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Abstract
Graph Neural Networks (GNNs) are a form of deep learning that have found use for a variety of problems, including the 
modeling of drug interactions, time-series analysis, and traffic prediction. They represent the problem using non-Euclidian 
graphs, allowing for a high degree of versatility, and are able to learn complex relationships by iteratively aggregating more 
contextual information from neighbors that are farther away. Inspired by its power in transformers, Graph Attention Networks 
(GATs) incorporate an attention mechanism on top of graph aggregation. GATs are considered the state of the art due to 
their superior performance. To learn the best parameters for a given graph problem, GATs use traditional backpropagation 
to compute weight updates. To the best of our knowledge, these updates are calculated in software, and closed-form equa-
tions describing their calculation for GATs aren’t well known. This paper derives closed-form equations for backpropagation 
in GATs using matrix notation. These equations can form the basis for design of hardware accelerators for training GATs.

Keywords  Neural network training · Backpropagation · Gradient computation · Graph attention networks

1  Introduction

Many complex problems can be represented by graphs, and 
graph neural networks (GNNs) have been used to address 
these issues. GNNs have been successfully applied to appli-
cations such as drug interactions [1, 2], time-series analysis 
[3], traffic prediction [4], neurological damage detection [5], 
and others. One of the best performing GNN architectures 
are Graph Attention Networks (GATs) [6]. These networks 
build upon previous models by combining the statically 
weighted graph convolution with an input-dependent atten-
tion mechanism to achieve higher expressive power.

Although GAT networks are powerful, they are compu-
tationally expensive, requiring processing for an attention 
coefficient for every edge in the graph. While the forward 
pass, or inference, of GAT network processing is well under-
stood, to the best of our knowledge, closed-form expressions 
for backpropagation for training GAT networks have not 
been presented before. The main contribution of this paper 

is the derivation of these equations using matrix notation for 
both the original GAT and a similar derivative work, GATv2 
[7]. These equations can enable design of accelerators for 
training GATs by exploiting techniques such as gradient 
interleaving [8].

This paper is organized as follows. Section 2 presents 
a brief review of GNNs and GATs. Section 3 presents the 
forward pass equations associated with the inference from 
GATs in matrix form. In Section 4, we derive the backpropa-
gation equations for training the GATs in matrix form. Sec-
tion 5 concludes the paper. Large figures that may be helpful 
alongside the text are found in Section of Appendix.

2 � Background

2.1 � Graph Neural Networks

GNNs are a broad class of architectures that developed 
from early work with Recurrent Neural Networks [9, 10] 
that use deep neural networks to perform different graph-
based tasks [11, 12]. The most relevant type of GNN for 
understanding GATs is Graph Convolutional Network 
(GCN) [13], which many GNN derivatives are based on. 
GCN and GAT operate by performing spatial graph con-
volution and traditional machine learning transformations 
on a graph to extract meaningful information over a wider 
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region. GCNs and GAT networks consist of layers, with 
each performing the convolution steps and applying a non-
linear activation before outputting into the next layer.

Spatial graph convolution can be described as a form 
of message passing [14] on graphs. Nodes have features 
which are used to produce a message, the messages are 
transformed by and passed along edges, and the messages 
are gathered at edge destinations and are used to update 
the destination node states. This description is general, and 
GCN simplifies computation by limiting the convolution 
operation. In this modified convolution operation, edges 
have scalar weights which are multiplied with source node 
features. These weighted features are summed at the desti-
nation node, and the resultant sum is linearly transformed 
with learnable parameters. This convolution can be written 
using vector notation,

where N(i) is the neighborhood of node i, ��,� is the scalar edge 
weight from node j to node i, W is the learnable weight matrix, 
and �� and �� are row vectors and the pre- and post-convolution 
features of node i. A similar operation is used in GAT.

As can be seen from the description above, the convolu-
tion is able to propagate information across the structure 
of a graph. This has the effect of allowing subsequent node 
representations to incorporate a wider neighborhood into 
their extracted features, and is the main contributor to the 
expressive power of GCNs and GATs. It is analogous to 
the widening receptive field of pixels in traditional Convo-
lutional Neural Networks [11]. This is illustrated in Fig. 1 
for a 2-layer network on a graph of 8 nodes.

A number of hardware accelerators exist for GNN 
processing. The forward pass is well understood, and 

(1)�� =
∑
j∈N(i)

��,� ⋅ �� ×W

architectures which can support GAT inference exist 
[15–17]. However, architectures which support training are 
usually geared towards training GCN [18–20] or accelerat-
ing software solutions [21, 22] for training GAT [23]. While 
these methods work, it is possible a more powerful accelera-
tor could be created by specifically targeting the computa-
tions for GAT training operations.

2.2 � Neural Network Attention

Attention is a concept in machine learning that has been 
extensively used in applications such as machine transla-
tion [24, 25] and machine vision [26], and is the primary 
mechanism that transformers use for their generalized effec-
tiveness [27]. It is based on the intuition that prioritizing the 
important features of an input will allow a network to better 
extract information from it. A network layer typically imple-
ments attention by performing a nonlinear transformation 
on the inputs with some learned attention parameters, and 
then using a softmax operation for each of the outputs. This 
has the effect of allowing the network to learn input features 
that are indicative of importance and then raising their cor-
responding weights to focus on them.

3 � GAT Forward Pass

GAT networks operate similar to GCNs, but implement an 
attention mechanism to adjust edge coefficients based on 
node features. Like other neural network types, GATs use 
stacked layers to extract information from inputs and gener-
ate useful output representations. Each layer has its own set 
of learnable parameters, which are updated during training. 
Taking from existing literature on attention [27], GAT splits 
processing steps within each layer across multiple attention 

Figure 1   Example GNN with 2 
layers on a graph of 8 nodes.
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heads, which have their own attention weights during the 
aggregation step. Baseline GAT consists of the following 
processing within a layer, for each attention head: 

1.	 Node features are linearly transformed by learnable 
weights to form combined features.

2.	 Each node’s combined features are transformed into 
source and destination coefficients.

3.	 For every edge, a scalar value is computed using its 
source and destination coefficients. The scalar values of 
the edges sharing a common destination node are input 
to a softmax function to generate the attention coeffi-
cients of the edges.

4.	 GCN-like aggregation is performed using the original 
combined features and attention coefficients. A nonlin-
ear activation is applied, and the result is concatenated 
with the results from the other attention heads.

There are currently two forms of GATs in use, the origi-
nal GAT and GATv2. Hereafter, the original GAT will be 
referred to as GATv1, and GAT will be used to refer to the 
general architecture of these networks. GATv2 was proposed 
because of issues in GATv1’s attention mechanism, which 
made it unable to effectively differentiate between certain 
types of inputs. However, because GATv1 has been in use 
for longer than GATv2, we present derivations for both ver-
sions. We begin by constructing equations for GAT inference 
in matrix form. We first define the relevant parameters in 
Table 1, and then follow each step of layer processing as 
described above.

We use the superscripts l to mean pertaining to layer 
l, and k, l to mean pertaining to attention head k of layer 
l. Non-scalar variables are denoted in bold. Vectors are 
assumed to be columns, unless they are taken from rows of 
matrices, and use lower case. When taking sub-elements of 
a multidimensional variable, we use subscripts to denote the 
row or column being taken from, and keep the same bolding 
and case as the variable the sub-elements are taken from. We 
consider graphs with directed edges, and do not require the 
adjacency matrix to be symmetric.

3.1 � Linear Transformation of Node Features

The layer begins by linearly transforming the output of the 
previous layer to a new feature, not necessarily of the same 
size, for the current layer. GATv1 uses a single learnable 
weight matrix common to every node, while GATv2 has two 
matrices, with the result of the combination used differently 
depending on if a node is a source or destination of an edge.

For GATv1, this step can be written as

(2)��,� = ��−� ×��,�.

GATv2 has two combined matrices, which are

3.2 � Edge Coefficient Computation

Using the combined features, GAT generates a set of source 
and destination coefficients that are used for computing 
attention coefficients. In GATv1, these coefficients are sca-
lars obtained from performing a dot product between the 
learnable attention weights and the combined feature vec-
tor. In GATv2, the coefficients are vectors, and are just the 
combined features generated in step 1. GATv2 introduces 
the attention weights in the next step.

For GATv1, the scalar coefficients for node i are

The vector coefficients for GATv2 are

3.3 � Attention Coefficient Computation

Next, every edge in the graph has a scalar value computed. 
This is done by first adding the source and destination coef-
ficients from the source and destination nodes of each edge, 
respectively. After this sum is computed, it is put through a 
nonlinear leaky ReLU (LReLU) operation. In GATv1, the 
result of this is the pre-softmax normalization attention coef-
ficient, while in GATv2 it is a vector that is used in an inner 
product with the learnable attention coefficients. The result 
of the GATv2 inner product is its pre-softmax normalization 
attention coefficient. For GATv1, this can be written as

(3)
��,�

src
= ��−� ×��,�

src
,

�
�,�

dst
= ��−� ×�

�,�

dst
.

(4)

c
k,l

i,V1,src
= ��,�

src

�
× �

�,�

�
= ��,�

src

�
×��,�� × �

�,�

�
,

c
k,l

i,V1,dst
= �

�,�

dst

�
× �

�,�

�
= �

�,�

dst

�
×��,�� × �

�,�

�
,

�
�,�

V1,src

�
=

‖‖‖
i∈N

c
k,l

i,V1,src
,

�
�,�

V1,dst

�
=

‖‖‖
i∈N

c
k,l

i,V1,dst
.

(5)

�
�,�

�,V2,src
= �

�,�

�,src
= ��,�
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�
× �

�,�
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�
�,�
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�,�
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�
× �

�,�

�
,

�
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�
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�
�,�

�,V2,src
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src

�
,

�
�,�

V2,dst

�
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‖‖‖
i∈N

�
�,�

�,V2,dst
= �

�,�
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�
.

(6)e
k,l

i,j
=

{
�L

(
c
k,l

i,V1,dst
+ c

k,l

j,V1,src

)
��,� ≠ 0

−∞ ��,� = 0
,
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and in GATv2 as

We denote the addition operation with ⊕ . In the case 
of GATv1, ��,�

V1,src
 and ��,�

V1,dst
 are vectors, and the operation 

generates a matrix by performing an outer sum. In GATv2, 
�

�,�

V2,dst
 and ��,�

V2,src
 are matrices, and the operation generates 

a 3-dimensional tensor by performing the outer sum on the 
columns of the matrices. Using this notation, we can write 
the resulting attention matrices as

for GATv1, and for GATv2 as

(7)e
k,l

i,j
=

{
��,� × �L

(
�
�,�

�,V2,dst
+ �

�,�

�,V2,src

)
��,� ≠ 0

−∞ ��,� = 0
.

(8)��,� = 𝜎L

(
�
�,�

V1,dst
⊕ �

�,�

V1,src

)
⊙ A

(9)��,� =

(
��,� × 𝜎L

(
�

�,�

V2,dst
⊕ �

�,�

V2,src

))
⊙ A.

Finally, in both GATv1 and GATv2, these coefficients are 
put through a softmax, grouped by common destinations, to 
normalize them to the same dynamic range. These matrices 
have an identical nonzero pattern to the adjacency matrix 
A . This results in the L and S matrices that have their (i, j)
th entries be the pre- and post-softmax attention coefficient 
for the edge outgoing from node j to node i as

3.4 � GCN‑like Aggregation and Activation

The final step in the forward pass is to propagate the com-
bined node features using the final attention coefficient on 
each edge. This propagation is identical to GCN, with the 
adjacency matrix replaced with the post-softmax attention 
matrix. By performing matrix multiplication in this way, the 

(10)�
�,�

�
= �S

(
�
�,�

�

)
.

Table 1   Notations for GAT Inference.

Notation Description

N Number of nodes in the graph
L Layers within network
l Index of a layer within network, ∈ [1,L]

Kl Number of attention heads in layer l
k Index of an attention head within layer, ∈

[
1,Kl

]
dl Output feature dimension for an attention head in layer l
k0 Defined as 1
d0 Defined as the feature dimension of input data
�L, �S, �E LReLU, softmax, and ELU nonlinear functions, respectively
‖⋯ Concatenation of elements horizontally
⊕ Defined in Eqs. (6) and (7), shown visually in Fig. 4 subfigure c

 Notation Size Description

A ℝ
N×N Adjacency matrix of graph. The ith row corresponds to the incoming edges to node i, and the jth column 

corresponds to the outgoing from node j. All entries are either 0 or 1.
��
� ℝ(K

l
⋅dl) Output features of node i from layer l.

��
ℝ

N×(Kl
⋅dl) Output features from layer l. The ith row corresponds to the feature vector of node i.

��,�,��,�
src
,�

�,�

dst
ℝ(K

l−1
⋅dl−1)×dl Learnable weight matrices for attention head k in layer l. Separate among source/destination in GATv2, 

common in GATv1.

��,�,��,�
src
,�

�,�

dst
ℝ

N×dl Combined feature matrices for attention head k in layer l, from their respective weight matrices.

��,�, ��,�
src
, �

�,�

dst
ℝ

dl Learnable source/destination attention weights for attention head k in layer l. Separate among source/
destination in GATv1, common in GATv2.

c
k,l

i,V1,src
, c

k,l

i,V1,dst
ℝ GATv1: Source/destination scalar coefficients for node i in attention head k of layer l.

�
�,�

V1,src
, �

�,�

V1,dst
ℝ

N and collected into a vector.

�
�,�

�,V2,src
, �

�,�

�,V2,dst
ℝ

dl GATv2: Source/destination vector coefficients for node i in attention head k of layer l.

�
�,�

V2,src
,�

�,�

V2,dst
ℝ

N×dl and collected into a matrix.

e
k,l

i,j
, �

k,l

i,j
ℝ Pre- and post-softmax normalization attention coefficients for the edge outgoing from node j to node i.

��,�,��,� ℝ
N×N Pre- and post-softmax attention matrices. Entry (i, j) is the corresponding weight from node j to node i.

��,�
ℝ

N×(Kl×dl) Pre-activation output features for layer l.
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combined features of all of the in-neighbors of each node 
are summed together, weighed by their attention. In GATv1, 
this is given by

This is identical to GATv2, with the features combined 
with the source weights matrix in the aggregation, written as

Finally, the combined and aggregated features are put 
through a nonlinear activation. We use �E to represent the 
exponential linear unit (ELU) activation function. The 
resulting features for each attention head are concatenated 
together to form the output of the layer:

In the case of the output layer, multiple attention heads 
have their results averaged instead of being concatenated, 
and a nonlinear operation like softmax is applied on the 
resulting node features. This can be written as

We summarize the forward pass in a data flow graph 
(DFG) in Fig. 2. An illustrative example of each step for 
GATv1 and GATv2 in the forward pass is shown for a sin-
gle layer’s attention head in Fig. 4. The example assumes 
an input feature size of 5 and an output feature size of the 
layer’s attention heads of 4.

4 � GAT Backward Pass

We now derive the equations for the backpropagation for 
GAT’s learnable parameters, i.e., equations for gradients of 
the loss with respect to weight matrices 

(
��,�,��,�

src
,�

�,�

dst

)
 , 

attention weights 
(
��,�
src
, �

�,�

dst
, ��,�

)
 , and feature inputs 

(
��

)
 for 

each layer. This will follow the same structure as the for-
ward pass, starting with the input to the layers during back-
propagation and computing the gradients associated with 
that layer. A summary of the notations for different varia-
bles relevant to the backward pass is provided in Table 2.

4.1 � Gradients with Respect to Activation

We first compute the gradients of the loss with respect to the 
pre-activation outputs using the gradients input to the layer. 
The gradient can be computed as

(11)��,� = ��,� × ��,�.

(12)��,� = ��,� × ��,�
src
.

(13)��+� =

Kl

‖‖‖
k=1

�E

(
��,�

)
.

(14)��
�
= �S

⎛⎜⎜⎝
1

KL
⋅

KL�
k=1

�
�,�

�

⎞⎟⎟⎠
.

For the last layer in the network, a softmax activation 
function is used. Its derivative is well known, and the deriva-
tive of any vector through a softmax can be described by a 
symmetric gradient matrix,

where the (i, j)th entry in the �u
�v

 matrix is the gradient con-
tributed by the jth element of the input to the ith element of 
the output. In this case, v and u are the rows of the �� and 
�� matrices. The gradient matrix described above can be 
computed for each node, and the gradient of the loss with 
respect to the pre-softmax features for that node can be com-
puted by multiplying this matrix with the gradient of the loss 
with respect to the post-softmax features. This is shown as

For the rest of the backward pass, there is no difference 
between layers if we scale this pre-softmax gradient by KL 
to account for the averaging step, written as

It is important to note that the matrices involved in this 
step are dense, unlike the matrix of attention coefficients. 
Because of the complexity of the softmax derivative and 
because it only needs to be computed for the output layer, 
�′

� should be computed outside of a dedicated accelerator.

4.2 � Gradients with Respect to Attention

We now look at the attention mechanism and how the gra-
dient of the loss with respect to its inputs can be computed. 
The first step is to compute the gradient of the loss with 
respect post-softmax attention coefficients, through the 
aggregation, and then the pre-softmax edge coefficients, 
which has a form identical to the softmax derivative 
described before. This can be written as

(15)��
�,�

= 𝜎
�

E

(
��,�

)
⊙ ��,�.

u = �S(v),

�ui

�vj
=

{
ui − u2

i
i = j

−
(
ui ⋅ uj

)
i ≠ j

,

�u

�v
= diag(u) − u × ��,

(16)
���

�

���
�

= diag
(
��

�

)
−��

�

�
×��

�
,

(17)��
�

�
=

���
�

���
�

× ��
�
.

(18)��
�,�

=
1

KL
⋅ ��

�
.

(19)
�L

���,�
= ��

�,�
× ��,��,
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Because of the sparsity in ��,� , ��
�,�

�

��
�,�

�

 will only have nonzeros 

in rows/columns which correspond to the edges for node i. The 
complete loss with respect to the pre-softmax attentions, �L

���,�
 , 

also has the same sparsity pattern as the adjacency matrix.
Now, because of the differences in GATv1 and GATv2, 

we separate the derivation for the rest of the attention 
backward pass for each of the two versions.

4.2.1 � GATv1 Attention Gradient

The rest of the backward pass depends on the result of the 
LReLU that was used to compute the pre-softmax weight 

(20)
��

�,�

�

��
�,�

�

= diag
(
�
�,�

�

)
− �

�,�

�

�
× �

�,�

�
,

(21)�L

��
�,�

�

=
��

�,�

�

��
�,�

�

×

(
�L

��
�,�

�

)T

= �
�

S

(
�L

��
�,�

�

)
.

matrix. Since the input to the LReLU was a scalar, we 
define a �′�,� matrix to hold values from the derivative of 
the LReLU, and then define the gradient with respect to 
its input as ��,� , which can be written as

This � matrix is never used as a matrix, but instead is 
summed along its rows and columns. Depending on which 
dimension it is summed over, it will correspond to gradient 
passed along source or destination edges. We can define 
the following vectors

(22)��

V1

�,�

�,�
= �

�

L

(
c
k,l

i,V1,dst
+ c

k,l

j,V1,src

)
,

(23)���,�

V1
= 𝜎

�

L

(
�
�,�

V1,dst
⊕ �

�,�

V1,src

)
,

(24)�
�,�

V1
= ���,�

V1
⊙

𝜕L

𝜕��,�
.

(25)
�
�,�

V1,dst
= Sum

(
��,�, rows

)
,

�
�,�

V1,src
= Sum

(
��,�, cols

)
.

Figure 2   DFG for the forward pass of a single attention head within a hidden layer. Each box is colored according to the shape of the matrix at 
that point in the computation.
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We can then derive the gradient of the loss with respect 
to the attention weights using these vectors

These source and edge gradient vectors will also be 
used in computing the gradient of the loss with respect to 
input features and weights.

4.2.2 � GATv2 Attention Gradient

The derivation for GATv2 is similar to GATv1, though 
here the �′�,� matrix is instead a 3-dimensional tensor, 
because the attention coefficients are vectors instead of 
scalars. Effectively, it is a matrix identical in behavior 
to the GATv1 case, with the scalar elements replaced by 
vectors. This is written as

(26)

�L

��
�,�

dst

= ��,�� × �
�,�

V1,dst
,

�L

��
�,�
src

= ��,�� × �
�,�

V1,src
.

(27)��

V2

�,�

�,�
= ��,� ⊙ 𝜎

�

L

(
�
�,�

�,V2,dst
+ �

�,�

�,V2,src

)
,

Instead of the ��,� tensors being vectors, they are 
matrices, owing to the vector elements in the Δk,l tensor. 
Finally, the loss with respect to attention weights can be 
derived as

Unlike GATv1, this does not depend on the Σk,l matri-
ces, instead only depends on �L

���,�
 . This is because the 

attention weights in GATv2 are not used until after the 
LReLU operation.

(28)

�
�,�

V2�,�
=

𝜕L

𝜕�
�,�

�,�

⋅ ��

V2

�,�

�,�
,

�
�,�

V2
= ��

V2

�,�
⊙

𝜕L

𝜕��,�
,

(29)
�
�,�

V2,dst
= Sum

(
��,�, rows

)
,

�
�,�

V2,src
= Sum

(
��,�, cols

)
.

(30)
�L

���,�
=
∑
i,j

�L

��
�,�

�,�

⋅ �L

(
�
�,�

�,V2,dst
+ �

�,�

�,V2,src

)
.

Table 2   Notations for GAT Training.

Notation Description

�′
L
, �′

S
, �′

E
Derivatives of LReLU, softmax, and ELU, respectively

⊙ Hadamard (element-wise) vector or matrix product

 Notation Size Description

L ℝ
N×dL Loss from output of GAT network

��, �′
�

ℝ
N×(Kl

⋅dl) Gradient into layer l before and after being transformed by the activation derivative. 
Equivalent to �L

���
 and �L

���
 , respectively.

�L

���,�
,

�L

���,�
ℝ

N×N Loss with respect to pre- and post-softmax attention coefficients

�′�,�

V1
ℝ

N×N GATv1: Matrix holding LReLU derivative of the source/destination coefficient sums 
from the forward pass

�′�,�

V2
ℝ

N×N×dl GATv2: Matrix of vectors holding LReLU derivative of the source/destination 
coefficient sums from the forward pass

�
�,�

V1
ℝ

N×N GATv1: Scalar loss with respect to edges

�
�,�

V2
ℝ

N×N×dl GATv2: Vector loss with respect to edges

�
�,�

V1,dst
,�

�,�

V1,src
ℝ

N GATv1: Scalar losses with respect to nodes being destinations and sources of edges.

�
�,�

V2,dst
,�

�,�

V2,src
ℝ

N×dl GATv2: Vector losses with respect to nodes being destinations and sources of edges
�L

��
�,�

dst

,
�L

��
�,�
src

,
�L

���,�
ℝ

dl Loss with respect to the attention weights of head k of layer l

�L

���,�
,

�L

��
�,�

dst

,
�L

��
�,�
src

ℝ
dl−1×dl Loss with respect to weights of head k of layer l
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4.3 � Gradients Associated with Combination

The final part of the backpropagation is similar between 
GATv1 and GATv2, consisting of combining the gradients 
for the feature and weight matrices with the contributions 
from the attention mechanism and the aggregation step. 
Because there are differences, we will again look at the 
two GAT versions separately.

4.3.1 � GATv1 Weight and Feature Gradient

Both the feature and weight matrices can be written as a 
combination of gradient contributions from three sources: 
the gradients along the source and destination edges and the 
gradient due to weighted aggregation. The loss with respect 
to input features can be written as

The loss with respect to weights can be written similarly

As can be seen from the equations, the terms in the square 
brackets are shared among both the gradients.

(31)

�L

���
=

Kl∑
k=1

((
�
�,�

V1,dst
× �

�,�

dst

�
×��,��

)

+

(
�
�,�

V1,src
× ��,�

src

�
×��,��

)

+

(
��,�

T
× ��

�,�
×��,��

))
,

(32)

=

Kl∑
k=1

[(
�
�,�

V1,dst
× �

�,�

dst

�
)

+

(
�
�,�

V1,src
× ��,�

src

�
)

+

(
��,�

�
× ��

�,�
)]

×��,��,

(33)= ��−�.

(34)

�L

���,�
=

((
��−�� × �

�,�

V1,dst
× �

�,�

dst

�
)

+

(
��−�� × �

�,�

V1,src
× ��,�

src

�
)

+

(
��−�� × ��,�

�
× ��

�,�
))

,

(35)

= ��−�� ×

[(
�
�,�

V1,dst
× �

�,�

dst

�
)

+

(
�
�,�

V1,src
× ��,�

src

�
)

+

(
��,�

�
× ��

�,�
)]

.

4.3.2 � GATv2 Weight and Feature Gradient

The GATv2 equations are similar to GATv1, but because there 
are source and destination weight matrices, the three terms 
used to compute the feature gradient are split among the two 
weight matrix gradients. In GATv2, the loss with respect to 
input features is given by

Then, the two weight matrix gradients are

The shared terms are once again shown in square brackets.
To summarize the backward pass pictorially, we modify 

the forward pass DFGs from Fig. 2 to show the dependen-
cies during backpropagation, shown in Fig. 3. The example 
from the forward pass is used again to show the steps of 
backpropagation in Fig. 5.

5 � Conclusion

This paper has presented closed-form matrix equations for 
the training of Graph Attention Networks. These equations 
explicitly illustrate the dependencies among various parts 
of the computations. These dependencies can be exploited 
to design accelerators for training GATs using techniques 
such as variable reuse, gradient interleaving and inter-layer 
pipelining [28].

(36)

�L

���−�
=

Kl∑
k=1

((
�
�,�

V2,dst
×�

�,�

dst

�
)

+

(
�
�,�

V2,src
×��,�

src

�
)

+

(
��,�

T
× ��

�,�
×��,�

src

�
))

,

(37)
=

Kl∑
k=1

((
�
�,�

V2,dst
×�

�,�

dst

�
)

+

[
�
�,�

V2,src
+

(
��,�

�
× ��

�,�
)]

×��,�
src

�
),

(38)= ��−�.

(39)

�L

��
�,�

dst

= ��−�� × �
�,�

V2,dst
,

�L

��
�,�
src

=

((
��−�� × �

�,�

V2,src

)
+

(
��−�� × ��,�

�
× ��

�,�
))

,

= ��−�� ×

[
�
�,�

V2,src
+

(
��,�

�
× ��

�,�
)]

.
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Appendix. Supplementary Figures

Figure 3   DFG for the forward and backward pass of a single attention head within a hidden layer. Backward pass matrices are shown adjacent to 
data flow. Colors of the boxes correspond to the shape of their respective matrices.
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Figure 4   Forward pass of GAT 
Layer on an 8-Node graph, with 
5-feature width input and 4- 
feature width attention head out-
put. Differences between GATv1 
and GATv2 are separated with a 
vertical line, such that GATv1’s 
operations appear on the left 
and GATv2’s on the right. The 
matrices are colored by shape 
according to the legends in 
Fig. 2. Subfigure a shows the 
input to the layer, with each 
node having a feature vector 
associated with it. Subfigure b 
shows the combination and edge 
coefficient calculation steps, cor-
responding to Eqs. (2)–(5), with 
each node having a source and 
destination coefficient associated 
with it. Subfigure c shows the 
pre-softmax attention coeffi-
cient calculation from Eqs. (8) 
and (9). Subfigure d shows the 
row-wise softmax operation on 
the matrix of these coefficients, 
from Eq. (10). Finally, subfigure 
e shows the aggregation step, 
weighted with the attention coef-
ficients from Eqs. (11) and (12) 
(for brevity, we omit the near 
identical GATv2 equation using 
��,�

src
 instead of ��,� . The figure 

only shows a single attention 
head, and the output from sub-
figure e would be concatenated 
with the output of the other 
attention heads.
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Figure 5   Backward pass for the 
forward pass example in Fig. 4. 
Differences between GATv1 
and GATv2 are separated 
with a vertical line, such that 
GATv1’s operations appear on 
the left and GATv2’s on the 
right, except for the final step 
in weight and feature gradient 
calculation. The matrices are 
colored by shape according to 
the legends in Fig. 3. Subfig-
ure a shows the calculation of 
the gradients with respect to 
the input of the layer activa-
tion function from Eq. (15). 
Subfigure b shows the gradient 
with respect to the aggrega-
tion step due to the attention 
coefficients, corresponding to 
Eq. (19). Subfigure c follows 
the gradient to the input of the 
softmax, covering Eq. (21). 
Subfigure d shows the computa-
tion of the gradient with respect 
to attention weights from Eqs. 
(26) and (30). In subfigure e, 
the �′�,� matrix is shown fol-
lowing Eqs. (23) and (27) and 
used to find ��,� as in Eqs. (24) 
and (28). Subfigure f shows the 
calculation of the ��,� matrices 
following Eqs. (25) and (29), 
and the multiplication with the 
attention weights in GATv1’s 
case. Finally, the gradient with 
respect to the weights and input 
features is shown for GATv1 in 
subfigure g from Eqs. (32) and 
(35) and GATv2 in subfigure h 
from Eqs. (32) and (39).
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Figure 5   (continued)
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