
Vol.:(0123456789)1 3

Journal of Signal Processing Systems (2024) 96:1–14
https://doi.org/10.1007/s11265-023-01897-1

Backpropagation Computation for Training Graph Attention Networks

Joe Gould1 · Keshab K. Parhi1

Received: 3 June 2023 / Revised: 27 September 2023 / Accepted: 28 September 2023 / Published online: 16 October 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Graph Neural Networks (GNNs) are a form of deep learning that have found use for a variety of problems, including the
modeling of drug interactions, time-series analysis, and traffic prediction. They represent the problem using non-Euclidian
graphs, allowing for a high degree of versatility, and are able to learn complex relationships by iteratively aggregating more
contextual information from neighbors that are farther away. Inspired by its power in transformers, Graph Attention Networks
(GATs) incorporate an attention mechanism on top of graph aggregation. GATs are considered the state of the art due to
their superior performance. To learn the best parameters for a given graph problem, GATs use traditional backpropagation
to compute weight updates. To the best of our knowledge, these updates are calculated in software, and closed-form equa-
tions describing their calculation for GATs aren’t well known. This paper derives closed-form equations for backpropagation
in GATs using matrix notation. These equations can form the basis for design of hardware accelerators for training GATs.

Keywords Neural network training · Backpropagation · Gradient computation · Graph attention networks

1 Introduction

Many complex problems can be represented by graphs, and
graph neural networks (GNNs) have been used to address
these issues. GNNs have been successfully applied to appli-
cations such as drug interactions [1, 2], time-series analysis
[3], traffic prediction [4], neurological damage detection [5],
and others. One of the best performing GNN architectures
are Graph Attention Networks (GATs) [6]. These networks
build upon previous models by combining the statically
weighted graph convolution with an input-dependent atten-
tion mechanism to achieve higher expressive power.

Although GAT networks are powerful, they are compu-
tationally expensive, requiring processing for an attention
coefficient for every edge in the graph. While the forward
pass, or inference, of GAT network processing is well under-
stood, to the best of our knowledge, closed-form expressions
for backpropagation for training GAT networks have not
been presented before. The main contribution of this paper

is the derivation of these equations using matrix notation for
both the original GAT and a similar derivative work, GATv2
[7]. These equations can enable design of accelerators for
training GATs by exploiting techniques such as gradient
interleaving [8].

This paper is organized as follows. Section 2 presents
a brief review of GNNs and GATs. Section 3 presents the
forward pass equations associated with the inference from
GATs in matrix form. In Section 4, we derive the backpropa-
gation equations for training the GATs in matrix form. Sec-
tion 5 concludes the paper. Large figures that may be helpful
alongside the text are found in Section of Appendix.

2 Background

2.1 Graph Neural Networks

GNNs are a broad class of architectures that developed
from early work with Recurrent Neural Networks [9, 10]
that use deep neural networks to perform different graph-
based tasks [11, 12]. The most relevant type of GNN for
understanding GATs is Graph Convolutional Network
(GCN) [13], which many GNN derivatives are based on.
GCN and GAT operate by performing spatial graph con-
volution and traditional machine learning transformations
on a graph to extract meaningful information over a wider

 * Joe Gould
 gould146@umn.edu

 * Keshab K. Parhi
 parhi@umn.edu

1 Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis 55455, MN, USA

http://orcid.org/0009-0005-7320-1502
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-023-01897-1&domain=pdf

2 Journal of Signal Processing Systems (2024) 96:1–14

1 3

region. GCNs and GAT networks consist of layers, with
each performing the convolution steps and applying a non-
linear activation before outputting into the next layer.

Spatial graph convolution can be described as a form
of message passing [14] on graphs. Nodes have features
which are used to produce a message, the messages are
transformed by and passed along edges, and the messages
are gathered at edge destinations and are used to update
the destination node states. This description is general, and
GCN simplifies computation by limiting the convolution
operation. In this modified convolution operation, edges
have scalar weights which are multiplied with source node
features. These weighted features are summed at the desti-
nation node, and the resultant sum is linearly transformed
with learnable parameters. This convolution can be written
using vector notation,

where N(i) is the neighborhood of node i, ��,� is the scalar edge
weight from node j to node i, W is the learnable weight matrix,
and �� and �� are row vectors and the pre- and post-convolution
features of node i. A similar operation is used in GAT.

As can be seen from the description above, the convolu-
tion is able to propagate information across the structure
of a graph. This has the effect of allowing subsequent node
representations to incorporate a wider neighborhood into
their extracted features, and is the main contributor to the
expressive power of GCNs and GATs. It is analogous to
the widening receptive field of pixels in traditional Convo-
lutional Neural Networks [11]. This is illustrated in Fig. 1
for a 2-layer network on a graph of 8 nodes.

A number of hardware accelerators exist for GNN
processing. The forward pass is well understood, and

(1)�� =
∑
j∈N(i)

��,� ⋅ �� ×W

architectures which can support GAT inference exist
[15–17]. However, architectures which support training are
usually geared towards training GCN [18–20] or accelerat-
ing software solutions [21, 22] for training GAT [23]. While
these methods work, it is possible a more powerful accelera-
tor could be created by specifically targeting the computa-
tions for GAT training operations.

2.2 Neural Network Attention

Attention is a concept in machine learning that has been
extensively used in applications such as machine transla-
tion [24, 25] and machine vision [26], and is the primary
mechanism that transformers use for their generalized effec-
tiveness [27]. It is based on the intuition that prioritizing the
important features of an input will allow a network to better
extract information from it. A network layer typically imple-
ments attention by performing a nonlinear transformation
on the inputs with some learned attention parameters, and
then using a softmax operation for each of the outputs. This
has the effect of allowing the network to learn input features
that are indicative of importance and then raising their cor-
responding weights to focus on them.

3 GAT Forward Pass

GAT networks operate similar to GCNs, but implement an
attention mechanism to adjust edge coefficients based on
node features. Like other neural network types, GATs use
stacked layers to extract information from inputs and gener-
ate useful output representations. Each layer has its own set
of learnable parameters, which are updated during training.
Taking from existing literature on attention [27], GAT splits
processing steps within each layer across multiple attention

Figure 1 Example GNN with 2
layers on a graph of 8 nodes.

3Journal of Signal Processing Systems (2024) 96:1–14

1 3

heads, which have their own attention weights during the
aggregation step. Baseline GAT consists of the following
processing within a layer, for each attention head:

1. Node features are linearly transformed by learnable
weights to form combined features.

2. Each node’s combined features are transformed into
source and destination coefficients.

3. For every edge, a scalar value is computed using its
source and destination coefficients. The scalar values of
the edges sharing a common destination node are input
to a softmax function to generate the attention coeffi-
cients of the edges.

4. GCN-like aggregation is performed using the original
combined features and attention coefficients. A nonlin-
ear activation is applied, and the result is concatenated
with the results from the other attention heads.

There are currently two forms of GATs in use, the origi-
nal GAT and GATv2. Hereafter, the original GAT will be
referred to as GATv1, and GAT will be used to refer to the
general architecture of these networks. GATv2 was proposed
because of issues in GATv1’s attention mechanism, which
made it unable to effectively differentiate between certain
types of inputs. However, because GATv1 has been in use
for longer than GATv2, we present derivations for both ver-
sions. We begin by constructing equations for GAT inference
in matrix form. We first define the relevant parameters in
Table 1, and then follow each step of layer processing as
described above.

We use the superscripts l to mean pertaining to layer
l, and k, l to mean pertaining to attention head k of layer
l. Non-scalar variables are denoted in bold. Vectors are
assumed to be columns, unless they are taken from rows of
matrices, and use lower case. When taking sub-elements of
a multidimensional variable, we use subscripts to denote the
row or column being taken from, and keep the same bolding
and case as the variable the sub-elements are taken from. We
consider graphs with directed edges, and do not require the
adjacency matrix to be symmetric.

3.1 Linear Transformation of Node Features

The layer begins by linearly transforming the output of the
previous layer to a new feature, not necessarily of the same
size, for the current layer. GATv1 uses a single learnable
weight matrix common to every node, while GATv2 has two
matrices, with the result of the combination used differently
depending on if a node is a source or destination of an edge.

For GATv1, this step can be written as

(2)��,� = ��−� ×��,�.

GATv2 has two combined matrices, which are

3.2 Edge Coefficient Computation

Using the combined features, GAT generates a set of source
and destination coefficients that are used for computing
attention coefficients. In GATv1, these coefficients are sca-
lars obtained from performing a dot product between the
learnable attention weights and the combined feature vec-
tor. In GATv2, the coefficients are vectors, and are just the
combined features generated in step 1. GATv2 introduces
the attention weights in the next step.

For GATv1, the scalar coefficients for node i are

The vector coefficients for GATv2 are

3.3 Attention Coefficient Computation

Next, every edge in the graph has a scalar value computed.
This is done by first adding the source and destination coef-
ficients from the source and destination nodes of each edge,
respectively. After this sum is computed, it is put through a
nonlinear leaky ReLU (LReLU) operation. In GATv1, the
result of this is the pre-softmax normalization attention coef-
ficient, while in GATv2 it is a vector that is used in an inner
product with the learnable attention coefficients. The result
of the GATv2 inner product is its pre-softmax normalization
attention coefficient. For GATv1, this can be written as

(3)
��,�

src
= ��−� ×��,�

src
,

�
�,�

dst
= ��−� ×�

�,�

dst
.

(4)

c
k,l

i,V1,src
= ��,�

src

�
× �

�,�

�
= ��,�

src

�
×��,�� × �

�,�

�
,

c
k,l

i,V1,dst
= �

�,�

dst

�
× �

�,�

�
= �

�,�

dst

�
×��,�� × �

�,�

�
,

�
�,�

V1,src

�
=

‖‖‖
i∈N

c
k,l

i,V1,src
,

�
�,�

V1,dst

�
=

‖‖‖
i∈N

c
k,l

i,V1,dst
.

(5)

�
�,�

�,V2,src
= �

�,�

�,src
= ��,�

src

�
× �

�,�

�
,

�
�,�

�,V2,dst
= �

�,�

�,dst
= �

�,�

dst

�
× �

�,�

�
,

�
�,�

V2,src

�
=

‖‖‖
i∈N

�
�,�

�,V2,src
= ��,�

src

�
,

�
�,�

V2,dst

�
=

‖‖‖
i∈N

�
�,�

�,V2,dst
= �

�,�

dst

�
.

(6)e
k,l

i,j
=

{
�L

(
c
k,l

i,V1,dst
+ c

k,l

j,V1,src

)
��,� ≠ 0

−∞ ��,� = 0
,

4 Journal of Signal Processing Systems (2024) 96:1–14

1 3

and in GATv2 as

We denote the addition operation with ⊕ . In the case
of GATv1, ��,�

V1,src
 and ��,�

V1,dst
 are vectors, and the operation

generates a matrix by performing an outer sum. In GATv2,
�

�,�

V2,dst
 and ��,�

V2,src
 are matrices, and the operation generates

a 3-dimensional tensor by performing the outer sum on the
columns of the matrices. Using this notation, we can write
the resulting attention matrices as

for GATv1, and for GATv2 as

(7)e
k,l

i,j
=

{
��,� × �L

(
�
�,�

�,V2,dst
+ �

�,�

�,V2,src

)
��,� ≠ 0

−∞ ��,� = 0
.

(8)��,� = 𝜎L

(
�
�,�

V1,dst
⊕ �

�,�

V1,src

)
⊙ A

(9)��,� =

(
��,� × 𝜎L

(
�

�,�

V2,dst
⊕ �

�,�

V2,src

))
⊙ A.

Finally, in both GATv1 and GATv2, these coefficients are
put through a softmax, grouped by common destinations, to
normalize them to the same dynamic range. These matrices
have an identical nonzero pattern to the adjacency matrix
A . This results in the L and S matrices that have their (i, j)
th entries be the pre- and post-softmax attention coefficient
for the edge outgoing from node j to node i as

3.4 GCN‑like Aggregation and Activation

The final step in the forward pass is to propagate the com-
bined node features using the final attention coefficient on
each edge. This propagation is identical to GCN, with the
adjacency matrix replaced with the post-softmax attention
matrix. By performing matrix multiplication in this way, the

(10)�
�,�

�
= �S

(
�
�,�

�

)
.

Table 1 Notations for GAT Inference.

Notation Description

N Number of nodes in the graph
L Layers within network
l Index of a layer within network, ∈ [1,L]

Kl Number of attention heads in layer l
k Index of an attention head within layer, ∈

[
1,Kl

]
dl Output feature dimension for an attention head in layer l
k0 Defined as 1
d0 Defined as the feature dimension of input data
�L, �S, �E LReLU, softmax, and ELU nonlinear functions, respectively
‖⋯ Concatenation of elements horizontally
⊕ Defined in Eqs. (6) and (7), shown visually in Fig. 4 subfigure c

 Notation Size Description

A ℝ
N×N Adjacency matrix of graph. The ith row corresponds to the incoming edges to node i, and the jth column

corresponds to the outgoing from node j. All entries are either 0 or 1.
��
� ℝ(K

l
⋅dl) Output features of node i from layer l.

��
ℝ

N×(Kl
⋅dl) Output features from layer l. The ith row corresponds to the feature vector of node i.

��,�,��,�
src
,�

�,�

dst
ℝ(K

l−1
⋅dl−1)×dl Learnable weight matrices for attention head k in layer l. Separate among source/destination in GATv2,

common in GATv1.

��,�,��,�
src
,�

�,�

dst
ℝ

N×dl Combined feature matrices for attention head k in layer l, from their respective weight matrices.

��,�, ��,�
src
, �

�,�

dst
ℝ

dl Learnable source/destination attention weights for attention head k in layer l. Separate among source/
destination in GATv1, common in GATv2.

c
k,l

i,V1,src
, c

k,l

i,V1,dst
ℝ GATv1: Source/destination scalar coefficients for node i in attention head k of layer l.

�
�,�

V1,src
, �

�,�

V1,dst
ℝ

N and collected into a vector.

�
�,�

�,V2,src
, �

�,�

�,V2,dst
ℝ

dl GATv2: Source/destination vector coefficients for node i in attention head k of layer l.

�
�,�

V2,src
,�

�,�

V2,dst
ℝ

N×dl and collected into a matrix.

e
k,l

i,j
, �

k,l

i,j
ℝ Pre- and post-softmax normalization attention coefficients for the edge outgoing from node j to node i.

��,�,��,� ℝ
N×N Pre- and post-softmax attention matrices. Entry (i, j) is the corresponding weight from node j to node i.

��,�
ℝ

N×(Kl×dl) Pre-activation output features for layer l.

5Journal of Signal Processing Systems (2024) 96:1–14

1 3

combined features of all of the in-neighbors of each node
are summed together, weighed by their attention. In GATv1,
this is given by

This is identical to GATv2, with the features combined
with the source weights matrix in the aggregation, written as

Finally, the combined and aggregated features are put
through a nonlinear activation. We use �E to represent the
exponential linear unit (ELU) activation function. The
resulting features for each attention head are concatenated
together to form the output of the layer:

In the case of the output layer, multiple attention heads
have their results averaged instead of being concatenated,
and a nonlinear operation like softmax is applied on the
resulting node features. This can be written as

We summarize the forward pass in a data flow graph
(DFG) in Fig. 2. An illustrative example of each step for
GATv1 and GATv2 in the forward pass is shown for a sin-
gle layer’s attention head in Fig. 4. The example assumes
an input feature size of 5 and an output feature size of the
layer’s attention heads of 4.

4 GAT Backward Pass

We now derive the equations for the backpropagation for
GAT’s learnable parameters, i.e., equations for gradients of
the loss with respect to weight matrices

(
��,�,��,�

src
,�

�,�

dst

)
 ,

attention weights
(
��,�
src
, �

�,�

dst
, ��,�

)
 , and feature inputs

(
��

)
 for

each layer. This will follow the same structure as the for-
ward pass, starting with the input to the layers during back-
propagation and computing the gradients associated with
that layer. A summary of the notations for different varia-
bles relevant to the backward pass is provided in Table 2.

4.1 Gradients with Respect to Activation

We first compute the gradients of the loss with respect to the
pre-activation outputs using the gradients input to the layer.
The gradient can be computed as

(11)��,� = ��,� × ��,�.

(12)��,� = ��,� × ��,�
src
.

(13)��+� =

Kl

‖‖‖
k=1

�E

(
��,�

)
.

(14)��
�
= �S

⎛⎜⎜⎝
1

KL
⋅

KL�
k=1

�
�,�

�

⎞⎟⎟⎠
.

For the last layer in the network, a softmax activation
function is used. Its derivative is well known, and the deriva-
tive of any vector through a softmax can be described by a
symmetric gradient matrix,

where the (i, j)th entry in the �u
�v

 matrix is the gradient con-
tributed by the jth element of the input to the ith element of
the output. In this case, v and u are the rows of the �� and
�� matrices. The gradient matrix described above can be
computed for each node, and the gradient of the loss with
respect to the pre-softmax features for that node can be com-
puted by multiplying this matrix with the gradient of the loss
with respect to the post-softmax features. This is shown as

For the rest of the backward pass, there is no difference
between layers if we scale this pre-softmax gradient by KL
to account for the averaging step, written as

It is important to note that the matrices involved in this
step are dense, unlike the matrix of attention coefficients.
Because of the complexity of the softmax derivative and
because it only needs to be computed for the output layer,
�′

� should be computed outside of a dedicated accelerator.

4.2 Gradients with Respect to Attention

We now look at the attention mechanism and how the gra-
dient of the loss with respect to its inputs can be computed.
The first step is to compute the gradient of the loss with
respect post-softmax attention coefficients, through the
aggregation, and then the pre-softmax edge coefficients,
which has a form identical to the softmax derivative
described before. This can be written as

(15)��
�,�

= 𝜎
�

E

(
��,�

)
⊙ ��,�.

u = �S(v),

�ui

�vj
=

{
ui − u2

i
i = j

−
(
ui ⋅ uj

)
i ≠ j

,

�u

�v
= diag(u) − u × ��,

(16)
���

�

���
�

= diag
(
��

�

)
−��

�

�
×��

�
,

(17)��
�

�
=

���
�

���
�

× ��
�
.

(18)��
�,�

=
1

KL
⋅ ��

�
.

(19)
�L

���,�
= ��

�,�
× ��,��,

6 Journal of Signal Processing Systems (2024) 96:1–14

1 3

Because of the sparsity in ��,� , ��
�,�

�

��
�,�

�

 will only have nonzeros

in rows/columns which correspond to the edges for node i. The
complete loss with respect to the pre-softmax attentions, �L

���,�
 ,

also has the same sparsity pattern as the adjacency matrix.
Now, because of the differences in GATv1 and GATv2,

we separate the derivation for the rest of the attention
backward pass for each of the two versions.

4.2.1 GATv1 Attention Gradient

The rest of the backward pass depends on the result of the
LReLU that was used to compute the pre-softmax weight

(20)
��

�,�

�

��
�,�

�

= diag
(
�
�,�

�

)
− �

�,�

�

�
× �

�,�

�
,

(21)�L

��
�,�

�

=
��

�,�

�

��
�,�

�

×

(
�L

��
�,�

�

)T

= �
�

S

(
�L

��
�,�

�

)
.

matrix. Since the input to the LReLU was a scalar, we
define a �′�,� matrix to hold values from the derivative of
the LReLU, and then define the gradient with respect to
its input as ��,� , which can be written as

This � matrix is never used as a matrix, but instead is
summed along its rows and columns. Depending on which
dimension it is summed over, it will correspond to gradient
passed along source or destination edges. We can define
the following vectors

(22)��

V1

�,�

�,�
= �

�

L

(
c
k,l

i,V1,dst
+ c

k,l

j,V1,src

)
,

(23)���,�

V1
= 𝜎

�

L

(
�
�,�

V1,dst
⊕ �

�,�

V1,src

)
,

(24)�
�,�

V1
= ���,�

V1
⊙

𝜕L

𝜕��,�
.

(25)
�
�,�

V1,dst
= Sum

(
��,�, rows

)
,

�
�,�

V1,src
= Sum

(
��,�, cols

)
.

Figure 2 DFG for the forward pass of a single attention head within a hidden layer. Each box is colored according to the shape of the matrix at
that point in the computation.

7Journal of Signal Processing Systems (2024) 96:1–14

1 3

We can then derive the gradient of the loss with respect
to the attention weights using these vectors

These source and edge gradient vectors will also be
used in computing the gradient of the loss with respect to
input features and weights.

4.2.2 GATv2 Attention Gradient

The derivation for GATv2 is similar to GATv1, though
here the �′�,� matrix is instead a 3-dimensional tensor,
because the attention coefficients are vectors instead of
scalars. Effectively, it is a matrix identical in behavior
to the GATv1 case, with the scalar elements replaced by
vectors. This is written as

(26)

�L

��
�,�

dst

= ��,�� × �
�,�

V1,dst
,

�L

��
�,�
src

= ��,�� × �
�,�

V1,src
.

(27)��

V2

�,�

�,�
= ��,� ⊙ 𝜎

�

L

(
�
�,�

�,V2,dst
+ �

�,�

�,V2,src

)
,

Instead of the ��,� tensors being vectors, they are
matrices, owing to the vector elements in the Δk,l tensor.
Finally, the loss with respect to attention weights can be
derived as

Unlike GATv1, this does not depend on the Σk,l matri-
ces, instead only depends on �L

���,�
 . This is because the

attention weights in GATv2 are not used until after the
LReLU operation.

(28)

�
�,�

V2�,�
=

𝜕L

𝜕�
�,�

�,�

⋅ ��

V2

�,�

�,�
,

�
�,�

V2
= ��

V2

�,�
⊙

𝜕L

𝜕��,�
,

(29)
�
�,�

V2,dst
= Sum

(
��,�, rows

)
,

�
�,�

V2,src
= Sum

(
��,�, cols

)
.

(30)
�L

���,�
=
∑
i,j

�L

��
�,�

�,�

⋅ �L

(
�
�,�

�,V2,dst
+ �

�,�

�,V2,src

)
.

Table 2 Notations for GAT Training.

Notation Description

�′
L
, �′

S
, �′

E
Derivatives of LReLU, softmax, and ELU, respectively

⊙ Hadamard (element-wise) vector or matrix product

 Notation Size Description

L ℝ
N×dL Loss from output of GAT network

��, �′
�

ℝ
N×(Kl

⋅dl) Gradient into layer l before and after being transformed by the activation derivative.
Equivalent to �L

���
 and �L

���
 , respectively.

�L

���,�
,

�L

���,�
ℝ

N×N Loss with respect to pre- and post-softmax attention coefficients

�′�,�

V1
ℝ

N×N GATv1: Matrix holding LReLU derivative of the source/destination coefficient sums
from the forward pass

�′�,�

V2
ℝ

N×N×dl GATv2: Matrix of vectors holding LReLU derivative of the source/destination
coefficient sums from the forward pass

�
�,�

V1
ℝ

N×N GATv1: Scalar loss with respect to edges

�
�,�

V2
ℝ

N×N×dl GATv2: Vector loss with respect to edges

�
�,�

V1,dst
,�

�,�

V1,src
ℝ

N GATv1: Scalar losses with respect to nodes being destinations and sources of edges.

�
�,�

V2,dst
,�

�,�

V2,src
ℝ

N×dl GATv2: Vector losses with respect to nodes being destinations and sources of edges
�L

��
�,�

dst

,
�L

��
�,�
src

,
�L

���,�
ℝ

dl Loss with respect to the attention weights of head k of layer l

�L

���,�
,

�L

��
�,�

dst

,
�L

��
�,�
src

ℝ
dl−1×dl Loss with respect to weights of head k of layer l

8 Journal of Signal Processing Systems (2024) 96:1–14

1 3

4.3 Gradients Associated with Combination

The final part of the backpropagation is similar between
GATv1 and GATv2, consisting of combining the gradients
for the feature and weight matrices with the contributions
from the attention mechanism and the aggregation step.
Because there are differences, we will again look at the
two GAT versions separately.

4.3.1 GATv1 Weight and Feature Gradient

Both the feature and weight matrices can be written as a
combination of gradient contributions from three sources:
the gradients along the source and destination edges and the
gradient due to weighted aggregation. The loss with respect
to input features can be written as

The loss with respect to weights can be written similarly

As can be seen from the equations, the terms in the square
brackets are shared among both the gradients.

(31)

�L

���
=

Kl∑
k=1

((
�
�,�

V1,dst
× �

�,�

dst

�
×��,��

)

+

(
�
�,�

V1,src
× ��,�

src

�
×��,��

)

+

(
��,�

T
× ��

�,�
×��,��

))
,

(32)

=

Kl∑
k=1

[(
�
�,�

V1,dst
× �

�,�

dst

�
)

+

(
�
�,�

V1,src
× ��,�

src

�
)

+

(
��,�

�
× ��

�,�
)]

×��,��,

(33)= ��−�.

(34)

�L

���,�
=

((
��−�� × �

�,�

V1,dst
× �

�,�

dst

�
)

+

(
��−�� × �

�,�

V1,src
× ��,�

src

�
)

+

(
��−�� × ��,�

�
× ��

�,�
))

,

(35)

= ��−�� ×

[(
�
�,�

V1,dst
× �

�,�

dst

�
)

+

(
�
�,�

V1,src
× ��,�

src

�
)

+

(
��,�

�
× ��

�,�
)]

.

4.3.2 GATv2 Weight and Feature Gradient

The GATv2 equations are similar to GATv1, but because there
are source and destination weight matrices, the three terms
used to compute the feature gradient are split among the two
weight matrix gradients. In GATv2, the loss with respect to
input features is given by

Then, the two weight matrix gradients are

The shared terms are once again shown in square brackets.
To summarize the backward pass pictorially, we modify

the forward pass DFGs from Fig. 2 to show the dependen-
cies during backpropagation, shown in Fig. 3. The example
from the forward pass is used again to show the steps of
backpropagation in Fig. 5.

5 Conclusion

This paper has presented closed-form matrix equations for
the training of Graph Attention Networks. These equations
explicitly illustrate the dependencies among various parts
of the computations. These dependencies can be exploited
to design accelerators for training GATs using techniques
such as variable reuse, gradient interleaving and inter-layer
pipelining [28].

(36)

�L

���−�
=

Kl∑
k=1

((
�
�,�

V2,dst
×�

�,�

dst

�
)

+

(
�
�,�

V2,src
×��,�

src

�
)

+

(
��,�

T
× ��

�,�
×��,�

src

�
))

,

(37)
=

Kl∑
k=1

((
�
�,�

V2,dst
×�

�,�

dst

�
)

+

[
�
�,�

V2,src
+

(
��,�

�
× ��

�,�
)]

×��,�
src

�
),

(38)= ��−�.

(39)

�L

��
�,�

dst

= ��−�� × �
�,�

V2,dst
,

�L

��
�,�
src

=

((
��−�� × �

�,�

V2,src

)
+

(
��−�� × ��,�

�
× ��

�,�
))

,

= ��−�� ×

[
�
�,�

V2,src
+

(
��,�

�
× ��

�,�
)]

.

9Journal of Signal Processing Systems (2024) 96:1–14

1 3

Appendix. Supplementary Figures

Figure 3 DFG for the forward and backward pass of a single attention head within a hidden layer. Backward pass matrices are shown adjacent to
data flow. Colors of the boxes correspond to the shape of their respective matrices.

10 Journal of Signal Processing Systems (2024) 96:1–14

1 3

Figure 4 Forward pass of GAT
Layer on an 8-Node graph, with
5-feature width input and 4-
feature width attention head out-
put. Differences between GATv1
and GATv2 are separated with a
vertical line, such that GATv1’s
operations appear on the left
and GATv2’s on the right. The
matrices are colored by shape
according to the legends in
Fig. 2. Subfigure a shows the
input to the layer, with each
node having a feature vector
associated with it. Subfigure b
shows the combination and edge
coefficient calculation steps, cor-
responding to Eqs. (2)–(5), with
each node having a source and
destination coefficient associated
with it. Subfigure c shows the
pre-softmax attention coeffi-
cient calculation from Eqs. (8)
and (9). Subfigure d shows the
row-wise softmax operation on
the matrix of these coefficients,
from Eq. (10). Finally, subfigure
e shows the aggregation step,
weighted with the attention coef-
ficients from Eqs. (11) and (12)
(for brevity, we omit the near
identical GATv2 equation using
��,�

src
 instead of ��,� . The figure

only shows a single attention
head, and the output from sub-
figure e would be concatenated
with the output of the other
attention heads.

11Journal of Signal Processing Systems (2024) 96:1–14

1 3

Figure 5 Backward pass for the
forward pass example in Fig. 4.
Differences between GATv1
and GATv2 are separated
with a vertical line, such that
GATv1’s operations appear on
the left and GATv2’s on the
right, except for the final step
in weight and feature gradient
calculation. The matrices are
colored by shape according to
the legends in Fig. 3. Subfig-
ure a shows the calculation of
the gradients with respect to
the input of the layer activa-
tion function from Eq. (15).
Subfigure b shows the gradient
with respect to the aggrega-
tion step due to the attention
coefficients, corresponding to
Eq. (19). Subfigure c follows
the gradient to the input of the
softmax, covering Eq. (21).
Subfigure d shows the computa-
tion of the gradient with respect
to attention weights from Eqs.
(26) and (30). In subfigure e,
the �′�,� matrix is shown fol-
lowing Eqs. (23) and (27) and
used to find ��,� as in Eqs. (24)
and (28). Subfigure f shows the
calculation of the ��,� matrices
following Eqs. (25) and (29),
and the multiplication with the
attention weights in GATv1’s
case. Finally, the gradient with
respect to the weights and input
features is shown for GATv1 in
subfigure g from Eqs. (32) and
(35) and GATv2 in subfigure h
from Eqs. (32) and (39).

12 Journal of Signal Processing Systems (2024) 96:1–14

1 3

Figure 5 (continued)

13Journal of Signal Processing Systems (2024) 96:1–14

1 3

Acknowledgements The authors thank Nanda Unnikrishnan for
numerous useful discussions.

Funding This paper was supported in part by the National Science
Foundation under grant number CCF-1954749.

Data Availability Data sharing is not applicable to this article, as no
datasets were generated or analyzed during the current study.

References

 1. Cheng, Z., Yan, C., Wu, F. X., & Wang, J. (2022). Drug-target
interaction prediction using multi-head self-attention and graph
attention network. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 19(4), 2208–2218. https:// doi. org/
10. 1109/ TCBB. 2021. 30779 05. Conference Name: IEEE/ACM
Transactions on Computational Biology and Bioinformatics.

 2. Yang, Z., Liu, J., Wang, Z., Wang, Y., & Feng, J. (2020). Multi-
class metabolic pathway prediction by graph attention-based
deep learning method. In: 2020 IEEE International Confer-
ence on Bioinformatics and Biomedicine (BIBM), pp. 126–131.
https:// doi. org/ 10. 1109/ BIBM4 9941. 2020. 93132 98

 3. Zhao, H., Wang, Y., Duan, J., Huang, C., Cao, D., Tong, Y., Xu,
B., Bai, J., Tong, J., & Zhang, Q. (2020). Multivariate time-series
anomaly detection via graph attention network. In: 2020 IEEE Inter-
national Conference on Data Mining (ICDM), pp. 841–850. https://
doi. org/ 10. 1109/ ICDM5 0108. 2020. 00093. ISSN: 2374-8486.

 4. Zhang, C., James, J. Q., & Liu, Y. (2019). Spatial-temporal
graph attention networks: A deep learning approach for traffic
forecasting. IEEE Access, 7, 166246–166256. https:// doi. org/ 10.
1109/ ACCESS. 2019. 29538 88. Conference Name: IEEE Access.

 5. Balaji, S. S., & Parhi, K. K. (2023). Classifying Subjects with PFC
Lesions from Healthy Controls during Working Memory Encod-
ing via Graph Convolutional Networks. In: 2023 11th Interna-
tional IEEE/EMBS Conference on Neural Engineering (NER), pp.
1–4. https:// doi. org/ 10. 1109/ NER52 421. 2023. 10123 793. ISSN:
1948-3554.

 6. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., & Bengio, Y. (2018). Graph Attention Networks. arXiv.
arXiv: 1710. 10903 [cs, stat]. http:// arxiv. org/ abs/ 1710. 10903.
Accessed 24 Feb 2023.

 7. Brody, S., Alon, U., & Yahav, E. (January 2022). How attentive
are graph attention networks? Technical Report arXiv: 2105.
14491, arXiv. arXiv: 2105. 14491 [cs] type: article. http:// arxiv.
org/ abs/ 2105. 14491. Accessed 2024 Feb 2023.

 8. Unnikrishnan, N. K., & Parhi, K. K. (2023). InterGrad: Energy-
efficient training of convolutional neural networks via interleaved
gradient scheduling. IEEE Transactions on Circuits and Systems I:
Regular Papers, 70(5), 1949–1962. https:// doi. org/ 10. 1109/ TCSI.
2023. 32464 68. Conference Name: IEEE Transactions on Circuits
and Systems I: Regular Papers

 9. Gori, M., Monfardini, G., & Scarselli, F. (2005). A new model for
learning in graph domains. In: Proceedings. 2005 IEEE Interna-
tional Joint Conference on Neural Networks, vol. 2, pp. 729–7342.
https:// doi. org/ 10. 1109/ IJCNN. 2005. 15559 42. ISSN: 2161-4407

 10. Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., &
Monfardini, G. (2009). The graph neural network model. IEEE
Transactions on Neural Networks, 20(1), 61–80. https:// doi.
org/ 10. 1109/ TNN. 2008. 20056 05. Conference Name: IEEE
Transactions on Neural Networks

 11. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2021).
A comprehensive survey on graph neural networks. IEEE Trans-
actions Neural Networks Learning System, 32(1), 4–24. https://

doi. org/ 10. 1109/ TNNLS. 2020. 29783 86. arXiv: 1901. 00596 [cs,
stat]. Accessed 24 Feb 2023.

 12. Parhi, K. K., & Unnikrishnan, N. K. (2020). Brain-inspired comput-
ing: models and architectures. IEEE Open Journal of Circuits and
Systems, 1, 185–204. https:// doi. org/ 10. 1109/ OJCAS. 2020. 30320
92. Conference Name: IEEE Open Journal of Circuits and Systems

 13. Kipf, T. N., & Welling, M. (February 2017). Semi-supervised clas-
sification with graph convolutional networks. Technical Report.
arXiv: 1609. 02907, arXiv. arXiv: 1609. 02907 [cs, stat] type: article.
http:// arxiv. org/ abs/ 1609. 02907. Accessed 24 Feb 2023.

 14. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G.
E. (June 2017). Neural message passing for quantum chemistry.
Technical Report. arXiv: 1704. 01212, arXiv. arXiv: 1704. 01212
[cs] type: article. http:// arxiv. org/ abs/ 1704. 01212. Accessed 24
Feb 2023.

 15. Zhang, B., & Prasanna, V. (2023). Dynasparse: Accelerating GNN
inference through dynamic sparsity exploitation. https:// arxiv. org/
abs/ 2303. 12901 v1. Accessed 3 Jun 2023.

 16. Mondal, S., Manasi, S. D., Kunal, K., Ramprasath, S., & Sapatnekar,
S. S. (2021). GNNIE: GNN inference engine with load-balancing
and graph-specific caching. https:// arxiv. org/ abs/ 2105. 10554 v2.
Accessed 3 Jun 2023.

 17. He, Z., Tian, T., Wu, Q., & Jin, X. (2023). FTW-GAT: An FPGA-
based accelerator for graph attention networks with ternary
weights. IEEE Transactions on Circuits and Systems II: Express
Briefs, 1–1. https:// doi. org/ 10. 1109/ TCSII. 2023. 32801 80. Con-
ference Name: IEEE Transactions on Circuits and Systems II:
Express Briefs.

 18. Geng, T., Wu, C., Zhang, Y., Tan, C., Xie, C., You, H., Herbordt,
M., Lin, Y., & Li, A. (2021). I-GCN: A graph convolutional network
accelerator with runtime locality enhancement through islandiza-
tion. In: MICRO-54: 54th Annual IEEE/ACM International Sympo-
sium on Microarchitecture. MICRO ’21, pp. 1051–1063. Associa-
tion for Computing Machinery, New York, NY, USA. https:// doi.
org/ 10. 1145/ 34667 52. 34801 13

 19. Zeng, H., & Prasanna, V. (2019). GraphACT: Accelerating GCN
training on CPU-FPGA heterogeneous platforms. https:// doi. org/
10. 1145/ 33730 87. 33753 12. https:// arxiv. org/ abs/ 2001. 02498 v1.
Accessed 3 Jun 2023.

 20. Chen, X., Wang, Y., Xie, X., Hu, X., Basak, A., Liang, L., Yan,
M., Deng, L., Ding, Y., Du, Z., & Xie, Y. (2022). Rubik: A hier-
archical architecture for efficient graph neural network training.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 41(4), 936–949. https:// doi. org/ 10. 1109/
TCAD. 2021. 30791 42. Conference Name: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems.

 21. Zheng, D., Ma, C., Wang, M., Zhou, J., Su, Q., Song, X., Gan,
Q., Zhang, Z., & Karypis, G. (2020). DistDGL: Distributed graph
neural network training for billion-scale graphs. https:// arxiv. org/
abs/ 2010. 05337 v3. Accessed 3 Jun 2023.

 22. Lin, Z., Li, C., Miao, Y., Liu, Y., & Xu, Y. (2020). Pagraph: Scaling
GNN training on large graphs via computation-aware caching. In:
Proceedings of the 11th ACM Symposium on Cloud Computing.
SoCC ’20, pp. 401–415. Association for Computing Machinery,
New York, NY, USA. https:// doi. org/ 10. 1145/ 34191 11. 34212 81

 23. Lin, Y.-C., Zhang, B., & Prasanna, V. (2023). HitGNN: High-
throughput GNN training framework on CPU+Multi-FPGA heter-
ogeneous platform. https:// arxiv. org/ abs/ 2303. 01568 v1. Accessed
3 Jun 2023.

 24. Luong, M.-T., Pham, H., Manning, C.D. (2015). Effective
approaches to attention-based neural machine translation. arXiv.
arXiv: 1508. 04025 [cs]. http:// arxiv. org/ abs/ 1508. 04025. Accessed
27 Jan 2023.

 25. Gehring, J., Auli, M., Grangier, D., & Dauphin, Y. N. (July 2017).
A convolutional encoder model for neural machine translation.
Technical Report. arXiv: 1611. 02344, arXiv. arXiv: 1611. 02344

https://doi.org/10.1109/TCBB.2021.3077905
https://doi.org/10.1109/TCBB.2021.3077905
https://doi.org/10.1109/BIBM49941.2020.9313298
https://doi.org/10.1109/ICDM50108.2020.00093
https://doi.org/10.1109/ICDM50108.2020.00093
https://doi.org/10.1109/ACCESS.2019.2953888
https://doi.org/10.1109/ACCESS.2019.2953888
https://doi.org/10.1109/NER52421.2023.10123793
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/2105.14491
http://arxiv.org/abs/2105.14491
http://arxiv.org/abs/2105.14491
http://arxiv.org/abs/2105.14491
http://arxiv.org/abs/2105.14491
https://doi.org/10.1109/TCSI.2023.3246468
https://doi.org/10.1109/TCSI.2023.3246468
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
http://arxiv.org/abs/1901.00596
https://doi.org/10.1109/OJCAS.2020.3032092
https://doi.org/10.1109/OJCAS.2020.3032092
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
https://arxiv.org/abs/2303.12901v1
https://arxiv.org/abs/2303.12901v1
https://arxiv.org/abs/2105.10554v2
https://doi.org/10.1109/TCSII.2023.3280180
https://doi.org/10.1145/3466752.3480113
https://doi.org/10.1145/3466752.3480113
https://doi.org/10.1145/3373087.3375312
https://doi.org/10.1145/3373087.3375312
https://arxiv.org/abs/2001.02498v1
https://doi.org/10.1109/TCAD.2021.3079142
https://doi.org/10.1109/TCAD.2021.3079142
https://arxiv.org/abs/2010.05337v3
https://arxiv.org/abs/2010.05337v3
https://doi.org/10.1145/3419111.3421281
https://arxiv.org/abs/2303.01568v1
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1611.02344
http://arxiv.org/abs/1611.02344

14 Journal of Signal Processing Systems (2024) 96:1–14

1 3

[cs] type: article. http:// arxiv. org/ abs/ 1611. 02344. Accessed 27
Jan 2023.

 26. Mnih, V., Heess, N., Graves, A., & Kavukcuoglu, K. (June 2014).
Recurrent Models of Visual Attention. Technical Report. arXiv:
1406. 6247, arXiv. arXiv: 1406. 6247 [cs, stat] type: article. http://
arxiv. org/ abs/ 1406. 6247. Accessed 27 Jan 2023.

 27. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, L., & Polosukhin, I. (December 2017).
Attention is all you need. Technical Report. arXiv: 1706. 03762,
arXiv. arXiv: 1706. 03762 [cs] type: article. http:// arxiv. org/ abs/
1706. 03762. Accessed 27 Jan 2023.

 28. Unnikrishnan, N. K., & Parhi, K. K. (2021). LayerPipe: Acceler-
ating deep neural network training by intra-layer and inter-layer
gradient pipelining and multiprocessor scheduling. In: 2021
IEEE/ACM International Conference On Computer Aided Design
(ICCAD), pp. 1–8. https:// doi. org/ 10. 1109/ ICCAD 51958. 2021.
96435 67. ISSN: 1558-2434.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Joe Gould (Student member, IEEE)
is currently pursuing an M.S.
degree in electrical engineering at
the University of Minnesota, Min-
neapolis, USA. He worked at
Commscope, USA, from 2020 to
2021 under a co-op internship pro-
gram as a design verification engi-
neer for FPGA products. His inter-
ests are in the design of efficient
architectures for accelerator and
signal processing systems.

Keshab K. Parhi (Fellow, IEEE)
received the B.Tech. degree from the
Indian Institute of Technology (IIT),
Kharagpur, in 1982, the M.S.E.E.
degree from the University of Penn-
sylvania, Philadelphia, in 1984, and
the Ph.D. degree from the University
of California, Berkeley, in 1988. He
has been with the University of Min-
nesota, Minneapolis, since 1988,
where he is currently Erwin A. Kelen
Chair and Distinguished McKnight
University Professor in the Depart-
ment of Electrical and Computer
Engineering. He has published over
700 papers, is the inventor of 34 pat-

ents, and has authored the textbook VLSI Digital Signal Processing
Systems (Wiley, 1999). His current research addresses VLSI architec-
ture design of machine learning and signal processing systems, hard-
ware security, and data-driven neuroengineering and neuroscience. Dr.
Parhi is the recipient of numerous awards including the 2017 Mac Van
Valkenburg award and the 2012 Charles A. Desoer Technical Achieve-
ment award from the IEEE Circuits and Systems Society, the 2003
IEEE Kiyo Tomiyasu Technical Field Award, and a Golden Jubilee
medal from the IEEE Circuits and Systems Society in 2000. He served
as the Editor-in-Chief of the IEEE Trans. Circuits and Systems, Part-I
during 2004 and 2005. He is a Fellow of the American Association for
the Advancement of Science (AAAS), the Association for Computing
Machinery (ACM), the American Institute of Medical and Biological
Engineering (AIMBE), and the National Academy of Inventors (NAI).

http://arxiv.org/abs/1611.02344
http://arxiv.org/abs/1406.6247
http://arxiv.org/abs/1406.6247
http://arxiv.org/abs/1406.6247
http://arxiv.org/abs/1406.6247
http://arxiv.org/abs/1406.6247
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1109/ICCAD51958.2021.9643567
https://doi.org/10.1109/ICCAD51958.2021.9643567

	Backpropagation Computation for Training Graph Attention Networks
	Abstract
	1 Introduction
	2 Background
	2.1 Graph Neural Networks
	2.2 Neural Network Attention

	3 GAT Forward Pass
	3.1 Linear Transformation of Node Features
	3.2 Edge Coefficient Computation
	3.3 Attention Coefficient Computation
	3.4 GCN-like Aggregation and Activation

	4 GAT Backward Pass
	4.1 Gradients with Respect to Activation
	4.2 Gradients with Respect to Attention
	4.2.1 GATv1 Attention Gradient
	4.2.2 GATv2 Attention Gradient

	4.3 Gradients Associated with Combination
	4.3.1 GATv1 Weight and Feature Gradient
	4.3.2 GATv2 Weight and Feature Gradient

	5 Conclusion
	Appendix. Supplementary Figures
	Acknowledgements
	References

