	19	16	13	14	13	17643	17442	4:53:30	1.80	18	15	12	14	15 1	4 13	10	13	_		-17
42	41	0:00:40	188	27	12	11	34	29	1.6	13	15	14	17445	13444	4:53:32	1.80		12	13	14	15 1	4 54	13	13	_		- 11
43	42	0:00:41	180	27	12	12	14	18	16	13	14	14	17446	17445	4:53:33	1.80	18	12	13	13	15 1	4 13	13	13			
44	43	0:00:42	269	27	11	11	24	18	15	12	14	14	17447	17445	4:53:34	1.80	18	12	12	14	14 1	4 13	34	14			
45	-64	0:00:43	347	27	12	11	25	50	16	14	15	14	17648	17447	4:53:35	1.80	18	12	13	14	15 1	4 13	14	13			- 1
46	45	0:00:44	321	27	12	11	15	29	16	34	14	14	17449	12448	4(53)30	180			13	24	10 1/	4 13	13	13	_		-17
47	- 66	0:00:45	334	27	12	11	14	29	16	13	13	13	17451	17450	4:53:38	180	1.0	1.0	25	23	22 2	3 25	19	20	14 -		_
40	47	0:00:45	334	27	11		15	29	10	-13	15	14	17452	17451	4:53:39	1.80	18	13	17	21	23 2	5 25	25	25	15 +		
50		0:00:47	327	27	12	11	14	19	10	14	15	13	17453	17452	4:53:40	180	18	23	22	20	16 1	4 13	15	14	16 🔶		
51	50	0:00:49	325	22	12	11	14	19	16	14	15	14	17454	17453	4(53)41	180	- 18	12	13	15	15 1	5 24	13	15	_		-17
52	51	0:00:50	321	27	12	13	14	20	16	13	15	14	17456	12455	4-53-43	101	10	12	12	1.4	14 1	4 14	13	13	_		- 17
53	52	0:00:51	318	27	12	11	34	29	16	13	15	14	17457	17456	4:53:64	181	18	12	12	14	14 D	4 13	13	13			
54	53	0:00:52	313	27	12	11	15	20	16	13	14	14	17458	12452	4(53)45	319	18	12	14	15	15 1	4 13	13	13			
55	54	0:00:53	301	27	12	11	24	29	16	13	14	13	17459	17458	4(53)46	302	- 18		13	24	14 1	4 12	13	14	_		-11
56	55	0:00:54	326	27	11	12	34	19	16	13	14	13	17451	12459	4:53:47	310		12	13	14	14 1	4 12	- 24	10	_		- 17
\$7	56	0100155	335	27	12	12	15	29	16	13	15	13	17462	17461	4:53:49	303	18	12	13	15	15 1	4 13	10	13			_
58	57	0:00:56	323	27	12	12	14	29	16	14	14	14	17463	17462	4(53)50	302	18	11	12	24	14 1	3 34	13	13			
29	58	0100157	278	27	12	12	39	18	17	13	19	14	17464	17463	4:53:51	290	18	11	13	24	24 2	4 13	24	14			
61	29	0:00:58	291	27	11	10	14	19	10		16	13	17455	17465	4:52:52	287	- 18	12	13	24	15 1	4 13	13	13	_		- 17
62	41	0:001:00	293	27	11	11	15	19	16	11	14	14	17467	17466	4:53:54	284	18	11	13	14	14 1	4 14	12	13	_		_
63	62	0:01:01	319	22	12	11	15	20	16	13	16	15	17468	12462	4(53)55	246	28	11	12	24	15 1	4 13	13	13			
64	63	0:01:02	278	27	11	13	14	19	16	13	14	13	17469	17468	4:53:56	243	28	11	13	15	14 1	4 13	13	13	_		
65	64	0:01:03	273	28	13	1.2	26	20	17	24	15	14	17470	17459	4:53:57	250	18	12	12	15	14 1	3 13	13	14	_		-17
66	65	0:01:04	347	27	12	12	14	19	16	13	15	13	17472	13421	4/13/19	289	18	11	13	14	14 1	4 13	13	13	_		_
67	66	0:01:05	340	27	12	11	24	29	15	13	15	13	17473	13472	4(\$4)00	249	28	11	12	15	14 1	5 13	13	13			
68	67	0:01:06	282	28	13	13	16	20	16	14	15	14	17474	17473	4:54:01	277	28	11	13	24	15 1	4 13	13	13			
69	- 68	0:01:07	267	28	12	13	25	50	16	24	15	15	17475	17474	4:54:02	244	18	11	13	14	14 1	4 13	- 14	13	_		-17
70	- 09	0:01:08	290	28	13	12	15	20	17	- 24	10	14	17477	12426	4/54/04	190	18	12	13	14	14 1	1 11	11	13	_		-
22	- 22	0-01-10	223	28	12	12	16	20	12	14	16	15	17478	13477	4154105	1.80	28	11	13	24	14 1	3 34	13	13			
73	22	0:01:11	201	28	13	13	15	20	16	14	15	14	17479	17478	4:54:06	1.80	18	12	13	24	15 1	4 13	13	13			
74	73	0:01:12	169	28	12	12	15	20	16	14	15	15	17480	17479	4:54:07	1.80	18	- 18	12	15	14 1	4 13	13	14	_		_
75	74	0:01:13	179	28	12	12	15	20	17	13	16	14	17482	17480	4:54:08	180		- 12	13	10	14 1	4 13	10	13	_		-
76	75	0:01:14	179	28	13	12	16	20	17	14	15	14	17483	13482	4:54:10	1.80	28	12	13	24	24 2	4 12	13	13			
77	76	0:01:15	179	28	12	11	15	20	16	24	14	14	17484	17483	4:54:11	1.80	18	12	13	15	14 1	4 13	13	13			
	1		est2-Show	IFS.CSV)	17485	17454	4:54:13	1.80	18	12	13	14	14 1	5 13	13	13			_
		formal View	Ready							_		Sum-1	17485	17485	4:54:14	1.80	10	- 13	13	14	14 1	4 13	13	13			
											_		17488	12487	4:54:16	1.80	28	11	13	24	14 1	3 13	13	13			
													17489	17455	4:54:17	1.80	18	12	12	14	14 1	4 13	13	13			
		10.	otd	ov of	\cap	Бр	no	ane	or	nt	VOO	rridar	17490	17489	4:54:18	180	18	12	13	14	15 1	4 13	13	13			_
	JL)-10.	้อเน		υ.		ΠĘ	ans		ΤD			17491	17490	4:54:19	180	- 18	12	13	14	14 1	4 13	10	14	_		_
												,	17492	13493	4-54-24	1.00			13	12		1.1					

100% - 0

stdev of 90.0 means movement. TDP81:changes of more than 3 degrees ➡ from previous values of individual pixels.

UB) UB) UB) UB) Health Health Health

Tuesday, January 7, 14

7495

7497 13496 7498 13497 7499 13497 7499 13498 7500 13499

154(2)

4:54:21 4:54:21

Finding patterns (9)

00	0.0								D te	st2-5ho	urs.xls						
9	1		R	-		0	-	5	· @ ·	Σ	20	Z		1 16	100%	0	
New	Open	Save	Print	Import	Conv	Paste	Format	Une	to Redo	AutoSur	m Sort A	-Z Sort	Z-A Gall	ery Toolbo	x Zoom	Helo	
	a press	2015			copy	Che		-		Emad	Art Cone	hier	Wardd			,	
~	_	D	-	6	0	E	ets		C	Smart I	Ant Grap	nics	W CPUP		M	N	
2890		-48-3	6	179	26		13	14	16	22	18	14	15	14	M	14	
2891		-48-1	2	179	27		15	15	18	23	19	15	17	16			
2892		48-3	8	179	27		15	14	16	23	19	16	17	15			
2893		0:48:3	9	179	27		13	14	17	23	18	16	16	15			
2894		0:48:4	0	179	27		14	15	18	23	19	15	17	15			
2895		0:48:4	1	179	27		14	14	17	22	18	15	16	15			
2896		0:48:4	2	179	27		14	14	17	23	19	15	16	15			
2897		0:48:4	3	179	26		12	13	16	22	17	14	15	15			
2898		0:48:4	4	180	27		15	15	17	23	19	15	16	16			
2899		0:48:4	5	180	26		13	14	16	22	18	15	15	14			
2900		0:48:4	6	180	27		15	14	17	23	19	15	16	16			
2901		0.48:4	7	180	27		14	15	17	22	19	16	17	15			
2902		0:48:4	8	180	27		14	15	17	23	19	16	16	15			_
2903		2,48,4	9	258	- 27		15	-14-	16	23	18	15	17	15			
2904		2.48.5	0	180	2/		15	14	17	22	19	10	16	15			_
2905		2:48:5	4	299	- 27		14	-12-	10	23	19	12	10	15			
2900		148.5	8	178	- 27		19	-12-	10	23	20	10	10	16			
2008			3	323	27		13	- 12	17	22	19	15	16	10			_
2909		48-5	2	222	27		12	-12	16	22	10	15	17	16			
2910		48-5	6	180	27		18	14	16	22	19	14	15	16			
2911		-48-5	7	329	27		15	14	16	22	19	15	16	16			_
2912		148-5	8	286	27		13	14	16	22	19	15	15	15			_
2913		0.48.5	9	303	27		13	13	17	22	17	15	16	15			
2914		0:49:0	Ó.	257	27		13	14	17	22	19	15	16	15			
2915		0:49:0	1	295	27		13	14	16	22	18	15	17	15			
2916		0:49:0	2	254	27		15	13	17	22	19	15	16	15			
2917		0:49:0	3	251	27		14	14	16	22	18	15	16	15			
2918		0:49:0	4	180	27		13	14	17	22	18	15	16	15			
2919		0:49:0	5	179	27		13	14	17	23	18	16	16	16			
2920		0:49:0	6	179	27		14	14	17	22	19	15	16	15			
2921		0:49:0	7	179	27		13	14	16	22	18	15	16	16			
2922		0.49.0	8	179	27		13	14	17	23	18	15	17	15			_
2923		0:49:0	9	179	27		14	-14-	16	22	19	10	17	15			
2924		214911	0	179			13	-15	17	22	18	10	17	16			
2925		0.4911	-	1/9	- 27		14	- 14	17	22	18	15	14	15			
2920		149-1	-	120	- 22		14	-12-	16	22	19	10	16	10			
2928		-49-1	4	120	22		14	16	16	22	18	15	16	15			
2020		-49-1	-	179	27		13	14	17	21	18	14	16	15			-
2930		1-49-1	6	179	27		15	14	16	22	18	15	16	15			-
2931		49-1	7	180	27		14	14	17	22	18	15	15	14			
2932		0:49:1	8	179	27		14	14	16	21	18	15	16	15			_
2933		0:49:1	9	179	27		14	14	16	22	19	15	16	15			
2934	0	2:49:2	0	179	27		15	14	16	22	18	15	16	14			
2935		2:49:2	1	179	27		13	14	17	21	18	15	16	15			
	mm	4.4	b. b.l.	test2	-Shou	rs.csv _	•										

Test2: 5 hours (1:45 pm - 6:45 pm) several persons traversed the corridor in both senses. 1 record each second.

ł

Sometimes people are only detected by one sensor (SE-10), that is not by the way the most accurate sensor!

Finding patterns (10)

How is it possible that sometimes a poor sensor outperforms a highly accurate sensor?

Any idea?

Finding patterns (11) Preliminary results based I on previous regularities

SD-1	0 TPA-8	81 SD-10 & TP	A-81 Ground truth
1	1	1	1 adult
1	1	1	1 adult
1	1	1	1 adult
1	0	1	1 kid
1	2	2	2 adults
1	2	2	2 adults
1	0	1	2 kids
1	3	3	3 adults
1	2	2	2 adults
1	1	1	1 adult
1	3	3	3 adults
als 11	16	18	19

Finding patterns (12)

There are many other techniques and filters to detect regularities in datasets of soft phenomena. Some key ideas:

- combine & complement different sensors
- use reliable patterns based on dynamic/flexible thresholds or features of the sensor's signal.
- apply known filters, such as Kalman, particle filter, etc.
- apply machine learning algorithms.

Finding patterns (13)

Some examples used in our research

related characteristic peaks in two axis in acceleration signals for estimating parameters of the human gait.

Tuesday, January 7, 14

Health

Health Health

Health

Finding patterns (14)

Some examples used in our research

related characteristic peaks were competitive for estimating temporal parameters of the human gait using two wearable triaxial accelerometers (ZStar3 from Freescale, Austin, TX USA) under controlled conditions when compared to a GaitRite System (from CIR Industries, Clifton, NJ USA).

Finding patterns (15)

Some examples used in our research

features of intervals of acceleration signals, such as tendency, changes of area of gravity.

Finding patterns (16)

Some examples used in our research

features of intervals of acceleration signals, such as tendency, changes of area of gravity.

Health Health Health Health Tuesday, January 7, 14

Finding patterns (17)

32

Some examples used in our research

features of intervals of acceleration signals, such as tendency, changes of area of gravity.

Tuesday, January 7, 14

Health

Health

Health Health

Finding patterns (18)

Some examples used in our research

Tuesday, January 7, 14

UBI

UB

UB

Health Health Health Health

UBI

Designing Sensors

UBD UBD UBD UBD UBD UBD Health Health Health

Designing your own sensors (1)

What if the sensor or module needed for your project doesn't exist or require a lot do-it-yourself work?

Consider to build or adapt yourself a module or sensor or consider to collaborate with other people to build it!

Designing your own sensors (2)

Hands-on experience in the design of sensors for micro mobile robots.

Local recognition on some elements of the environment and other robots. Each robot controlled by a Handyboard (MIT, Boston, USA) based on the chip 68HC11 from Motorola.

Main drawback:

limited processing capabilities

Tuesday, January 7, 14

Health

Health Health

Designing your own sensors (3)

Hands-on experience in the design of sensors for micro mobile robots.

Bar code reader based on past experiences for the recognition of coded information in environmental landmarks and fiducial codes worn by robots.

The original system was developed for the MICROBRES project (University of Paris VI, Paris, France) between 2001-2003 and it relies on a CCD camera.

Tuesday, January 7, 14

Health Health

Health Health

Designing your own sensors (4)

Hands-on experience in the design of sensors for micro mobile robots.

Active bar code reader of 4-bit landmarks.

Tuesday, January 7, 14

Health

Health Health Health

Designing your own sensors (5)

Hands-on experience in the design of sensors for micro mobile robots.

39

Tuesday, January 7, 14

UBI

UBI

Health Health Health Health

UBI

UBI

Designing your own sensors (6)

Hands-on experience in the design of sensors for micro mobile robots.

Scheme of the procedure for reading a bar code once the fiducial point has been detected.

Designing your own sensors (6)

Hands-on experience in the design of sensors for micro mobile robots.

	-		
TA	DI		т
- 1/3	DI	-0-	
1.01		-	

Time	Bar o	ode	Distance	Angle
(min-secs)	actual	read	(cm)	(degrees)
3'50"	5	5	32.7	85
8'45"	7	7	24.0	60
13'53"	9	1	14.6	80
15'05"	2	2	25.4	83
17'15"	12	12	12.5	66
18'07"	5	1	13.0	70
18'34"	5	5	13.9	65
29'25"	1	1	11.0	60

TABLE II

Time	Bar o	ode	Distance	Angle
(min-secs)	actual	read	(cm)	(degrees)
2'43"	13	11	10.0	50
17'45"	12	12	20.2	89
18'07"	11	11	10.2	63
18'36"	9	9	27.0	89
23'17"	5	5	19.8	85
23'34"	5	1	9.8	62
25'49"	12	12	18.0	77
26'43"	10	10	26.8	66

Robot and environment, and results of recognition when moving at slow (4cm/se) and "fast" (6.33 cm/sec) speed.

Final Remarks

Don't trust blindly your sensor! Read its datasheet and characterize it.

In spite of their accuracy two different sensors can complement each other.

A lot of work has to be done for synthesizing features provided by sensors.

Ad-hoc sensors need a lot of do-it-yourself work.

References

Brindley K. (1988) Sensors and Transducers. Heinemann Professional Pub.

Joseph L.J., Flynn A. M. (1993) Mobile Robots. Inspiration to Implementation. A K Peters.

Munoz-Meléndez A., Drogoul A., Viel P.-E.(2004) <u>Collective Behavior as Assembling of</u> <u>Spatial Puzzles.</u> MICAI 2004: Advances in Artificial Intelligence, LNAI 2972, pp. 901-910. Monroy R. et al. (eds). Springer-Verlag, Berlin.

G. Ramírez-García, A. Muñoz-Meléndez, H.S. Vargas Martínez (2008) <u>Simple Linear</u> <u>Vision Module for Micro Mobile Robot Applications.</u> Proceedings of the 10th International Conference on Control, Automation, Robotics and Vision, ICARCV 2008.

I.-H. López-Nava, A. Muñoz- Meléndez (2010). <u>Towards ubiquitous acquisition and</u> <u>processing of gait parameters.</u> Advances in Artificial Intelligence. 9th Mexican International Conference on Artificial Intelligence, MICAI 2010, pp. 410-421, Springer.

V. Lobato Ríos, A. Muñoz-Meléndez} (2013) Aplicación para promover la vida activa basada en sensores de aceleración y teléfonos móviles'. Workshop Proceedings in the Mexican International Conference on Computer Science (ENC 2013).

Many thanks!

More information

Angélica Muñoz-Meléndez, PhD Computer Science Dept. - INAOE munoz@inaoep.mx ccc.inaoep.mx/~munoz

