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Abstract

Lung cancer is a leading cause of cancer-related mortality worldwide, driven

by challenges such as high therapeutic resistance and late-stage diagnosis.

These issues highlights the urgent need for innovative computational mod-

els capable of addressing the complexity of tumor evolution and its inter-

actions with the surrounding microenvironment. This research proposes a

Neural Agent-Based Model (NABM), which integrates neural networks into

agent-based simulations to model the growth and progression of lung cancer

in a dynamic, adaptable, and therapy-responsive manner. The NABM en-

ables agents to simulate cellular decision-making processes by responding to

microenvironmental features such as nutrient availability, oxygen levels, and

chemical signals. This approach provides a powerful tool for simulating the

intricate interactions within the tumor microenvironment and predicting tu-

mor behavior under various conditions, including therapeutic interventions.

By incorporating deep learning, the model allows for the simulation of com-

plex tumor dynamics and supports the exploration of advanced therapeutic

strategies.

The contributions of this research include the integration of neural net-

works within an agent-based model, enabling agents to adapt, learn, and make

decisions based on dynamic microenvironmental inputs. This advancement

bridges the gap between traditional rule-based modeling and adaptive artifi-

cial intelligence, offering a more flexible and realistic approach. Additionally,

the study introduces a dataset generated using probabilistic functions and pa-

rameterized microenvironmental characteristics, ensuring both flexibility and

scalability across a variety of scenarios. Another key contribution is the de-

velopment of a deep learning-based model capable of analizing elements of the

cellular microenvironment and accurately predicting cellular actions. This

significantly enhances our understanding of cellular responses to complex and

dynamic environmental factors. Lastly, this work advances the modeling of

cellular populations and cancer therapies, enabling the simulation of interac-



tions between cellular populations and therapeutic interventions, providing a

valuable platform for evaluating and optimizing treatment strategies.

The expected results include improved accuracy in predicting lung cancer

evolution, enhanced understanding of microenvironmental influences on tumor

behavior, and the evaluation of therapeutic strategies. By bridging the do-

mains of computational modeling and oncology, this work provides a potential

foundation for future studies and applications aimed at mitigating the impact

of lung cancer.

Keywords: Lung Cancer, Agent-Based Simulation, Deep Learning, Compu-

tational Oncology, Deep Learning



1 Introduction

Lung cancer remains a leading cause of cancer-related mortality worldwide, claiming

millions of lives each year. Despite advancements in treatment, its diagnosis often

occurs at an advanced stage, complicating intervention and significantly reducing

survival rates. This disease is characterized by the uncontrolled growth of abnormal

cells within the lung tissue, resulting in the formation of malignant tumors [1, 2, 3].

Early detection and accurate prediction of tumor growth and evolution are critical

to improving patient outcomes, but these remain significant challenges in clinical

practice [4].

Lung cancer is broadly categorized into two main types: non-small cell lung

cancer (NSCLC), which accounts for approximately 85% of cases, and small cell lung

cancer (SCLC), which constitutes the remaining 15% and is characterized by its ag-

gressive growth and rapid metastasis. Treatments, including surgery, chemotherapy,

radiation therapy, targeted therapy, and immunotherapy, have shown varying lev-

els of success. However, for many patients, survival rates remain unsatisfactory,

underscoring the pressing need for innovative approaches [5, 6].

Recent advancements in artificial intelligence (AI) and computational model-

ing offer a promising path toward addressing these challenges. AI-driven techniques,

particularly those leveraging deep learning, have demonstrated remarkable capabil-

ities in analyzing medical images for the detection of lung cancer and predicting its

type. [7, 8, 9] These methods have the potential to revolutionize diagnostic and

therapeutic strategies by providing clinicians with actionable insights into tumor

behavior and response to treatment [10, 11, 12].

To complement AI-based detection, computational models such as agent-based

simulations (ABS) can capture the dynamic and nature of lung cancer at a cellular

level [13, 14, 15]. These models offer a unique advantage by enabling the repre-



sentation of individual tumor cells as agents interacting with their microenviron-

ment, responding to nutrient availability, oxygen levels, and therapeutic interven-

tions. However, traditional ABS often rely on static rule-based approaches that lack

adaptability to the complex and evolving nature of cancer.

This work proposes the development of a novel computational model that in-

tegrates neural networks into agent-based simulations, creating a dynamic model

capable of learning and adapting to the intricate interactions within the tumor mi-

croenvironment. By combining the predictive power of deep learning with the flex-

ibility of agent-based models, this work aims to provide a tool not only for early

detection but also for predicting tumor evolution and evaluating the efficacy of ther-

apies.

The significance of this work lies in its dual contribution: advancing the un-

derstanding of lung cancer progression and providing a computational approach for

cancer research. From a computer science perspective, this project addresses the

critical gap in existing models by introducing neural network-driven agents capa-

ble of autonomous decision-making. The resulting model will enable the simulation

of tumor behavior under varying microenvironmental conditions. This integrated

approach represents a step forward in cancer research, with implications for early

detection and treatment optimization.



2 Background

2.1 An Overview about Lung Cancer

Lung cancer is a severe disease that originates in the tissues of the lungs, typically

in the cells lining the airways. It is the leading cause of cancer-related deaths among

men and women worldwide, responsible for approximately 1.8 million deaths annu-

ally, which accounts for 18.6% of all cancer-related deaths. In countries like China

and India, the burden is particularly high due to elevated smoking rates and exposure

to carcinogens, while in Mexico, around 8,000 deaths are reported yearly, making

it the most lethal form of cancer in the country. Despite advances in diagnosis and

treatment, lung cancer remains a global health challenge [4, ?].

There are two main types of lung cancer: non-small cell lung cancer (NSCLC)

and small cell lung cancer (SCLC). NSCLC constitutes approximately 80-85% of

cases and includes subtypes such as adenocarcinoma, squamous cell carcinoma, and

large cell carcinoma. Adenocarcinoma is the most common subtype, seen in both

smokers and non-smokers [16, 12]. Squamous cell carcinoma is strongly associated

with smoking, while large cell carcinoma, though less common, tends to grow rapidly.

In contrast, SCLC accounts for 15-20% of cases and is characterized by its aggressive

behavior and strong correlation with heavy smoking [6, 17, 18].

The primary risk factor for lung cancer is smoking, contributing to about

85% of cases. Other factors include exposure to secondhand smoke, carcinogens

such as asbestos and radon, and genetic predispositions [1, 2, 3]. Symptoms often

include persistent cough, shortness of breath, chest pain, unexplained weight loss,

and fatigue. Diagnosing lung cancer requires a combination of imaging techniques

such as chest X-rays and computed tomography (CT) scans, along with biopsies to

confirm the presence of malignant cells[6, 2, 3].



Treatment strategies for lung cancer depend on the type and stage of the dis-

ease, as well as the patient’s overall health. Surgical options, such as lobectomy or

pneumonectomy, are common for early-stage cancer. Advanced stages often require

systemic therapies like chemotherapy, which uses drugs such as cisplatin and pacli-

taxel, or targeted agents that attack specific molecular pathways. Radiotherapy and

immunotherapy, particularly immune checkpoint inhibitors like pembrolizumab, are

also employed, especially in advanced cases where surgery is not feasible[19, 11].

Tumor growth and progression in lung cancer are driven by complex molecular

mechanisms involving oncogenes, tumor suppressor genes, and DNA repair genes.

Oncogenes such as MYC and RAS promote uncontrolled cell proliferation and sur-

vival, often through mutations or overexpression. Tumor suppressor genes, like TP53

and BRCA1/BRCA2, normally inhibit excessive growth, but their inactivation leads

to unchecked cellular division. Defects in DNA repair genes exacerbate genetic insta-

bility, allowing mutations to accumulate and drive cancer progression. Additionally,

the process of angiogenesis—where tumors stimulate the formation of new blood

vessels—ensures a continuous supply of oxygen and nutrients, enabling sustained

tumor growth and metastasis [20, 4].

Environmental factors play a crucial role in lung cancer initiation and progres-

sion. Carcinogens such as tobacco smoke, radiation, and certain chemicals induce

genetic mutations that disrupt normal cellular processes. Chronic exposure to these

agents increases the likelihood of malignant transformation. Moreover, viruses like

the human papillomavirus (HPV) have been implicated in some lung cancers, high-

lighting the multifactorial nature of the disease [12, 11].

Efforts to combat lung cancer must focus on prevention, particularly reducing

smoking rates and minimizing exposure to carcinogens. Early detection through

regular screenings, especially for high-risk populations, is essential for improving

outcomes. Advances in personalized medicine, including therapies targeting specific



genetic mutations, offer hope for more effective treatments. However, the aggressive

nature of the disease and its global impact underscore the need for continued research

and comprehensive public health strategies [18, 4, 11, 21].

2.2 Agent-Based Simulations (ABS): A Tool for Modeling Complex

Systems

Agent-Based Simulations (ABS) are a powerful modeling methodology used to study

complex systems by simulating the interactions of multiple autonomous entities,

known as agents. These agents represent individuals, groups, or entities that interact

with one another and their environment, making decisions based on predefined rules

and their perception of their surroundings. This modeling approach enables the

study of emergent behaviors that arise from simple interactions, which might not be

evident in more traditional models [22].

Agents in an ABS are defined as entities capable of perceiving their envi-

ronment, processing information, and acting based on internal rules. Each agent

is autonomous, operating independently while adapting and learning from its in-

teractions. This autonomy allows agents to represent diverse behaviors within a

simulation, capturing the variability seen in real-world models. Furthermore, the in-

teractions between agents and their environment often lead to emergent behaviors,

where simple individual actions result in complex, system-wide phenomena. For

instance, coordinated group movements, competitive dynamics, or the evolution of

cooperation are all emergent properties frequently observed in ABS models.

The core strength of ABS lies in its ability to model systems from the ground

up. Instead of imposing high-level dynamics on the system, ABS begins by defining

the rules governing individual agents. This micro-level detail captures intricate in-

teractions and provides insights into the macroscopic behaviors of the system. ABS



has been successfully applied in diverse fields, including economics (modeling mar-

kets and consumer behavior), sociology (studying social dynamics and migrations),

ecology (esimulating species interactions), and biology (investigating cellular growth

and morphogenesis) [22, 10, 23].

In biology, ABS has proven particularly valuable in exploring cellular processes

and systemic behaviors. For example, these models can simulate cell growth and divi-

sion, accounting for environmental factors such as nutrient availability and chemical

signaling. In morphogenesis, ABS helps study how cells self-organize to form com-

plex structures, elucidating the role of intercellular interactions in determining the

final shape of tissues and organs. Additionally, in immunology, ABS enables the

simulation of immune responses by modeling the interactions between immune cells

and pathogens, providing insights into the mechanisms underlying effective immune

defenses [24, 15, 25].

ABS is also instrumental in studying diseases such as cancer. By simulating

the interactions between cancerous and healthy cells, researchers can investigate the

factors influencing tumor growth, invasion, and metastasis. These models incorpo-

rate variables such as nutrient gradients, cell signaling pathways, and mechanical

forces to recreate the tumor microenvironment, offering a dynamic view of disease

progression. Beyond tumor dynamics, ABS is used to explore collective behaviors

in microbial populations or cellular ecologies, shedding light on cooperative or com-

petitive strategies that influence survival and adaptation [23, 24, 26, 15].

2.3 Integration of Neural Networks in Intelligent Agents

The integration of neural networks into intelligent agents has transformed their abil-

ity to learn and adapt to complex environments. By leveraging neural networks,

agents can process vast amounts of data, recognize patterns, and make informed

decisions, greatly enhancing their functionality and versatility.[10, 27]



2.3.1 What is a Neural Network?

An artificial neural network (ANN) is a computational model inspired by the human

brain’s structure and functionality. It consists of interconnected nodes, known as

artificial neurons, which process and transmit information. These neurons are ar-

ranged in layers: an input layer that receives data, one or more hidden layers that

process this information, and an output layer that provides results. The connections

between neurons are weighted, and these weights are adjusted during training to

optimize the network’s performance.[28]

Key Components: Neural networks are built on the following fundamental

elements:

• Neurons: Process incoming signals and generate outputs for subsequent layers.

• Weights: Define the strength and influence of connections between neurons.

• Activation Functions: Introduce non-linearity, allowing the network to model

complex relationships in data.

2.3.2 Advantages of Neural Networks

Neural networks provide numerous benefits, making them essential tools in intelligent

agent systems:

• Learning Capability: They excel at learning intricate patterns and relation-

ships from extensive datasets, enabling adaptation to changing conditions.

• Unstructured Data Handling: ANNs are adept at processing unstructured

data, such as images, audio, and text, which traditional models may struggle

with.



• Robustness: Neural networks are resilient to noise and variations in input

data, maintaining performance across diverse scenarios.

• Generalization: Once trained, they can accurately predict outcomes for new,

unseen data, a crucial feature for real-world applications.

2.3.3 Incorporation into Agents

The integration of neural networks enhances intelligent agents’ capabilities by al-

lowing them to learn from experience and adapt their behavior dynamically. This

synergy offers several key advantages:

• Adaptive Learning: Agents equipped with neural networks can continually

refine their decision-making processes based on feedback and changing envi-

ronments.

• Complex Decision-Making: Neural networks enable agents to analyze intricate

scenarios, recognizing subtle patterns and making well-informed choices.

• Environmental Interaction: Neural networks allow agents to interpret and

respond to environmental cues effectively, facilitating their application in fields

like robotics and simulations.

2.3.4 Application Examples

The integration of neural networks has been successfully applied in various domains,

including:

• Autonomous Robotics: Robotic agents employ ANNs for navigation, obstacle

avoidance, and performing tasks in dynamic environments.



• Gaming: Neural networks enable agents to develop and refine strategies, com-

peting effectively against humans or other agents.

• Recommendation Systems: Intelligent agents use ANNs to analyze user pref-

erences and deliver personalized recommendations, enhancing user experience.

By incorporating neural networks, intelligent agents gain the ability to oper-

ate in complex, data-rich environments, making them more effective and adaptable

across a wide range of applications.

2.4 The Microenvironment in Agent-Based Simulations

In agent-based simulations (ABS), the microenvironment represents the environment

in which agents interact and make decisions. This concept is essential to understand-

ing the dynamics that emerge within a simulated system, as the microenvironment

can significantly influence agent behavior and the overall outcomes of the simulation.

By defining the conditions in which agents operate, the microenvironment shapes

their interactions, decisions, and evolution over time.

The microenvironment encompasses various physical, chemical, and biological

factors that affect the agents. In biological contexts, for example, it may include

conditions such as the availability of nutrients, the presence of other cell types, or en-

vironmental variables like temperature and pH levels. These characteristics directly

influence the behavior, growth, and survival of agents. As a result, understanding the

microenvironment is key to accurately modeling and predicting agent interactions

and the outcomes of complex systems [14, 13].

Agents interact with their microenvironment through mechanisms that allow

them to perceive their surroundings. Sensors or input methods enable agents to

collect information about factors such as resource availability or environmental con-

ditions. Based on this information, agents make decisions and take actions that align



with predefined behavioral rules. For instance, a cellular agent might proliferate if

nutrients are abundant or migrate toward areas with higher resource concentrations.

These actions are governed by rules that can vary from simple (moving toward a

resource) to highly complex (forming collaborative structures with other agents).

Behavioral rules often include specific conditions that must be met for an agent to

execute particular actions, such as cell division or apoptosis.

Agents not only interact with their environment but also with each other, often

leading to emergent behaviors at the system level. For example, in a tumor growth

model, the interactions among cancer cells can drive tumor proliferation. Rules

governing these interactions may involve competition for resources, cooperation to

form structured assemblies, or communication via chemical signaling. This inter-

agent communication, often mediated by chemical signals in biological systems, plays

a crucial role in coordinating actions and responding to changes in the environment

or other agents. Such coordination enables the formation of communities or complex

structures within the microenvironment.

Agent-based simulations are widely used in biology to model phenomena such

as tumor growth, immune responses, and cellular ecosystems. For instance, in mod-

eling tumor growth, ABS can capture how cancer cells interact with their surround-

ings and other cell types, revealing insights into proliferation and invasion dynamics.

In immunology, simulations help explore how immune cells detect and respond to

pathogens, as well as their interactions within the immune system. Furthermore,

in cellular ecology, ABS is employed to study interactions among diverse cell types

within tissues or ecosystems, offering a better understanding of cooperative and com-

petitive behaviors that drive tissue formation or ecological balance [15, 23, 24, 25, 26].

The integration of microenvironmental factors into ABS enhances the realism

and predictive power of these simulations, providing valuable insights into complex

biological systems. By capturing the interplay between agents and their surround-



ings, these models can simulate emergent phenomena and offer a deeper understand-

ing of processes that are otherwise challenging to study experimentally.

3 Related work and State-of-the-art

Lung cancer presents a significant challenge in terms of diagnosis, treatment, and

prognosis, emphasizing the urgent need for effective tools and approaches to under-

stand and model tumor dynamics, as well as the interactions among diverse cellular

populations involved in the disease. Current limitations demand detailed attention.

On one hand, mathematical and computational models require greater precision to

capture the complexity of the pulmonary tumor microenvironment and cancer pro-

gression over time, in addition to validation with representative clinical datasets. On

the other hand, understanding the complex interplay between cellular populations

is essential for developing novel therapeutic strategies and prognostic biomarkers.

In the state of the art, various approaches address these challenges and relate

to this thesis proposal. Firstly, mathematical models for tumor growth have primar-

ily focused on describing tumor size and cellular populations, often incorporating

treatment effects. For instance, Jha et al. (2023) and Prelaj et al. (2023) developed

mathematical models to describe the general dynamics of cancer, while Salgia et

al. (2018) employed stochastic models to study small-cell lung cancer [29, 30, 31].

Other studies, such as Wang et al. (2016), applied particle swarm optimization to

adjust parameters in tumor models [32]. Similarly, Rojas et al. (2022) characterized

immunotherapy using Hamiltonian models, and Ghita et al. (2021) proposed a radi-

ation therapy model for non-small cell lung cancer [33, 12]. However, these models

treat the tumor as a whole and do not analyze cancer at the cellular level, leading

to the omission of several critical biological aspects.

Agent-based simulations are another promising avenue for modeling cancer.



Tools like PhysiCell demonstrate great potential for simulating interactions among

different cellular populations, providing a generic platform for cell-level simulations.

PhysiCell enables the incorporation of cancer therapies but requires the addition of

behavioral rules for other cell populations, complicating its use. Benson et al. (2024)

used the Compucell platform for a 3D cancer model, yielding biological insights into

cancer cell invasion [15]. Sreejithkumar et al. (2024) developed a 3D computational

model for tumor growth, achieving realistic representations of the tumor microen-

vironment [34]. However, these approaches work at the cellular level but are not

specialized for lung cancer, highlighting an area for future exploration [13, 21].

In the case of lung cancer, several models exist for cancer classification using

various medical imaging techniques and machine learning models. Recent examples

include Raza et al. (2023), who utilized an EfficientNet on CT scans, achieving 99%

accuracy [35]. Sachdeva et al. (2024) applied different machine learning algorithms,

such as Naive Bayes, K-nearest neighbors, and Decision Trees, with a maximum

accuracy of 96% [36]. Nasra (2024) employed a ResNet50 architecture, reaching

99% accuracy, while Naseer et al. (2023) used a modified U-Net to segment and

detect cancerous nodules, achieving 98.84% accuracy [37, 38]. However, none of

these models address tumor growth dynamics, and no studies have been identified

to date that tackle tumor growth in the human lung.

Agent-Based Models with Neural Networks

A novel and underexplored idea involves incorporating neural networks into agents

for simulation, aiming to improve and analyze the decisions made by agents in their

environment. Although not yet applied to biological contexts, this concept holds

promise for enhancing simulation realism. For example, Wilterson et al. (2021) used

neural networks in agents to model visuospatial attention for an object-catching task

[10]. Hendrikse et al. (2023) implemented agents with neural networks to simulate



social interactions [27].

Table 1 summarizes key studies in the field, highlighting the authors, year of

publication, type of model used, and major achievements [29, 30, 31, 32, 33, 12, 15,

34, 13, 21, 35, 36, 37, 38, 10, 27].



Table 1: Summary of the State of the Art in Tumor Modeling

Author(s) Year Model Type Achievements

Jha et al. 2023 Mathematical

Model

Developed models describing general cancer

dynamics. Focused on tumor size and progres-

sion.

Van et al. 2023 Mathematical

Model

Enhanced understanding of cancer progression

using deterministic approaches.

Salgia et al. 2018 Stochastic Model Studied small-cell lung cancer dynamics and

stochastic behavior.

Wang et al. 2016 Particle Swarm

Optimization

Applied optimization techniques to parameter

adjustment in tumor models.

Rojas et al. 2022 Hamiltonian

Model

Characterized immunotherapy using Hamilto-

nian dynamics.

Ghita et al. 2021 Radiation Ther-

apy Model

Proposed a model for radiation therapy in non-

small cell lung cancer.

Benson et al. 2024 Compucell ABM Developed a 3D cancer model to study cell in-

vasion dynamics.

Sreejithkumar et

al.

2024 Computational

Model

Created a realistic 3D tumor microenvironment

representation.

Raza et al. 2023 EfficientNet Applied EfficientNet to CT scans, achieving

99% accuracy for lung cancer classification.

Sachdeva et al. 2024 Machine Learn-

ing Algorithms

Used Naive Bayes, KNN, and Decision Tree for

classification with up to 96% accuracy.

Nasra et al. 2024 ResNet50 Achieved 99% accuracy in lung cancer classifi-

cation using ResNet50.

Naseer et al. 2023 Modified U-Net Developed a U-Net for segmentation and de-

tection of cancerous nodules, achieving 98.84%

accuracy.

Wilterson et al. 2021 Neural Agents Modeled visuospatial attention in agents using

neural networks.

Hendrikse et al. 2023 Neural Agents Simulated social interactions in agents using

neural networks.



4 Research Proposal

We expect to develop a computational model that allows simulating and visualizing

the dynamics of lung cancer, integrating interactions between different cell popula-

tions and cancer therapies. The results of this research could significantly contribute

to early diagnosis, personalized treatment, and accurate prognosis of lung cancer,

thus improving the quality of life of patients.

4.1 Problem Statement

Lung cancer remains one of the most prevalent and lethal forms of cancer worldwide,

with its progression and response to therapy heavily influenced by the complex inter-

actions between tumor cells and their microenvironment. These interactions involve

dynamic processes, such as nutrient competition, cellular signaling, and environ-

mental adaptation, which are difficult to predict using traditional experimental and

computational approaches. While significant strides have been made in understand-

ing these processes, many existing models fail to capture the natural mechanisms

and behaviors that arise within the tumor microenvironment.

Current computational models often lack the flexibility to dynamically repre-

sent cellular responses to environmental factors such as oxygen gradients, nutrient

availability, or chemical signals. Additionally, many models are static or overly

simplified, providing limited insights into how tumor cells adapt to adverse con-

ditions or develop resistance to therapies. The absence of robust and adaptable

models hinders the ability to predict tumor growth, evolution, and the emergence of

treatment-resistant phenotypes effectively [21, 4].

Furthermore, despite the recent advancements in deep learning and agent-based

modeling, these two fields have yet to be fully integrated to address the challenges

of modeling tumor dynamics. The potential of neural networks to learn and predict



complex behaviors remains largely untapped in the context of agent-based simula-

tions. As a result, there is a pressing need for a computational model that combines

the adaptability of neural networks with the dynamic nature of agent-based modeling

to provide more accurate and scalable predictions of tumor behavior [26, 27, 15].

Algorithms and mathematical models reported generally represent the tumor

growth problem considering only the tumor itself. This representation limits the

variables that may impact in the tumor growth. Additionally, this perspective does

not allow for analyzing the impact of the microenvironment in certain parts of the

tumor. This perspective provides a narrow view when compared with more complex

phenomena, such as therapy resistance, which is a major issue in the state of the art

[39, 21, 25].

4.2 Motivation

Lung cancer remains one of the leading causes of mortality worldwide, claiming

millions of lives each year. Its complex biology and multifaceted progression involve

not only the intrinsic behavior of cancer cells but also their continuous interaction

with the surrounding microenvironment. Understanding this interplay is crucial for

developing effective therapeutic strategies and improving patient outcomes. The

tumor microenvironment, including nutrient availability, oxygen gradients, chemical

signaling, and interactions with immune cells, plays a pivotal role in regulating

tumor growth, invasion, and resistance to therapy. Agent-based simulations (ABS)

provide a robust and flexible framework to model these interactions at a cellular

level. By simulating individual cells as autonomous agents, ABS captures their

dynamic behavior and the feedback loops that drive tumor progression, offering

insights beyond static experimental observations.

The integration of neural networks into agent-based simulations represents an

advancement in computational modeling. Neural networks empower agents with



adaptive learning capabilities, enabling them to refine their responses to environ-

mental stimuli based on prior experiences or complex input data. This approach

allows to simulate highly intricate biological processes, such as the evolution of ther-

apy resistance, the emergence of cooperative cellular behavior, or the intricate dance

between tumor and immune cells. By leveraging neural networks, these simulations

can reveal emergent patterns and behaviors that are difficult, if not impossible,

to predict using traditional experimental techniques or mathematical models. The

combination of ABS and neural networks thus opens the door to a deeper under-

standing of cancer dynamics, fostering innovation in both basic research and clinical

applications.

4.3 Justification

Lung cancer presents an urgent need for innovative approaches to understand its

progression and develop effective therapies. One of the most significant challenges

in lung cancer treatment is the development of resistance by cancer cells to conven-

tional therapies. This resistance, driven by complex interactions within the tumor

microenvironment, often results in treatment failure and disease recurrence. With-

out a comprehensive computational model to study these dynamics, critical insights

into how cancer cells adapt and survive therapeutic interventions may remain undis-

covered [16, 12, 1, 2, 3].

Traditional experimental methods, while invaluable, are limited in their capac-

ity to capture the adaptive behaviors of tumor cells within their microenvironment.

These methods often lack the scalability and resolution required to explore the intri-

cate interplay between cellular populations, nutrients, oxygen levels, and chemical

signals. If we fail to integrate advanced computational models, our understanding of

these processes will remain fragmented, delaying the development of novel strategies

to overcome therapeutic resistance [17, 4, 11].



Agent-based simulations (ABS) enhanced with neural networks offer a powerful

solution to address this challenge. By enabling agents to learn, adapt, and respond

dynamically to their surroundings, these models provide a unique opportunity to

study emergent behaviors that are otherwise difficult to predict.

By advancing an agent-based neural model for simulating lung cancer dynam-

ics, this research bridges critical gaps in current methodologies. It provides a path-

way to investigate adaptive cellular behaviors, understand resistance mechanisms,

and ultimately contribute to the development of precision therapies.

4.4 Research Questions

• What are the behaviors of the main cellular populations involved in the lung

cancer microenvironment?

• What are the physical and chemical stimuli provided by the lung cancer mi-

croenvironment to the cellular populations?

• How can deep learning models be designed to represent the behaviors of dif-

ferent cellular populations given the stimuli from the lung cancer microenvi-

ronment?

• How can neural networks be designed and integrated into agent-based models

to enable agents to adapt and learn from their environment?

4.5 Hypothesis

We hypothesize that the integration of neural networks into an agent-based model

can provide more accurate predictions of tumor growth and evolution. By enabling

agents to learn from and adapt to their microenvironment, this approach enhances

the capacity of the simulation to capture complex and emergent behaviors of tumor



cells. This computational model could outperform traditional modeling techniques

by offering deeper insights into the dynamic interactions between cancer cells and

their surroundings, ultimately contributing to a better understanding of tumor pro-

gression and therapeutic interventions.

4.6 Objectives

4.6.1 General Objective

To develop a computational agent-based model enhanced with neural networks to

describe tumor growth dynamics in the human lung, including the interactions with

therapeutic treatments .

4.6.2 Specific Objectives

1. To describe cellular-level interactions among the different cell populations in-

volved in the lung cancer microenvironment and their response to therapies.

2. To design and implement a neural network capable of recognizing key mi-

croenvironmental elements in lung cancer and predicting cellular behaviors in

response to these factors.

3. To establish a computational model that accurately represents the charac-

teristics of the cellular microenvironment and its interactions with the cell

populations

4. To develop an agent-based model that incorporates neural networks to mimic

the behaviors of tumor cells and their interactions with the microenvironment.

5. To implement therapeutic strategies within the model, enabling the interac-

tions between cellular populations and potential cancer treatments



6. To validate the integrated ecosystem by comparing its predictions with exper-

imental data or established biological benchmarks.

4.7 Expected Contributions

This research is expected to contribute significantly to the field of computer science

through the following advancements:

• Development of a Deep Learning-Based Model: Establishing a neural network

model capable of recognizing the elements of a cell’s microenvironment and

predicting its actions. This contribution will enhance the understanding of

cellular responses to complex and multiple environmental factors.

• Representation of the Cellular Microenvironment: Creating a computational

model that accurately represents the characteristics of the cellular microen-

vironment, providing a platform for exploring interactions and dynamics in

biological systems.

• Integration of Neural Networks in an Agent-Based Model: Implementing

neural networks within an agent-based model to enable agents to adapt, learn,

and make decisions based on dynamic microenvironmental inputs. This inte-

gration bridges the gap between rule-based modeling and adaptive artificial

intelligence.

• Modeling of Cellular Populations and Cancer Therapies: Introducing a model

to simulate the interactions between cellular populations and cancer therapies,

including the representation of therapeutic effects on the cells. This contribu-

tion allows for the evaluation and optimization of therapy strategies.



4.8 Methodology

In this section, we present a methodology to be followed in order to achieve the

objectives outlined in this project.

Activities

1. Literature review:

• Review of lung cancer growth models and their simulation methodologies.

• Study of agent-based models (ABM) and their application to cancer re-

search.

• Review of neural network architectures for decision-making in dynamic

systems.

• Identify and analyze existing datasets and microenvironment models rel-

evant to lung cancer.

• Evaluate state-of-the-art ABM tools and models, such as PhysiCell, for

their suitability in modeling tumor progression.

• Define specific objectives for integrating neural networks within agent-

based models.

2. Development of the agent-based tumor growth model:

• Define initial conditions for the tumor microenvironment, including oxy-

gen, nutrients, pressure, space availability, and toxicity.

• Represent the tumor microenvironment.

• Develop rules and behaviors for individual tumor cells, including prolif-

eration, movement, resting, and death.

• Integrate neural networks into each agent for decision-making based on

environmental factors.



• Simulate tumor growth dynamics over a fixed number of steps and validate

the results against expected biological behavior.

3. Integration and visualization of simulation results:

• Implement a visualization pipeline to generate real-time 2D and 3D plots

of the tumor microenvironment parameters (e.g., oxygen, nutrients, pres-

sure).

• Create comparative graphs to evaluate the effects of different initial con-

ditions and parameter settings on tumor progression.

• Develop metrics to quantify tumor growth, cell proliferation rates, and

agent behaviors over time.

4. Application and analysis of therapeutic strategies:

• Simulate the effects of different therapies, such as hypoxia-inducing treat-

ments or nutrient deprivation, on tumor growth.

• Analyze the impact of various therapy protocols on cell behavior, survival

rates, and overall tumor size.

• Use simulation data to optimize therapeutic strategies and assess their

effectiveness.

5. Validation and model refinement:

• Compare simulation outputs with experimental or clinical data, if avail-

able.

• Refine the agent behaviors and neural network models based on observed

discrepancies.

• Conduct sensitivity analysis to identify key parameters influencing tumor

growth and agent decisions.



4.9 Work Plan

The following table presents the work plan for this project, detailing the activities

and their timeline over the course of four years divided into three periods each year.

Activities Year 1 Year 2 Year 3 Year 4

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

Literature review ✓ ✓ ✓ ✗

Define specific objectives for

integrating neural networks

within ABMs

✗

Development of the agent-

based tumor growth model

✗ ✗ ✗

Integration and visualization

of simulation results

✗ ✗ ✗

Application and analysis of

therapeutic strategies

✗ ✗ ✗

Validation and model refine-

ment

✗ ✗ ✗ ✗ ✗ ✗

Publications ✗ ✗

Table 2: Work Plan for the Project

4.10 Publications Plan

We aim to publish two articles in scientific journals, which will present the results

obtained up to that point during the thesis development. The first article will be

based on one year of progress in the research, while the second article will encompass

the results of the thesis by the end of the third year.



4.11 Scope and Limitations

The scope of this project encompasses the development of a computational model

that integrates deep learning-based neural networks into agent-based simulations

to predict and analyze tumor growth and evolution in lung cancer. This model

aims to design neural networks capable of interpreting critical elements of the cel-

lular microenvironment, such as nutrient availability, oxygen levels, and chemical

signals, and predicting cellular responses based on these factors. Additionally, an

agent-based model will be developed to simulate the behavior and interactions of

individual tumor cells within their microenvironment, focusing on processes such

as proliferation, migration, and apoptosis under varying environmental conditions.

The ultimate goal is to provide a flexible and extensible computational tool that ad-

vances our understanding of tumor dynamics and serves as a platform for exploring

therapeutic interventions.

Despite the ambitious goals of this project, several limitations must be ac-

knowledged. First, the model relies on a simplified representation of the cellular

microenvironment and behaviors, using a finite set of parameters and rules that

may not fully capture the complexity of real biological systems. Furthermore, the

accuracy of the model depends heavily on the availability and quality of experi-

mental data, which are essential for training the neural networks and validating the

simulation outcomes. Computational costs also pose a significant challenge, as the

integration of deep learning into agent-based simulations requires substantial com-

putational resources, potentially limiting the scale and resolution of the simulations.

Another limitation lies in the generalizability of the model. While ours is de-

signed specifically for lung cancer, adapting it to other types of cancer or biological

systems would require extensive modifications and revalidation. Finally, it is im-

portant to note that this project focuses on modeling tumor growth and evolution

rather than directly predicting the efficacy of specific therapeutic interventions. Ad-



dressing these limitations will require careful consideration during the development

process and may present opportunities for future work and refinement.

4.12 Development Tools

To conduct the experiments, the following resources are considered:

Software: The experiments will be conducted using the following software

resources:

• Python 3: The primary programming language for algorithm development and

implementation.

• PyTorch 1.8: A deep learning framework for neural network modeling and

training.

• NumPy: For numerical computations and array manipulations.

• Pandas: For data manipulation and analysis.

• OpenCV: To process and analyze visual data.

• Matplotlib: For creating static, animated, and interactive visualizations.

Hardware: The computational experiments will be carried out on a PC with

the following specifications:

• Storage: 1 TB.

• RAM: 32 GB.

• GPU: NVIDIA RTX 3060 with 6 GB RAM.

• CPU: AMD Ryzen 9 5900HX with Radeon Graphics



NVIDIA Academic Grant Program: The NVIDIA Academic Grant Program

supports researchers conducting computationally intensive work in data science and

related fields. This initiative provides access to high-performance computing re-

sources, particularly leveraging NVIDIA’s GPU architectures and software frame-

works, to advance cutting-edge research [40]. More details about the program can

be found at:

https://goo.su/Z4u0g.

Benefits of Utilizing the Grant Program for This Research: The proposed study

involves deep learning and agent-based modeling, both of which require significant

computational power for training neural networks and running large-scale simula-

tions. By utilizing the resources provided by the NVIDIA Academic Grant Program,

this research can benefit in the following ways:

• Access to High-Performance GPUs: Selected projects receive up to 32,000

hours on A100 40GB GPUs, significantly accelerating model training and sim-

ulation processes.

• Optimized Frameworks for Data Science: The grant program supports the use

of RAPIDS, cuPy, cuDF, cuGraph, and Modulus, which enhance large-scale

data processing, statistical analysis, and graph-based computations.

• Scalability for Large Simulations: The ability to run parallelized simulations

with multiple GPUs allows for modeling tumor growth dynamics with high

spatial and temporal resolution.

• Advanced Graph Neural Networks (GNNs): The program enables the explo-

ration of graph-based deep learning architectures to improve cellular interac-

tion modeling within the tumor microenvironment.

• Integration with Physics-Informed Models: NVIDIA’s Modulus framework

facilitates physics-based modeling, which could enhance the biological accuracy

https://goo.su/Z4u0g


of tumor progression simulations.

This program presents an excellent opportunity to enhance this research. We

have submitted our application and are currently awaiting a response from the

NVIDIA team, which is expected in June.

5 Preliminary Results

This research focuses on the development of a Neural Agent-Based Model that in-

tegrates deep learning-based neural networks into an agent-based simulation. A

dataset was designed to capture biologically relevant cellular behaviors, serving as

the foundation for neural agents capable of modeling cellular responses to dynamic

and modifiable microenvironmental stimuli.

The microenvironment is represented as a 2D array, where each point is char-

acterized by specific features that serve as inputs for the neural agents. These agents

make decisions based on the microenvironment, with each action influencing both

the microenvironment and neighboring cells, creating a complex, dynamic system of

interactions.

Significant progress has been made in modeling the tumor microenvironment,

establishing potential foundations for predicting cellular behavior through machine

learning. At the end of the simulation, the complete state of the microenvironment

and the final population count of the cells can be analyzed. This work aims to

provide a comprehensive framework for understanding tumor growth and cellular

interactions, leveraging the predictive capabilities of neural networks.



5.1 Dataset Creation

The creation of a this dataset has been a crucial aspect of this work, aiming to model

cellular behavior within a dynamically changing microenvironment. The dataset is

designed to represent six key features: oxygen, nutrients, pressure, available space,

waste toxicity, and the oxygen gradient. These features are essential inputs for

modeling cellular responses.

Weights for Cellular Actions

The weights assigned to the microenvironmental features represent the relative in-

fluence of each factor on the probabilities of cellular actions. The weights used for

each action are as follows:

Table 3: Weights assigned to each cellular action

Action Oxygen Nutrients Pressure Space Toxicity Oxygen Gradient

Proliferation 0.6 0.5 -0.1 0.2 -0.2 0.1

Rest 0.4 0.4 0.4 0.2 -0.2 -0.2

Death -0.5 -0.4 0.5 -0.4 0.4 -0.2

Movement 0.4 0.4 0.2 0.5 0.4 0.6

Dataset Generation Process

To train and evaluate the neural networks, a synthetic dataset was generated based

on the input parameters of the microenvironment and their probabilistic relation-

ships with cellular responses. For example, probability functions were employed

to model the likelihood of specific cellular actions—such as proliferation or cell



death—depending on varying levels of environmental factors. These functions are

derived from biological principles and, if experimental data were available, could be

calibrated to reflect real-world observations.

The dataset generation process ensures diversity and representativeness by

incorporating a wide range of environmental conditions and cellular states. Each

data entry includes environmental features, agent states, and corresponding cellular

responses, providing a comprehensive training set for the neural network. Moreover,

the probabilistic approach enables the simulation of stochastic behaviors observed in

biological systems, enhancing the biological realism and generalization capabilities

of the model.

Probability Formulas

The probabilities of cellular actions are calculated using a formula that evaluates the

weighted product of the microenvironmental features. To avoid negative values, the

function min(0, zj) is used where applicable. The formulas for each cellular action

are as follows:

Proliferation

PProliferation =
min(0, zProliferation)∑4

k=1min(0, zk)
,

where:

zProliferation = 0.6 ·O2 + 0.5 ·N + (−0.1) · P + 0.2 · S + (−0.2) · T + 0.1 ·G,

and:

• O2: Oxygen.

• N : Nutrients.



• P : Pressure.

• S: Available space.

• T : Toxicity.

• G: Oxygen gradient.

Rest

PRest =
min(0, zRest)∑4
k=1 min(0, zk)

,

where:

zRest = 0.4 ·O2 + 0.4 ·N + 0.4 · P + 0.2 · S + (−0.2) · T + (−0.2) ·G.

Death

PDeath =
min(0, zDeath)∑4
k=1 min(0, zk)

,

where:

zDeath = (−0.5) ·O2 + (−0.4) ·N + 0.5 · P + (−0.4) · S + 0.4 · T + (−0.2) ·G.

Movement

PMovement =
min(0, zMovement)∑4

k=1 min(0, zk)
,

where:

zMovement = 0.4 ·O2 + 0.4 ·N + 0.2 · P + 0.5 · S + 0.4 · T + 0.6 ·G.



Reasoning Behind: Min function

The min(0, zj) function ensures that probability values remain non-negative, main-

taining biological consistency. This approach ensures that only favorable combina-

tions of features contribute positively to a specific cellular action, while unfavorable

combinations are assigned a value of 0.

5.2 Dataset Generation Process

The dataset generation process follows these steps:

1. Generate random uniform values between [0, 1] for the microenvironmental

features.

2. Compute the probabilities of each action using the formulas above.

3. Normalize the probabilities so that their sum equals 1.

4. Assign a class based on the action with the highest probability.

5. Repeat until a balanced number of samples per class is obtained.

Description of the Generated Dataset

The dataset contains:

• Inputs: Microenvironmental features (Oxygen, Nutrients, Pressure, Available Space,

Toxicity, Oxygen Gradient).

• Probabilities: For each action (Proliferation Prob, Rest Prob, Death Prob,

Movement Prob).

• Classes: Numeric and nominal values (Class Numeric, Class Nominal).



The final dataset consists of 2,500 samples evenly distributed across the four

classes, ensuring balance.



5.3 Neural Network´s Training and Evaluation

A prototype neural network has been implemented to process the microenvironment

data and predict cellular responses. This model utilizes a feed-forward architec-

ture optimized for speed and accuracy, capable of handling multiple inputs such as

nutrient gradients, oxygen levels, and and waste accumulation.

The neural network was trained using the generated dataset to predict cellular

behavior based on the microenvironmental features. This section describes the archi-

tecture of the network, training process, and the evaluation of the neural network’s

performance.

Neural Network Architecture

The network was constructed as follows:

• Input Layer: Six neurons corresponding to the microenvironmental features

(Oxygen, Nutrients, Pressure, Available Space, Toxicity, Oxygen Gradient).

• Hidden Layers:

– First hidden layer: 64 neurons.

– Second hidden layer: 32 neurons.

– Third hidden layer: 16 neurons.

• Output Layer: Four neurons, output probabilities for each cellular behavior

(Proliferation, Rest, Death, Movement).

Training Performance

During training, the model achieved a high degree of accuracy, stabilizing at 99%

on the test set. The loss for both training and validation sets converged, indicating



the absence of overfitting. Figure 1 illustrates the loss evolution during training.

Figure 1: Training and validation loss over 3,000 epochs.

Evaluation Results

The final test accuracy was 99%. Table 4 summarizes the evaluation metrics for

each class.

Table 4: Evaluation Metrics for Each Class

Class Precision Recall F1-Score Support

Proliferation 0.99 1.00 0.99 355

Rest 1.00 0.99 0.99 382

Death 0.99 1.00 1.00 377

Movement 1.00 0.99 0.99 386

Average 0.99 0.99 0.99 1,500

The confusion matrix in Figure 2 highlights the strong predictive capability of

the model, with minimal misclassifications across all classes.



Figure 2: Confusion Matrix.

5.4 Microenvironment Design and Scalability

The microenvironment was designed to simulate a simplified but biologically relevant

representation of the conditions influencing cellular behavior. By focusing on key

environmental factors, such as oxygen, nutrients, pressure, space, toxicity, and

the oxygen gradient, this model provides a flexible foundation for studying the

interactions between cells and their surroundings. Below, we detail the guiding

principles and scalability aspects used during the conducted ongoing experiments.

For this experiment a microenvironment of 25x25 was designed with oxygen and

nutrients in the center.

Key Design Principles

1. Radial Symmetry for Gradual Changes: The oxygen and nutrient distribu-

tions are modeled using a radial decay function (exp(−r2)), simulating a nat-



ural diffusion-like behavior. This allows for a biologically realistic gradient,

promoting interactions that are spatially dependent.

2. Dynamic Gradients: The oxygen gradient is calculated directly from the oxy-

gen distribution, ensuring that changes in the microenvironment automatically

reflect in the calculated gradients. This approach enables adaptive responses

in the simulation to mimic real-world biological processes.

3. Layered Features: Each feature (oxygen, nutrients, etc.) is stored as a separate

layer in a multidimensional array. This modular design supports seamless

additions or modifications of features without disrupting the existing model.

4. Scalability and Generalization: The microenvironment can easily adapt to

incorporate additional features, such as temperature, pH levels, or drug con-

centrations, by simply appending new layers to the multidimensional array.

The same methodology can be extended to represent larger or smaller envi-

ronments by adjusting the size parameter of the microenvironment array.

Visual Representation of Features

The heatmaps generated for each feature provide immediate insights into their spatial

distributions. These visualizations are not only essential for debugging but also offer

to the user a clear understanding of how the microenvironment evolves over time.

Below in Figure 3 we present the heatmaps that represent each feature of the

microenvironment.

We can see in Figure 3 each feature. This values are easily modifiable for future

experiments. In this case, oxygen and nutrient are available in the center, space is

available, pressure and toxiciy are nule and the oxygen gradient is calculated.



Figure 3: Micromicroenvironment´s heatmaps for each feature during the start of the

simulation.

5.5 Neural Agent-based Ecosystem Results

The integration of neural networks into the agent-based model remains an ongoing

effort. This involves establishing dynamic feedback loops, where the neural network

not only predicts cellular responses but also adjusts the microenvironment based on

those responses. For example, a cell’s decision to proliferate will locally alter nutri-

ent availability and waste accumulation, which also affects neighboring agents. The

simulation’s design emphasizes scalability, ensuring that large-scale cellular popu-

lations can be modeled efficiently. The following pseudocode summarizes the main

steps of the simulation:



Pseudocode of the Neural Agent-based Ecosystem

Algorithm 1: Neural Agent-based Ecosystem
Data: Initial microenvironment, initial cell states (normal or cancer cells)

Result: Updated microenvironment, Cell states, and Cell´s Population

1 Initialize: Load microenvironment and Agents´ Neural Network;

2 Define: Initial number of cells and cells´ positions

foreach step t = 1, . . . , T do

3 Update Microenvironment:

• Update pressure.

• Update Oxygen Gradient.

Update Cell States:

• Evaluate environmental inputs for each cell.

• Calculate probabilities for proliferation, movement, rest, and death.

• Update cell states based on probabilities.

Adjust Environment:

• Modify the microenvironment based on cell actions (e.g., nutrient

consumption, waste production).

Update Microenvironment:

• Update all microenvironment´s features.

• Verify all features values are in range.

4 end



Visualization of Results

Below are the heatmaps of the microenvironment and cell states at key steps of the

simulation (steps 0, 10, 50, 100, 150, and 200). Each pair of heatmaps shows the

spatial distribution of environmental factors and cell states.

Microenvironment at initial Step

Cells at Initial Step

Microenvironment at Step 10

Cells at Step 10



Microenvironment at Step 50

Cells at Step 50

Microenvironment at Step 100

Cells at Step 100



Microenvironment at Step 150

Cells at Step 150

Microenvironment at Step 200

Cells at Step 200



Cancer Cell Count Over Time

The following plot shows the number of live cancer cells throughout the simulation,

providing insights into the dynamics of tumor growth or reduction.

Figure 4: Number of Cancer Cells Over Time

5.6 Discussion

The Results demonstrates the adaptability of the microenvironment and cell interac-

tions. The visualizations and statistics provide valuable insights into the spatiotem-

poral dynamics of cancer cell behavior under varying environmental conditions.

In general, this simulation does not provide additional oxygen or nutrients

to the cells during the simulation runtime. This constraint aligns with scenarios

where the tumor microenvironment experiences limited resources, contributing to

the biological realism of the model. However, parameters such as the weight and

volume of the cells could be further refined to improve the accuracy and precision

of the results.

The results obtained from the simulation show coherence with known biologi-



cal behaviors. The interactions between cancer cells and their environment, such as

proliferation, movement, and death, reflect patterns observed in experimental data.

The integration of neural networks within the agent-based model enhances the abil-

ity of cells to make decisions based on environmental conditions, and the network

functions adequately in this context.

Additionally, other tests were conducted using different initial numbers of can-

cer cells to evaluate the robustness of the model. These tests demonstrated consistent

behavior in line with biological expectations, indicating the reliability of the model

across varying initial conditions.

6 Conclusions

This research introduces an innovative computational approach by integrating neural

networks into an agent-based model to simulate tumor growth and cellular interac-

tions within a dynamic microenvironment. The current implementation demon-

strates the adaptability of the microenvironment and the agents’ ability to respond

to changing environmental conditions. However, there are several areas for further

refinement and exploration.

The parameters defining cell behavior, such as weight and volume, as well as the

physical and chemical characteristics of the microenvironment, could be optimized

to improve accuracy and better reflect biological reality. Additionally, incorporating

more complex biochemical interactions, such as signaling pathways and metabolic

constraints, would enhance the model’s capacity to capture tumor evolution with

greater fidelity.

The flexibility of the neural network architecture also presents opportunities

for improvement. The current implementation can be expanded to incorporate al-

ternative architectures such as liquid neural networks, physics-informed neural net-



works, and Kolmogorov-Arnold Networks (KAN). These approaches could improve

the model’s adaptability, predictive capabilities, and interpretability, allowing for a

more detailed exploration of cellular decision-making processes.

This methodology is not limited to tumor modeling but can be extended to sim-

ulate other neural agents representing distinct cellular populations, such as immune

cells or healthy cells within the tumor microenvironment. Additionally, therapies

could be modeled as neural agents, dynamically interacting with tumor cells. While

the selection of specific therapies for simulation is still under consideration, this

approach opens new pathways for studying treatment strategies computationally.

6.1 Final Remarks

One of the primary challenges of this research is the validation of the model, as there

is a limited availability of real-world datasets that accurately track tumor progression

at a cellular level. However, comparisons can be made using existing murine tumor

models, where tumor volume evolution has been documented over time. These com-

parisons would allow for an initial assessment of the model’s accuracy and biological

relevance.

Furthermore, we have applied for the NVIDIA Hardware Grant Program,

which, if approved, would provide access to advanced computational resources for

more complex simulations and large-scale experiments. Leveraging NVIDIA’s hard-

ware could significantly accelerate training times for neural networks, enabling more

extensive hyperparameter tuning and real-time processing of tumor dynamics.

6.1.1 Scalability for Future Applications

Beyond the current model, several extensions could be explored to enhance the

scalability and versatility of this approach:



1. Expansion to 3D Simulations: Introducing a third spatial dimension (z-axis)

would enable the simulation of more biologically relevant structures, such as

tumor spheroids or full tissue models.

2. Heterogeneous Microenvironments: Instead of a homogeneous distribution

of microenvironmental factors, more complex spatial patterns could be intro-

duced, incorporating tissue regions with variable oxygen, pressure, and nutrient

levels to better replicate in vivo conditions.

3. Dynamic Environmental Updates: Over time, factors such as pressure, toxic-

ity, and oxygen diffusion can be updated dynamically in response to cellular

actions (e.g., proliferation increasing pressure or death increasing toxicity).

This feature would enable longitudinal studies of tumor evolution and the ef-

fects of different therapeutic strategies.

4. Integration of Adaptive Therapies: By incorporating neural agents represent-

ing adaptive therapies, the model could simulate dynamic treatment strategies,

such as personalized drug responses based on real-time tumor progression.
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