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Abstract

The growing advances in the Internet of Medical Things (IoMT) have

brought several benefits to healthcare services. Regrettably, dense connec-

tivity to the IoMT network provides an attractive target for cyber attackers.

In response, researchers have deployed anomaly detection methods based on

Machine Learning (ML) to detect cyberattacks. These methods involve rec-

ognizing the network patterns of malicious activities. Unfortunately, the lack

of labeled data and novel cyberattacks limit the adoption of supervised ML

models. Unsupervised ML models have been used as promising solutions.

However, their performance remains suboptimal due to the challenges posed

by the heterogeneous nature of IoMT data, which complicates the extraction

and selection of relevant network traffic features—critical processes to ensure

the effectiveness of these methods. Several studies have proposed hybrid so-

lutions that synergize supervised and unsupervised ML models rather than

enhancing unsupervised learning to detect unknown security threats in IoMT

environments. Beyond these environments, researchers have used advanced

unsupervised DL-based algorithms such as generative models and autoen-

coders. However, they are usually computationally intensive for constrained

IoT devices. Moreover, most studies rely on pre-extracted and pre-processed

network traffic features, overlooking the challenges present in the current fea-

ture engineering processes, such as large number of features, inconsistencies in

collecting network traffic data, and feature extraction tools that are incompat-

ible with certain protocols due to the lack of security standards in IoMT. These

issues complicate the feature engineering process, which hinders the reliability

of anomaly detection. Consequently, cutting-edge technologies are required

to find a balance between anomaly detection performance and learning effi-

ciency for anomaly detection in IoMT environments. The inherent parallelism

and computational advantage of quantum computing over classical systems

have resulted in its application to machine learning, known as Quantum Ma-

chine Learning (QML). Recent advances in anomaly detection using QML have

demonstrated improved pattern recognition and reduced computational cost.

However, the effectiveness of QML in detecting anomalies through unsuper-

vised learning for IoMT environments remains to be demonstrated. Therefore,

we propose exploring QML for unsupervised anomaly detection to enhance se-

curity in these environments.
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1 Introduction

The Internet of Things (IoT) has revolutionized the healthcare industry, giving rise

to what is known as the Internet of Medical Things (IoMT), which offers numerous

benefits, such as improving patient care and reducing costs for users. This environ-

ment requires multiple communication protocols to enable interoperability between

different healthcare systems, sensors, and medical devices [1].

Regrettably, this heterogeneity results in devices that frequently lack essen-

tial security standards. In addition, their limited resources, constrained memory

capacity, limited ability to update their software, and lack of robust cryptographic

mechanisms make them highly vulnerable to various types of cyberattacks. Unfor-

tunately, cyber threats are constantly evolving, using new and unseen patterns or

methods. Consequently, anomaly detection is increasingly seen as a key component

in modern cybersecurity strategies [2–6].

The growing volume of data generated within IoMT environments drives the

adoption of ML in cybersecurity. ML algorithms have been widely utilized to de-

tect intrusions and anomalies to secure IoMT environments against cyberattacks [7,

8]. However, the scarcity of labeled data in these environments and novel security

threats challenge the full adoption of supervised ML models. Unsupervised ML-

based anomaly detection approaches seem a promising solution [9]. Additionally,

unsupervised methods have the potential to find intricate patterns and relation-

ships within the data, which could improve model generalization [10]. However,

their performance remains inferior compared to supervised ML models, suggesting

that extracting and selecting relevant features for anomaly detection is a challenging

task in IoMT environments. In response, these approaches are likely to synergize

with supervised ML models rather than replace them [11, 12]. However, generating

enough outlier data to effectively train these algorithms can be time consuming and

sensitive to human error, making it challenging to identify anomalies that were not

observed during the learning phase, suggesting that these approaches are not ad-

vanced enough to identify unknown malicious patterns efficiently in heterogeneous

IoMT environments. Beyond IoMT settings, unsupervised DL-based models have

been proposed; however, they are usually expensive for resource-constrained devices.

Thus, the development of advanced techniques to improve the detection of anomalies

could enhance IoMT security.
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A new research field, known as Quantum Machine Learning, has emerged to

improve classical solutions due to its ability to process vast amounts of data simul-

taneously and its potential for enhanced pattern recognition. This novel technology

has the potential to improve security solutions, such as anomaly and intrusion de-

tection methods [3, 13, 14]. Although the application of QML for anomaly detection

is still in its infancy, previous studies have shown improvements over classical ML

models, including enhanced learning efficiency and pattern recognition [15–17]. As a

result, this study explores its potential in anomaly detection through unsupervised

learning for IoMT environments, which remains to be demonstrated.

1.1 Motivation

Current predictions on the global IoMT market are expected to surpass USD 1,940.75

billion by 2033 [18]. Regrettably, the healthcare industry is one of the three most fre-

quently targeted sectors, alongside educational and government organizations, and

experiences an estimated 2,000 weekly cyberattacks [19]. Since 2011, the healthcare

industry has endured the most expensive data breach costs compared to other orga-

nizations, such as finance, manufacturing, technology, energy, and pharmaceuticals.

[20]. As a result, security solutions are necessary to ensure the security of data users

and patient safety.

In recent years, Artificial Intelligence (AI) and automation have improved cy-

bersecurity capabilities, including network monitoring and anomaly detection [4]. AI

and Machine Learning were ranked as the second most effective strategies in reduc-

ing average data breach costs, after employee training as the leading cyber defense

[20]. Moreover, the global market for AI in cybersecurity solutions is projected to

reach a value of 133.8 billion dollars by 2030 [21].

Anomaly detection in networks can be considered an important step in the

detection of a cyberattack [3]. In addition, anomaly detection is becoming an addi-

tional layer for proactive protection of IoT-based systems [22]. Although anomaly

detection methods based on ML algorithms have proven to be an essential security

solution for IoMT environments, the number and variety of cyberattacks continue

to increase and these environments will remain attractive to cybercriminals because

their complex and heterogeneous nature brings several unsolved security issues [2].

As a result, more advanced security solutions are required [23].
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At present, Quantum Computing is becoming more prominent because of its

inherent parallelism and computational advantage over classical systems [24]. By

2029, its global market is expected to reach 5.3 billion dollars [25]. A common

application of this research field is Quantum Machine Learning (QML), which is

expected to introduce several benefits over classical approaches in terms of com-

putational costs and pattern recognition [3, 13, 14, 26, 27]. Although QML-based

anomaly detection is at early stages, it shows significant promise [28]. Integrating

QML into unsupervised anomaly detection opens up opportunities to leverage its

capabilities for identifying anomalies and enhancing IoMT security.

1.2 Justification

In light of the growing popularity of IoMT and the recognition of ML as a key cyber

defense strategy, the urgent need for more advanced security approaches capable

of detecting anomalies caused by cyberattacks continues to persist. This led us to

consider the emerging research field of Quantum Machine Learning as a promis-

ing direction to enhance the performance of classical unsupervised ML models in

identifying anomalies within IoMT environments.

1.3 Problem Statement

The performance of unsupervised ML-based anomaly detection methods for IoMT

environments is still inferior compared to supervised approaches. In response, most

methods are likely to synergize with supervised ML models rather than substituting

them. Regrettably, these models do not address the detection of anomalies that were

not encountered during training, and the scarcity of labeled data further challenges

their adoption in IoMT environments. Beyond IoMT, unsupervised DL models have

demonstrated promising results; however, they are usually expensive for resource-

constrained devices. These challenges present an opportunity for exploration and

analysis of advanced technologies, such as Quantum Machine Learning, to develop

efficient unsupervised anomaly detection methods and secure IoMT environments

against cyberattacks and trade-off anomaly detection performance and learning ef-

ficiency.

Formally,
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Consider z devices {d1, d2, . . . , dz} that constitute an IoMT architecture of k

layers. The network packets are collected in n discrete time intervals with constant

length T = {t1, t2, . . . , tn}, where each ti represents the start time of a time interval.

Thus, the total network flows, P , monitored throughout the architecture, can be

described as follows.

P =
n⋃

i=1

{
z⋃

j=1

{pj(t, L) | L ∈ {L1, L2, . . . , Lk}, t ∈ [ti, ti+1]}

}
(1)

where pj(t, L) represents the network packets generated by device dj from its

respective layer L within a time interval.

Let Φ denote the feature extraction process applied to the P network flows

collected over n time intervals:

Φ(P ) =


ϕ1,1 ϕ1,2 . . . ϕ1,m

ϕ2,1 ϕ2,2 . . . ϕ2,m

...
...

. . .
...

ϕn,1 ϕn,2 . . . ϕn,m

 (2)

Where ϕn,m represents the m-th network traffic feature extracted within the

n-th time interval.

An anomaly caused by a cyberattack within the network may be reflected in

the change of one or more network traffic features, expressed as follows.

Fattack : Φ(P )B → Φ(P )M (3)

Where Φ(P )B and Φ(P )M represent the network traffic features extracted in a

benign and malicious scenario, respectively.

Assume that A is an unsupervised anomaly detection algorithm that maps

each feature vector from Eq. 2 to a benign or malicious scenario:

A(Φ(P )) : [ϕi,j]
m
j=1 → yi (4)
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Where yi ∈ {YBenign, YMalicious} is the type of scenario assigned to the network

flow collected within the i-th time interval.

The performance of current unsupervised ML algorithms developed for anomaly

detection continues to exhibit suboptimal performance compared to supervised ML

models. However, the scarcity of labeled data in IoMT hinders the adoption of su-

pervised ML algorithms. As a result, this study aims to explore the potential of

Quantum Machine Learning in enhancing anomaly detection performance to secure

IoMT environments.

AQML −→ Enhanced
AC

(D) (5)

Where AQML, AC and D represent the QML-based algorithm, classical algo-

rithm, and anomaly detection performance, respectively.

1.4 Research Questions

Our research is driven by the following questions that aim to integrate Quantum

Machine Learning (QML) into unsupervised anomaly detection for IoMT environ-

ments:

• Which quantum operators can transform network traffic features into quantum

states for anomaly detection in IoMT environments?

• How to detect network anomalies caused by cyberattacks in IoMT environ-

ments by leveraging Quantum Machine Learning?

• How to enhance the performance of current unsupervised ML-based anomaly

detection methods for IoMT by using Quantum Machine Learning?

1.5 Hypothesis

The adoption of Quantum Machine Learning into unsupervised anomaly detection

for IoMT environments could enhance the balance between anomaly detection per-

formance and learning efficiency. This emerging field holds promise for advancing

7



the state-of-the-art in unsupervised anomaly detection to secure IoMT environments

against cyberattacks.

1.6 Objectives

1.6.1 General Objective

Design an unsupervised anomaly detection method for IoMT environments based on

Quantum Machine Learning.

1.6.2 Specific Objectives

1. Design a novel algorithm based on quantum operations to transform IoMT

network traffic features into quantum states for unsupervised anomaly detec-

tion.

2. Develop a new algorithm that leverages Quantum Machine Learning to detect

IoMT network anomalies caused by cyberattacks.

3. Integrate algorithms proposed in objectives 1 and 2 to develop the unsupervised

anomaly detection approach for IoMT environments.

4. Achieve comparable performance of classical unsupervised ML-based anomaly

detection methods in diverse IoMT environments.

1.7 Expected Contributions

The expected contributions of this study are:

• A new algorithm capable of transforming network traffic features into quantum

states for unsupervised anomaly detection in IoMT environments.

• A new unsupervised QML-based anomaly detection method that detects net-

work anomalies caused by cyberattacks with performance comparable to that

of classical solutions in IoMT environments.
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1.8 Scope and Limitations

It is expected that this study will contribute to future research in unsupervised

anomaly detection methods through Quantum Machine Learning for IoMT environ-

ments. We examined the limitations and advantages of current ML-based anomaly

detection methods. Furthermore, we examine the feature engineering applied to the

IoMT network traffic, as the effectiveness of ML models is significantly influenced

by the quality of the extracted and selected characteristics.

This work is limited to review and analyze the QML’s implementation into

anomaly detection in IoMT, excluding works that leverage QML in other applica-

tions. Our proposal may not be fully deployed on quantum hardware and could

be limited to quantum simulators; however, we will investigate strategies to evalu-

ate our proposal with the challenges associated with the Noisy Intermediate-Scale

Quantum (NISQ) era. A QML-based approach could address the problem proposed

in this study from a fundamentally different perspective, which may lead to a more

effective security solution in IoMT.

1.9 Document Organization

This document is organized as follows. Section 2 briefly describes the main concepts

of this study. Section 3 discusses related work to anomaly detection using supervised

and unsupervised machine learning and quantum machine learning for IoMT, IoT,

and beyond these environments. Section 4 contains the methodology to achieve the

objectives and the schedule of activities for the PhD program. Section 5 presents

the preliminary results of our study and Section 6 provides the final conclusion.
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2 Theoretical Framework

2.1 IoMT Overview

Internet of Medical Things (IoMT) is an application of the Internet of Things (IoT)

that improves healthcare services, including real-time monitoring, personal care in

medical crises, online treatment, support prevention of diseases, and hospital or clinic

administration [29]. It encompasses diverse short-range and long-range communi-

cation protocols, such as WiFi, Bluetooth, Radio Frequency Identification (RFID),

Zigbee, LoRaWAN, NB-IoT and LTE. However, this leads to limited security fea-

tures [30].

Therefore, an extensive network with numerous interconnected medical IoMT

devices, sensors, and systems will likely be more attractive for a variety of attack

scenarios that could jeopardize these entities and their users [31]. Unfortunately,

security in IoMT environments remains an open challenge due to its complex nature,

heterogeneity, scalability, interoperability, resource-constrained devices, and lack of

standard communication protocols [30, 32].

2.2 Machine Learning for Anomaly Detection in IoMT

The advent of artificial intelligence technology, such as Machine Learning and Deep

Learning, to secure IoMT environments could provide significant benefits to patient

safety and privacy [29, 33]. Machine Learning (ML) algorithms learn from historical

data and make future predictions. Deep Learning (DL) is a subset of ML that is

inspired by the structure and operation of the human brain. It transforms data

into higher-dimensional representations, enabling the model to learn and perform

complex and non-linear tasks. The learning process of ML and DL can be classified

as follows [34].

• Supervised Learning associates the independent characteristics of data sam-

ples with a designated dependent attribute (label or class). The learning pro-

cess can be described as the quest to discover the optimal model that correlates

the input with the expected output.

• Unsupervised Learning associates the data samples without a pre-designated
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dependent attribute (label). ML models trained with this learning process

often associate relationships and patterns within the data by finding inherent

data structures.

Feature engineering encompasses feature extraction and selection. The first

refers to the representation of the input data in its numeric representation. The

latter involves selecting the most relevant features for improved ML’s performance

[35].

Several unsupervised ML-based models have been developed for anomaly de-

tection. An anomaly is generally described as a pattern that diverges considerably

from what is considered normal. Several methods use network traffic features to find

anomalous patterns derived from cyberattacks. Some of the most frequently used

unsupervised ML and DL algorithms in cybersecurity to detect anomalies are listed

below [36–38].

A. One-Class Support Vector Machine

The Support Vector Machine (SVM) can classify two classes by mapping all

instances to a high-dimensional space and then using a linear SVM to distinguish

between them. In contrast, the One-Class SVM (OC-SVM) tries to find a small

region that contains most of the one-class instances. Anomaly detection relies on

identifying instances outside of this region.

B. Local Outlier Factor

The Local Outlier Factor (LOF) measures the density deviation of a data point

relative to its neighbors through the local density principle. It determines outliers

by calculating the ratio of an observation’s local density to the mean density of its

neighboring points.Thus, observations with notably reduced density relative to their

surrounding points are recognized as outliers.

C. Isolation Forest

The Isolation Forest (IF) is an ensemble model that detects outliers by perform-

ing recursive partitioning of the data with random splits. Anomalies are detected

by isolating data points that have low isolation scores or are easier to isolate.

D. Autoencoder
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The Autoencoder (AE) is a type of neural network designed to reduce data

dimensionality and subsequently reconstruct it. In anomaly detection, the algorithm

is trained to learn normal data patterns. Therefore, anomalies are detected by their

increased reconstruction error, suggesting a greater difference from the learned usual

patterns.

E. Generative Adversarial Networks

The Generative Adversarial Networks (GANs) are based on two neural net-

works known as the generator and the discriminator. The first produces synthetic

samples, while the latter determines whether they are genuine or artificially gener-

ated. Thus, a well-trained generator should be able to accurately produce samples

of a typical IoMT scenario, which can be utilized for anomaly detection methods.

2.3 Preliminaries of Quantum Computing

This section describes the fundamental concepts of quantum computing for under-

standing the QML algorithms used for anomaly detection.

A. Quantum bit

A quantum bit (qubit) is the fundamental unit of information utilized to rep-

resent data in quantum computing and can be seen as the quantum counterpart of

the traditional bit. Qubits are usually described through ortho-normal vectors using

ket notation [39, 40]:

|0⟩ =

[
1

0

]
|1⟩ =

[
0

1

]
(6)

B. Superposition

Unlike a classical bit, which can exist in the state 0 or 1, a qubit can be in the

superposition of both states, represented as:

|q⟩ = α|0⟩+ β|1⟩ (7)

Where α and β represent the complex probabilities amplitudes of each state [40].

Therefore, a dataset of N instances can be expressed as a superposition of all
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computational basis states:

|ψ⟩ =
N−1∑
i=0

|di⟩ (8)

Where each instance of the dataset is encoded as |di⟩ [41].

C. Entanglement

This quantum qubit property refers to its ability to interact with other qubits,

suggesting that the state of one qubit directly influences the state of the other qubit.

Thus, a measurement or any other operation performed on one of the entangled

qubits will immediately have an effect on the other qubit, causing it to collapse into

a new state. An entangled pair refers to qubit pairs that are related or connected.

An intriguing aspect of entanglement is that when we measure the state of a qubit,

its entangled partner will inherently show the opposite result of that measurement

[42].

D. Measurement

It is a crucial process to obtain the expected results after computing quantum

algorithms, where the result values are represented in classical bits. The qubits are

measured after a quantum operation to understand what occurs. This means that

qubits will collapse into one of the superposed states [40].

E. Quantum Gates

Quantum gates are unitary operators described as unitary matrices that trans-

form a state vector into a new one without modifying its norm. Operations include

gates that act on a single qubit state or on pairs of qubits [40]. Some examples are

presented below, and the following sections explain how they can be used.

Rx(θ) =

(
cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

) ) (9)

Hadamard (H) =
1√
2

(
1 1

1 −1

)
(10)

Pauli-Z =

(
1 0

0 −1

)
(11)
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Pauli-Y =

(
0 −i
i 0

)
(12)

Pauli-X =

(
0 1

1 0

)
(13)

2.4 Quantum Machine Learning for Anomaly Detection

Quantum Machine Learning (QML) is an emerging research field in computer sci-

ences that integrates ML and quantum operations to solve the tasks faced in classical

ML and improve traditional solutions [13].

This integration can be classified into four principal types:

• Classical-Classical: quantum-inspired classical algorithms applied to classical

data.

• Classical-Quantum: quantum algorithms applied to classical data.

• Quantum-Classical: classical algorithms applied to quantum data.

• Quantum-Quantum: quantum algorithms applied to quantum data.

In the literature, classical-quantum and classical-classical approaches are the most

explored [40, 43].

2.4.1 Feature Mapping

Feature mapping in quantum machine learning refers to the transformation of clas-

sical data into quantum states in a high-dimensional Hilbert space. The process

involves converting a data point x into a collection of gate parameters for a quantum

circuit, generating a quantum state |ψx⟩ [44]. There are different feature mapping

methods in the literature described as follows.

A. Angle embedding
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This technique maps a collection of N features onto the rotation angles of n

qubits, where N ≤ n, employing the Rx gate, which constitutes one of the rotation

operators and performs a single-qubit rotation around the angle θ, expressed in

Equation 9.

B. Amplitude embedding

This method involves encoding parameters into the amplitudes of a state. The

circuit Pinput is used to prepare states by encoding the dataset into the quantum

system’s state. It maps an input data point x ∈ Rn to a vector of amplitudes P (x)

of log n
2
dimension that defines the quantum state |P (x)⟩ [45].

C. Variational embedding or Variational Quantum Circuit (VQC)

This method encodes parameters into quantum circuits. Assume that every

data point di within the dataset D possesses N features, such that each feature can

be represented with the parameter θi at the initial quantum state |0⟩ of a qubit [45].

D. ZZ Feature Map

This technique is a second-order Pauli-Z evolution circuit that performs a non-

linear mapping of the n classical features to the n qubits. It involves applying

pairwise interactions between qubits using the Pauli-Z gate, defined in Equation 11.

ZZ string refers to the application of this Pauli’s gate on two qubits [46], expressed

as follows.

ZZ = Z ⊗ Z =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 (14)

2.4.2 QML algorithms

This section presents the most frequent quantum algorithms for anomaly detection

in cybersecurity.

A. Quantum Support Vector Machine

The Quantum Support Vector Machine (QSVM) performs the Least Squares
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SVM (LS-SVM) using quantum computers. The LS-SVM is a version of the SVM

that applies the least squares linear system instead of the loss function [44]. Rather

than using an external feature mapping technique to convert classical data to quan-

tum states, it directly computes the quantum kernel, which involves a quantum

circuit that encompasses the Hadamard and Pauli-Z gates, expressed in Equations

10 and 11, respectively [41, 44]. Thus, during training process, the QSVM encodes

the classical data into the quantum feature space through the quantum kernel, which

capture intricate patterns of the input data. The algorithm also identifies the sup-

port vectors to define the optimal hyperplane in the quantum feature space [47].

B. Quantum Neural Network

The Quantum Neural Network (QNN) encompasses an input, output, and L

hidden layers, similar to its classical counterpart. The key difference are the hidden

layers of qubits, which operate in the initial state of the input qubits and typically

generate a mixed state for the output qubits [48]. Training a quantum-based neural

network involves finding the most optimal parameters of the hidden layers to reduce

the loss error, similar to the classical approach. However, classical optimizers such

as descent must be adjusted for a quantum framework [47].
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3 State-of-the-Art

3.1 ML-driven Anomaly Detection for IoMT

This section discusses current anomaly detection methods based on supervised and

unsupervised ML models for IoMT environments.

Several anomaly detection methods are based on supervised ML and DL al-

gorithms, including Decision Tree (DT), Random Forest (RF), Logistic Regression

(LR), Artificial Neural Networks (ANN), and Recurrent Neural Networks (RNN).

Some of these works focus mainly on developing new IoMT datasets [12, 49–54]

to evaluate anomaly and intrusion detection methods, integrate explainable artifi-

cial intelligence techniques [55–60], apply Federated Learning [55, 61, 62], integrate

blockchain technology [63], and improve anomaly detection performance through

feature selection techniques [54, 57, 64–72], hyperparameter tuning [60, 64, 73–75],

and custom supervised ML or DL algorithms [74, 76–81].

Few studies assessed the effectiveness of unsupervised learning for anomaly

detection in securing IoMT networks. For instance, Ahmed et al. [50] presented

a novel IoMT dataset called ECU-IoHT. They evaluated this dataset by splitting

it into different attack scenarios to individually assess each type of attack and ap-

plying several unsupervised ML algorithms, such as Local Outlier Factor (LOF),

Influenced Outlierness (INFLO), and K-Nearest Neighbor (K-NN). Unfortunately,

the experimental results are presented solely through non-labeled visual representa-

tions, making it challenging to determine exact values, with no detailed data pro-

vided in the text. The performance metrics used were F1-score and Area Under the

Curve (AUC). INFLO algorithm appears to demonstrate the best anomaly detection

performance.

Zubair et al. [12] introduced a new IoMT dataset, which was divided into

two subsets: one comprising devices that use the Basic Rate / Enhanced Data Rate

(BR / EDR) protocol and the other consisting of Bluetooth Low Energy (BLE).

The ecosystem based on BR / EDR was evaluated using five supervised and four

unsupervised ML algorithms, such as LR, DT, SVM, RF, MLP, LOF, K-means,

Naive Bayes (NB), and Isolation Forest (IF). The NB algorithm, configured as an

unsupervised approach, outperformed the other unsupervised ML models with a

92.4% accuracy, 77.15% F1-score, 63.68% Recall, and an area under the curve (AUC)
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score of 82%.

Zukaib et al. [11] proposed an intrusion detection system based on meta-

learning, which consists of multiple detection layers that leverage various supervised

ML models, including DT, RF, ANN, Adaptive Boosting (AdaBoost), Multi-Layer

Perceptron (MLP), eXtreme Gradient Boosting (XGBoost), and an unsupervised

Mean-Shift Clustering (MS-CL) model for detecting known and unknown attacks,

respectively. Although the MS-CL is in the second layer of attack detection, it

achieves an accuracy, precision, recall, and F1-score of 62.86%, 64.54%, 62.86%,

and 61.75%, respectively. In response, two supervised RF models were integrated

into the third detection layer to reduce false positive and false negative rates of the

MS-CL model, achieving equal accuracy, precision, recall, and F1-score of 99.50%.

Several anomaly detection methods for IoMT rely on supervised ML models.

However, the scarcity of labeled data limits its widespread integration into IoMT

environments, and its effectiveness in detecting unknown attacks is uncertain. Ad-

ditionally, the performance of unsupervised ML-based anomaly detection methods

needs improvements, and in response, current works still leverage supervised ML

algorithms for enhanced anomaly detection. Unfortunately, the challenges posed by

unknown attacks and the limited availability of labeled data persist. As a result,

more advanced techniques are required to improve the effectiveness of unsupervised

learning to detect anomalies presented in IoMT networks.

3.2 IoMT Network Traffic characterization

The effectiveness of any ML-based method is significantly dependent on the quality

and relevance of the characteristics, suggesting that it is crucial to consider feature

extraction and selection techniques in the development of these methods. Thus, this

section outlines the feature engineering techniques applied in current approaches for

IoMT environments.

Recently, there has been notable growth in generating datasets that include

IoMT network traffic, particularly due to the necessity to assess ML-driven security

solutions, such as Integrated Clinical Environment (ICU) [54], Enhanced Health-

care Monitoring System (EHMS) [49], Intensive Care Unit (ICU) [51], ECU Internet

of Health Things (ECU-IoHT) [50], BlueTack [12], CICIoMT2024 [52], and IoMT
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Traffic Data [53] dataset, as shown in Table 3.2. Some of these datasets offer only pre-

extracted network traffic features without providing the raw network data (PCAP

files), such as EHMS, ECU-IoHT, and BlueTack dataset. Regrettably, in the absence

of raw data, the extraction of novel features using alternative techniques is unattain-

able. Moreover, it is crucial that the raw data available is sufficient to generate

relevant feature vectors that accurately represent the network traffic in IoMT envi-

ronments for effective anomaly detection, implying that the size of PCAP (Packet

Capture) files is important. For example, the IoMT Traffic Data and CICIoMT2024

datasets provide more than 10 million network packets. The ICE dataset is slightly

smaller, containing roughly 9 million network packets. On the other hand, the ICU

provides approximately 187 thousand network packets.

IoMT dataset Year Devices Attacks Features Feature Extractor Tool Raw Data Available
ICE 2019 5 4 32 Argus ✓

EHMS 2020 4 2 35 Argus X
ICU 2021 32 4 52 Wireshark ✓

ECU-IoHT 2021 8 6 9 Argus and Wireshark X
BlueTack 2022 3 4 19 - X
CICIoMT 2024 40 18 39 Dpkt ✓

IoMT Traffic Data 2024 - 10 30 Zeek Flowmeter and Tshark ✓

Table 1: Overview of IoMT datasets.

Most works proposing a novel IoMT dataset do not define the network flows

and neither do they explain how network traffic features are extracted using different

packet-sniffing tools. Typically, a network flow represents a sequence of packets that

share common characteristics, such as source and destination IP addresses, source

and destination ports, and protocol type. Alternatively, a flow can also be defined

based on the timestamps of the network packets. For instance, the features from

the CICIoMT dataset were extracted using sliding windows of 10 and 100 network

packets, with different scenarios employing either a 10-packet window or a 100-

packet window. However, this inconsistency in window size limits the evaluation of

ML-driven security solutions, which affects the generalizability of anomaly detection

methods, as they may not perform equally well across different attack scenarios

and packet windows. The IoMT Traffic Data dataset collects network flows based

on common characteristics of the IP and Bluetooth protocols, generating a distinct

set of features for each type of protocol. This situation is also presented in the

pre-extracted network features from the CICIoMT dataset, which challenges the

development of ML-anomaly detection models capable of generalizing across these

19



sets of features. Moreover, this could involve challenges related to the heterogeneity

of handling large-scale feature sets, such higher computational costs. Additionally,

the IoMT Traffic dataset offers not only a flow-based feature set but also a packet-

based one. However, handling a large volume of features becomes computationally

expensive and time consuming, especially considering the diverse range of devices

and communication protocols in IoMT environments. Regarding the ICU and ICE

datasets, the first does not define the flow collection process, making it difficult

to reproduce and compare the performance of ML-driven solutions under the same

conditions. The ICE dataset provides pre-extracted features from 10-second time

windows. However, the definition of this time window is unclear and it does not

guarantee that it will be sufficient to detect other types of attack, as the dataset

contains only ransomware family attacks.

Table 2 summarizes the pre-extracted network traffic features of the IoMT

datasets, which are classified based on flow-based which describes in general terms

the sequence of network packets, packet-based refers to those characteristics extract-

ing metainformation , typical non-numeric, and the Additionally, another challenge

related to pre-extracted network features is the efficiency of the tool, as some tools

do not support all protocols, limiting their ability to extract some type of feature

across a wide range of protocols that may be presented within an IoMT environment.
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Type Network Traffic Features

Flow-based

Source/Destination bytes, load, missing bytes, active inter
packets, total network packets.
Dropped network packets.
Duration.
Network packets per second.
Source/Destination Jitter.
Speed of data transmission.
Maximum, Minimum, Average, Standard Deviation of network
packets size.

Packet-based
Source/Destination IP address.
Type of protocol.
Timestamp.

TCP-based Length of TCP header, flags (e.g., ack, fin, psh, syn, reset, urg),
total number of SYN/ ACK / FIN /RST packets, and checksum.

UDP-based Counter for UDP protocol.
IP-based Time to Live (TTL).
MQTT-based Client ID, flags (e.g. conack, passwd, qos, willflag), length of

the message, and type of message (e.g., Connect, publish).
Bluetooth-based Length of the L2CAP based packet, events generated by HCI,

and connection HCI ACL.
Other protocols Counter indicating the presence of HTTP, DNS, Telnet, SMTP,

SSH, ICMP, IGMP, and IPv.

Table 2: Summary of network traffic features used in current ML-based anomaly detection
methods for IoMT.

In some ML-based anomaly detection methods for IoMT, feature selection has

been applied to mitigate overfitting and enhance model generalization. For example,

Dhanya et al.[75] applied the AutoEncoder (AE) model to reduce the dimensionality

of the features of the network traffic by selecting the most relevant network features.

The supervised XGBoost algorithm optimized by the Genetic Algorithm (GA) was

used for anomaly detection. Al-Hawawreh et al. [82] evaluated a Constractive

Deep AE for data fusion, as it prioritizes feature representation over reconstruction.

Moreover, they proposed a supervised hybrid Quantum Deep Learning approach for

anomaly detection, discussed in the following section. Wagan et al. [83] used the
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dynamic Fuzzy C-Means clustering and proposed two customized Long Short Term

Memory (LSTM) algorithms for feature selection and anomaly detection. However,

these works utilize the pre-extracted network traffic features, and the issues related

to this remain unsolved.

Most works rely on pre-extracted network features to evaluate the effectiveness

of ML and DL models in detecting anomalies caused by cyberattacks. However,

the pre-extracted network traffic features provided for the IoMT datasets challenge

the generalization of current approaches. Unfortunately, limited attention has been

directed to how different network flow exporter tools and feature engineering tech-

niques could impact the development of ML-based anomaly detection methods in

IoMT environments. Additionally, given the extensive number of features and the

variety in devices, it is crucial to balance computational efficiency for resource-

constrained devices with ML performance. Therefore, innovative methods must be

developed to address these issues and improve feature engineering to boost anomaly

detection in IoMT settings.

3.3 Unsupervised Anomaly Detection for IoT

This section explores unsupervised anomaly detection methods for IoT-based en-

vironments, beyond IoMT settings. We provide further insights into advances in

unsupervised learning for anomaly detection using network traffic information.

Zixu et al. [84] presented an anomaly detection method based on the Genera-

tive Adversarial Network (GAN) and autoencoder (AE) due to the scarcity of large

amounts of labeled samples in IoT. The proposal is based on a hierarchical architec-

ture for a distributed IoT network, where GAN models are trained locally and their

parameters are sent to a central controller using encrypted channels for data privacy.

New samples are created through a generator model using these parameters at the

central controller, which are used to train an AE model for anomaly detection. The

results show higher accuracy, precision, recall, and F1-score compared to traditional

unsupervised ML algorithms used for anomaly detection, including K-means, IF,

OCSVM, and LOF.

Alsaedi et al. [85] developed an unsupervised misbehavior detection (USMD)

framework to identify zero-dat attacks on cyber-physical systems. The USMD con-
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sists of a deep autoencoder architecture that incorporates a temporal dependencies

network based on the LSTM model and a temporal attention unit. They evaluated

their proposal on various datasets, including sensor data from various environments

such as the Internet of Things, a large water treatment plant, a water distribution

testbed, and a small-scale gas pipeline testbed. In the IoT environment, USMD

outperforms other methods in terms of recall, F1-score, and AUC score. The Iso-

lation Forest model achieved the highest precision. For the other datasets, USMD

consistently delivered the best results in terms of F1-score and AUC score.

Arifeen et al. [86] introduced a Hyper-ledger Fabric distributed ledger technol-

ogy, which integrates the autoencoder model into a chaincode consensus mechanism

to identify anomalous data before storing them on the blockchain. The Minifabric

tool was used to implement the proposed AE-based chaincode consensus mechanism,

which was trained using 80 IoT network features. The proposed blockchain showed

a maximum latency of 3.19 seconds and a throughput of 1.3 TPS. The performance

in anomaly detection exhibited an accuracy, precision, and recall range of 0.89 to

0.96. However, more research is needed to evaluate the compatibility of using AE in

blockchain for IoT, particularly compared to current consensus mechanisms.

Boppana et al. [87] proposed the GAN-AE method to detect unknown in-

trusions in IoT environments for devices based on the MQTT protocol, which inte-

grates the autoencoder into a generative adversarial network. The proposal achieved

higher accuracy, precision, recall, and F1-score than the traditional autoencoder

and achieved comparable performance compared to a supervised intrusion detec-

tion method proposed in the literature. Unfortunately, it is limited to the MQTT

protocol, whereas IoT encompasses a wide range of protocols.

Sharmila et al. [88] introduced a Quantized Autoencoder (QAE) for intru-

sion detection to enhance computational efficiency in IoT devices. The AE model

integrates post-training optimization techniques such as pruning, clustering, and

quantization to reduce its complexity. Pruning involves selecting the most relevant

neurons while clustering the layer weights into clusters. The last technique, quanti-

zation, refers to the process of converting the 32-bit floating point weights and biases

into 8-bit unsigned integers and 16-bit floating point representations. The results

demonstrated reduced memory utilization and CPU requirements while maintaining

anomaly detection performance comparable to the traditional AE model. Unfortu-

nately, this proposal was evaluated on a single IoT-based dataset containing only
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two types of cyberattacks.

Vaisakhkrishnan et al. [89] proposed an intrusion detection system and eval-

uated four different DL algorithms, including an unsupervised learning model, the

autoencoder. They used the extension of stochastic gradient descent, called Adam

optimizer, to strengthen the efficacy of DL-based intrusion detection systems for

IoT-based environments, such as healthcare organizations. The results show that

autoencoder achieves comparable performance in terms of accuracy, precision, re-

call, and F1 score compared to supervised DL-based models, such as CNN, Trans-

former, and LSTM. Despite their effectiveness, these models might put a strain on

resource-limited IoMT devices.

Recently, there is significant interest in unsupervised DL-based models, partic-

ularly generative models and autoencoders. Unfortunately, these models are usually

expensive for resource-constraint environments such as IoMT. Only one work fo-

cused on developing a lightweight AE model. In addition, It was observed that

many studies rely on a single dataset to evaluate their proposals, which restricts

their ability to be assessed in various IoT environments. Although these DL-driven

anomaly detection methods achieve performance comparable to traditional super-

vised and unsupervised ML-based methods, a balance between anomaly detection

performance and learning efficiency is required, along with evaluations with extensive

attacks and IoT applications such as IoMT.

3.4 QML-driven Anomaly Detection

This section introduces anomaly detection methods based on Quantum Machine

Learning (QML). Since the application of QML into anomaly detection methods is

still in its early stages, we also include works beyond IoT-based environments.

Two studies specifically addressed IoMT environments. For instance, Laxmi-

narayana et al. [17] proposed an activation function for a quantum-based deep

learning model (QDL) to detect intrusions using the KDDCup99 dataset. Although

this dataset does not reflect the main characteristics of an IoMT network, this work

introduced an IoMT architecture to illustrate the role of the proposed system in

detecting malicious intrusions. The proposed QDL-based architecture consists of a

parameterized quantum circuit within the classical neural network, resulting in a
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small architecture capable of recognizing significant patterns. The results showed

comparable accuracy performance compared to more complex classical models, in-

cluding RNN, CNN, and LSTM algorithms. However, the dataset used may not

reflect the main characteristics of an IoMT environment. The second work was con-

ducted by Al-Hawawreh et al. [82], which introduced differential privacy techniques

to protect sensitive IoMT data during the learning process of the proposed quantum-

based neuronal network to detect attacks. The evaluations were performed on two

IoMT datasets known as EHMS and ICU, which contain network traffic generated by

medical devices in normal conditions and during a cyberattack. The classical data

was transformed using the amplitude embedding technique. The quantum-based

neuronal network uses a variational quantum circuit within the hidden layer of the

network. The findings indicated similar outcomes for accuracy, precision, recall, and

F1-score, regardless of the use of privacy techniques. In addition, the accuracy and

recall results were similar compared to previous studies. However, the performance

of its classical counterpart remains uncertain.

Beyond IoT-based environments, fourteenth works introduced Quantum Ma-

chine Learning into anomaly detection using network traffic information, described

as follows. Huang et al. [90] used the normalized mutual information (NMI) tech-

nique and the Quantum Wavelet Neural Network (QWNN) for feature selection and

anomaly detection, respectively, using the KDDCup99 dataset. The QWNN out-

performed the k-means, KNN, PCA-SVM, K-means-NB, and NMI-ANN approaches

regarding false positive and true positive rates, while achieving the lowest time com-

plexity.

Gouveia et al. [41] evaluated the Quantum Support Vector Machine (QSVM)

algorithm to detect intrusions on the NSL-KDD and UNSW-NB15 datasets, which

includes network traffic data from malicious and benign scenarios. The autoencoder

model was introduced to encode the network flows and improve QSVM’s perfor-

mance. The experimental results revealed accuracy performance comparable to that

of the classical SVM algorithm.

Kalinin et al. [91] proposed an encoding technique to transform network traffic

characteristics from the IoT Network Intrusion dataset into qubit representations.

In addition, they evaluated the QSVM model as an intrusion detection algorithm

to classify different types of cyberattacks, such as HTTP-based flooding and port

scanning. Although it demonstrated higher accuracy than classical SVM in most
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cases, its performance in detecting SYN flooding and OS scanning attacks requires

improvement. Moreover, the QSVM was notably faster than SVM during the pro-

cessing of massive data.

Payares et al. [44] evaluated the performance of the QSVM, a hybrid Quantum

Neural Network (H-QNN), and an ensemble model based on quantum principles in

intrusion detection using the CIC-DDoS2019 dataset, which consists of distributed

denial of service attacks. They applied Principal Component Analysis (PCA) for

feature dimensionality reduction and used the angle embedding method to encode the

network traffic features into qubits. The H-QNN outperformed in terms of accuracy,

recall, precision, F1-score, and memory usage. Unfortunately, a comparison with

the classical counterparts has been overlooked.

Zhang et al. [92] introduced a Quantum Neural Network (QNN) to detect

attacks using network traffic collected in 2005 by other authors. The results show

a low F1-score and recall, suggesting information loss during the preprocessing step

due to the limited qubits required to represent all characteristics of the network

traffic. However, this architecture helps to prevent the gradient explosion problem

faced by its classical counterpart.

Gong et al. [45] proposed a Variational Quantum Neural Network (VQNN)

composed of three layers, which implements the principles of a Variational Quantum

Circuit (VQC), to detect malicious intrusions in networks using five features of the

KDDCup99 dataset. The VQNN with eight single-layer VQC outperformed classical

models including ANN, SVM, KNN, NB, and DT with respect to false positive

and negative rates, precision, recall, and F1 score. Moreover, it exhibited lower

performance in detecting anomalies on NISQ-based devices relative to the simulator,

yet it still surpassed the SVM and NB algorithms.

Kalinin et al. [93] compared the performance of the QSVM and Quantum

Convolution Neural Network (QCNN) models in detecting intrusions using a network

dataset. In most attack types, QSVM exhibited a greater area under the curve

compared to the classical SVM, which accurately identified only two types of attack.

Similarly, QCNN outperformed the classical CNN algorithm in most types of attacks.

Additionally, both quantum-based models showed training times shorter than those

of their classical counterparts with large input data, and this advantage increased

as the input data size was further expanded.
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Alomari et al. [46] applied several preprocessing techniques, such as Min-Max,

standard scaler, FastICA, and ZZFeatureMap, to improve QSVM’s performance in

detecting distributed denial of service attacks. This approach outperformed other

quantum-based methods, including traditional QSVM, in accuracy, recall, precision,

F1-score, and error rate. However, the results obtained within an NISQ framework

were slightly lower.

Rahman et al. [94] assessed the effectiveness of two parameterized quantum

circuits utilizing two classical optimizers and the NSL-KDD dataset to identify net-

work attacks. The PCA algorithm was applied to reduce the feature space. Next,

the ZZFeatureMap technique was used to transform the classical data into quantum

states. The EfficientSU2 circuit optimized by the COBYLA technique showed the

highest accuracy performance with the top three features selected by PCA. However,

further comparisons with classical solutions for this task are absent; comparisons are

made solely with a study that evaluated a variational quantum classifier on the IRIS

dataset, which is used for flower species classification.

Barletta et al. [16] integrated QBoost, a QML algorithm deployed in the

D-Wave Leap Quantum Cloud (DLQC), with QRadar, a SIEM system provided

by IBM. This hybrid method uses QBoost for intrusion detection and QRadar for

configuring rules to identify the known behavior of cyberattacks. This proposal was

evaluated in the CIC-IoT-2023 dataset, which contains network cyberattacks, such

as DoS and spoofing attacks. The accuracy, precision, recall, and F1-score outcomes

of QBoost were compared to those of the RF algorithm. Training and prediction

times were significantly reduced with the QBoost algorithm.

Kukliansky et al. [23] introduced a Quantum Neural Network (QNN) into

intrusion detection systems. They assessed a smaller version of their proposal on

the lonQ’s Aria-1 quantum computer using the UNSW-NB15 dataset, which en-

compasses malicious and typical network traffic. In addition, they proposed the

certainty factor, a novel metric to evaluate the susceptibility of quantum results to

errors caused by noise. The QNN architecture relies on an ultralean circuit to con-

sider the noise constraints of quantum devices. Furthermore, a new classical data

encoding technique is introduced to reduce quantum resources. This work showed

comparable F1-score performance compared to classical methods and demonstrated

its potential within a NISQ framework.

Bhattacharya et al. [95] proposed a Quantum Neural Network (QNN) to secure
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Industrial Internet of Things (IIoT) networks against cyberattacks. The CIC-IDS-

2018 dataset was supplemented with real-time IIoT data to evaluate its performance

in detecting cryptojacking attacks. This method consists of two levels: detection

and filtration. The detection level encompasses the QNN model, which consists of

three layers that extract different features from the users. The weights are iter-

atively computed through a new quantum-based optimizer. The classification of

malicious and benign network traffic is performed by the filtration layer through a

threshold computed using a novel quantum metric. This approach outperformed

two quantum-based methods regarding accuracy, F1-score, recall, false error rate,

and mean absolute percentage error. Regrettably, no comparisons with classical

approaches are presented.

Abreu et al. [47] investigated the effectiveness of VQC, QSVM, and QCNN

in identifying network cyberattacks. All quantum-based models achieved different

performance across six NISQ-based devices, showcasing the distinctive influence of

noise from each device. The authors compared their best F1-score performance with

that of the RF, SVM, and CNN algorithms across all datasets, demonstrating that

quantum-based models outperform classical models, particularly the VQC approach.

However, their F1-score in the multi-class classification of attacks decreased, and in

some cases, classical models outperformed them. Therefore, even though the re-

sults are promising, the performance variations indicate that quantum-based models

may offer potential benefits in specific situations, but they have not yet completely

outperformed classical models.

Kumar et al. [96] introduced an intrusion detection system based on QSVM

for small data training sets. They utilize eight attributes derived from flows based

on the 5-tuple, consisting of sequential network packets with the same source and

destination IP address, source and destination ports, and type of protocol. However,

some cyberattacks may go undetected using these types of feature, such as Man in

the Middle (MiTM) attacks like IP spoofing, or attacks that leverage protocols other

than IP. This is particularly critical to consider given the heterogeneity of IoT en-

vironments. In addition, this study compared different feature maps, including the

ZZFeature map, ZFeature map, and PauliFeature, to assess the effects of modifica-

tions in quantum states derived from specific feature values on the performance of

the QSV. The proposed system outperforms classical solutions, including DT, GNB,

KNN, RF, SVM, ANN, CNN, and LSTM.
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Furthermore, we identified three works that leveraged quantum computing to

enhance classical ML algorithms for detecting anomalies in networks, described be-

low. Chen et al. [97] developed the QALO-K approach to cluster data and detect

network intrusions, which consists of a classical k-means classifier optimized by a

quantum-driven ant lion algorithm. They evaluated this proposal on seven datasets

for clustering analysis; each dataset represents different types of data and attributes

for different purposes, such as flower species classification. This approach outper-

formed the related work regarding the sum of intra-cluster distance, excluding one

dataset. Moreover, it demonstrated faster convergence than the k-means algorithm

optimized by the classical ant lion Optimizer (ALO-k). For intrusion detection, the

proposal was evaluated solely on the KDDCup99 dataset, which contains malicious

and typical network traffic. The QALO-k method achieved a higher accuracy and

detection rate than the ALO-k and K-means models.

Li et al. [15] used quantum annealing to select relevant features from the

NSL-KDD dataset, which consists of four types of network attacks. They performed

feature correlation through Pearson’s correlation coefficient and mutual information.

Next, these features were used to train the Support Vector Machine (SVM) classifier.

This approach reduced feature selection time and training time in comparison to

traditional feature selection techniques, such as Particle Swarm Optimization (PSO),

while achieving comparable accuracy.

Dong et al. [98] proposed a quantum-based beetle swarm algorithm to optimize

the Incremental Extreme Learning Machine (IELM) for intrusion detection using the

KDDCup99 and CIC-IDS-2017 datasets. The proposed optimizer integrates classi-

cal swarm and beetle antennae algorithms using quantum principles to compute the

weights and thresholds of the IELM model. The results showed a reduced com-

putational complexity of the ELM while improving its accuracy and convergence

rate. Furthermore, it showed similar results for precision, F1 score and true positive

rate, while achieving a lower false positive rate compared to IELM optimized by the

genetic algorithm and PSO, as well as other classical models such as SVM.

Regarding unsupervised learning, only one work leveraged quantum principles

for anomaly detection beyond IoMT and IoT settings. Guo et al. [99] introduced a

quantum version of the Local Outlier Factor (LOF) algorithm, which is frequently

used for unsupervised anomaly detection. This quantum LOF method follows three

steps as well, with its main distinctions being the incorporation of amplitude esti-
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mation, minimum search, QRAM data structure, quantum amplitude estimation,

and Grover’s algorithm. The complexity analysis revealed an exponential speedup

regarding the number of data points and their dimension compared to the classical

LOF. Unfortunately, the anomaly detection performance was not analyzed.

Most QML-based anomaly detection approaches demonstrate performance com-

parable to that of DL-based models, with simpler architectures and improved train-

ing and testing times. It appears that quantum feature mapping can capture complex

patterns and correlation between features. However, more analysis of the perfor-

mance of these novel models is needed, since several of the existing works overlook

comparisons with classical systems, so further assessment is required to fully un-

derstand the limitations and advantages of QML over the classical solutions. Nine

works proposed a novel QML model, while other nine studies evaluated existing

QML algorithms for anomaly detection, with QSVM being the most popular. Un-

fortunately, the selected datasets to evaluate their performance are typical outdated

and do not reflect complex environments such as IoT and IoMT. Moreover, only

one study proposed an unsupervised QML model; however, its anomaly detection

performance was not assessed, only its complexity.

3.5 Discussion

Supervised ML models have been widely used for anomaly detection in IoMT envi-

ronments; however, their effectiveness in detecting unknown attacks is uncertain and

the scarcity of labeled data in these environments limits its adoption. In response,

a few studies have explored unsupervised ML models, but their lower performance

has led to efforts to synergize them with supervised ML algorithms for improved

results. On the other hand, current methods rely on pre-extracted network features,

which limit the generalization capability of ML models due to inconsistencies in

pre-processed IoMT datasets and feature extraction tools that are not specifically

designed for IoMT environments or do not support all available protocols. Further-

more, given the large number of features and the diversity of IoMT devices, careful

attention to feature engineering is crucial in the development of these methods.

Beyond IoMT, unsupervised DL-based models such as generative adversar-

ial networks and autoencoders have gained popularity for detecting anomalies in

IoT. However, although their performance shows comparable performance to those
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of supervised and unsupervised ML models for IoMT, they are usually expensive

for resource-constraint devices. Thus, advanced technologies are required to de-

velop simpler architectures and comparable detection performance for unsupervised

anomaly detection in IoMT, such as quantum machine learning. Although this

emerging technology is still in its infancy, it has shown promising results in super-

vised anomaly detection with respect to pattern recognition and learning efficiency;

however, robust analysis and assessment of their benefits and limitations are still

missing, particularly with respect to unsupervised anomaly detection for IoMT en-

vironments.
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4 Research Proposal

4.1 Methodology

To achieve the objectives of this study, we propose the following methodology, as

illustrated in Figure 1.

Figure 1: Proposed methodology.

• Identify and select IoMT datasets:

– Obtain datasets based on IoMT environments, specifically designed for

anomaly detection related to cyberattacks.

– Review and analyze the key characteristics of IoMT environments as re-

flected in datasets.

– Select well-suited IoMT datasets that align closely with the specific re-

quirements of our study.

• Design a feature engineering framework:

– Assess the most common feature extraction and selection techniques used

in IoMT networks.
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– Analyze the different network traffic features and preprocessing steps used

to model ML algorithms for anomaly detection in IoMT and beyond IoMT

environments.

– Devise a strategy to characterize network traffic for unsupervised anomaly

detection in IoMT.

• Develop a quantum-based algorithm for network traffic characterization:

– Identify and examine algorithms centered on quantum principles that can

convert classical data into quantum states.

– Evaluate and analyze the use of quantum operators to convert network

traffic characteristics into quantum states.

– Design an algorithm using the most appropriate quantum operators that

align with our goal of developing an unsupervised anomaly detection

method.

• Design a QML-based algorithm for unsupervised anomaly detection:

– Identify and analyze QML algorithms applied in the field of supervised

and unsupervised anomaly detection.

– Explore and assess different quantum operators and circuits used in the

literature for anomaly detection.

– Design an unsupervised anomaly detection algorithm for IoMT networks

based on QML principles.

• Assess and compare the QML-based anomaly detection method:

– Incorporate the previously proposed algorithms to create a new unsuper-

vised QML-based anomaly detection method that detects network anoma-

lies to defend IoMT from cyberattacks.

– Devise a strategy to assess the performance of the proposed method con-

sidering a NISQ framework.

– Establish a baseline for comparison, including classical methods and cur-

rent QML-based techniques.
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4.2 Activities Schedule

This section outlines the overall schedule of the Ph.D. program, spanning four years

from January 2024 to January 2028. We divided each year into three quatrimesters:

I January-April, II May-August, and III September-December, as depicted in Figure

2.

Figure 2: Chronogram of activities for PhD program.

4.3 Publications Plan

The expected publications and their objectives are presented below.

• First journal paper.

Some of the preliminary findings were presented in a special session of IoT

security at the Estudio de Sistemas Complejos y sus Aplicaciones (EDIESCA)

2024 congress. We were invited to submit our congress paper to the Integration

Journal, which is briefly discussed in Section 5.
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– Hernandez-Jaimes, M. L., Martinez-Cruz, A., & Ramı́rez-Gutiérrez, K.

A., & Morales-Reyes A. (2025). Network Traffic Inspection to Enhance

Anomaly Detection in the Internet of Things Using Attention-Driven

Deep Learning. [Manuscript under major reviews]

• First conference paper.

Present the advances of our quantum-based algorithm for the characterization

of network traffic to detect malicious behavior. We selected three possible con-

ferences: IEEE World Forum on Internet of Things, International Conference

on the Internet of Things, and IEEE International Conference on Internet of

Things and Intelligence System. Estimated submission date: July 2025

• Second Journal paper.

Present the advances of our unsupervised anomaly detection method based

on QML principles for IoMT enviroments. We selected two possible journals:

Internet of Things; Engineering Cyber Physical Human Systems and Journal

of Biomedical and Health Informatics. Estimated submission date: April 2026

• Second conference paper.

Present more findings of our research. We selected three possible conferences:

IEEE International Conference on AI in Cybersecurity, IEEE Conference on

Artificial Intelligence, and IEEE International Conference on Cyber-Physical

Systems Estimated submission date: November 2026
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5 Preliminary Results

This section presents the preliminary results obtained from the first and second steps

of the proposed methodology: select IoMT datasets and design a feature engineering

framework.

We selected the two most recent and extensive IoMT datasets, as described

below.

• CICIoMT dataset was developed in the Canadian Institute of Cybersecurity

(CIC) by Dadkhah et al. [52] contains 25 real and 15 simulated IoMT devices

based on Wi-Fi, Bluetooth, and MQTT protocols, respectively. Moreover,

it includes several types of attack scenarios, including MQTT Publish flood,

MQTT Connect Flood, TCP Flood, UDP flood, ICMP Flood, Vulnerability

scan, OS Scan, Ping Sweep, Port Scan, and ARP spoofing. This dataset also

provides 39 network traffic features, such as header length, flags counts, and

total network packets.

• IoMT Traffic Data dataset reflect a sports clinic scenario, which integrates

three different areas: adversary, general, and wireless body. It was devel-

oped by Areia et al. [53] and encompasses 10 types of cyberattacks targeting

WiFi-based, Bluetooth-based, MQTT-based, and COAP-based IoMT devices,

including 4 variations of denial of service, ARP-based spoofing, MQTT-based

malaria, network scanning, CAM table overflow, and two bluetooth-based at-

tacks. A total of 40 network traffic features were extracted, such as total

network packets, total bytes, byte difference, and payload ratio.

We proposed a feature engineering process for improved unsupervised anomaly

detection using One-Class Support Vector Machine in IoMT environments, as illus-

trated in Figure 3. We train an OC-SVM model in a benign IoMT scenario and

evaluate its anomaly detection performance on benign and malicious IoMT scenar-

ios.
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Figure 3: Flow diagram of the proposed anomaly detection method.

Given network traffic captured in a PCAP file, we monitored the sequences of

network packets within one second, as this time interval has been proven to improve

anomaly detection performance using the proposed method. First, we compute a

flow-based embedding, which consists of eight flow-based features, including the total

number of packets, the sum of all packet sizes, average packet sizes, minimum and

maximum packet sizes, standard deviation packet size, average interval time between

packets, as well as the minimum and maximum time intervals. Next, we compute

a protocol-based embedding by defining a vocabulary of unique protocols from a

benign IoMT scenario. Thus, we map the presence and absence of these protocols

within each 1-second network flow, as described in Algorithm 1.
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Algorithm 1 Protocol-based Embedding Workflow
Require: PCAP file
Ensure: Set of protocol-based embeddings

Begin
Let V = {p1, p2, . . . , pD} be the set of unique communication protocols in the PCAP
file.
Let F = {f1(t), f2(t), . . . , fn(t)} be the set of 1-second network traffic flows,
where each fn(t) represents a network flow, which comprises of
network packets collected within n-th 1-second interval.
for fn(t) in F do

Let En = [e1, e2, . . . , ei] be the protocol-based embedding, where
i ∈ {1, 2, . . . , D} and:

ei =

1 if protocol pi is present in fn(t)

0 otherwise

Return {E1, E2, . . . , En}
End

We propose an attention-driven Deep Neural Network (DNN) to compute a

third feature embedding, called context embedding, by leveraging flow-based and

protocol-based embeddings. The proposed attention-driven DNN is inspired by the

Word2Vec method and the Scaled-Dot product attention mechanism. The former

is widely recognized for its use as an embedding technique, while the latter serves

as a powerful mechanism to focus on relevant features, particularly in natural lan-

guage processing tasks [100–102]. The key difference between our proposal and these

methods is that we are adding an attention layer into the Word2Vec structure based

on the Scaled-Dot product attention mechanism for generating context embeddings

from the network traffic. Figure 4, shows the proposed attention-driven DNN archi-

tecture. This architecture comprises four layers: input layer, hidden layer, attention

layer, and output layer, with flow-based and protocol-based embeddings serving as

the input and output layers, respectively.
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Figure 4: Proposed architecture for the attention-driven DNN algorithm.

The hidden layer is the same size as the input layer and utilizes the Recti-

fied Linear Unit (ReLU) activation function to help mitigate the vanishing gradient

problem. Attention Layer consists of two MatMul and two Softmax modules. The

output of the hidden layer is transformed into three matrices: Query (Q), Key (K),

and Value (V) by using the first MatMul module, which computes the dot product

between Q and K with dk dimensionality, as shown in Equation 15.

S =
QKT

√
dk

(15)

Next, the Softmax function is applied to the Score Matrix S to convert it into

a probability distribution, as shown in Equation 16.

Attention Weights = Softmax(S) =
eSij∑k
j=1 e

Sij

(16)

After obtaining the attention weights from the Softmax function, the next step is to

multiply these weights by the V matrix. This is done through Equation 17.

Output = Attention Weights · V (17)
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The output of this second MatMul operation is a weighted sum of the values,

where each value in the matrix V is scaled according to the corresponding attention

weight. The results are then passed on to the Softmax function to calculate the

probabilities, producing the protocol-based embeddings.

Training the proposed attention-driven DNN involves minimizing the binary-

categorical error function between the predicted protocol-based embedding (Ê) and

the ground truth protocol-based embedding (E) for each 1-second network flow, as

shown in Equation 18.

H(E, Ê) = − 1

N

N∑
i=1

[
Ei log(Êi) + (1− Ei) log(1− Êi)

]
(18)

After training the proposed DL-based model, the output-weighted values of

the Softmax function in the attention layer represent our context embedding of

the 1-second network traffic flow. As a result of the feature engineering process, we

obtain flow-based, protocol-based, and context-based embeddings for every captured

1-second network traffic flow. Subsequently, we concatenate these three types of

embeddings, as shown in Figure 5.

Figure 5: Concatenation process of flow-based, protocol-based, and context-based em-
beddings.

Finally, we evaluate the effectiveness of the OC-SVM classifiers in detecting

anomaly 1-second network flows, as described in Algorithm 2.
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Algorithm 2 Training and Testing Workflow
Require: PCAP files from Benign (B) and Malicious (M ) IoMT scenarios
Ensure: Confusion Matrix of OC-SVM

Begin
Split B into Btrain and Btest

Let Etrain be the set of concatenated embeddings computed on Btrain scenario.
Compute concatenated embeddings Etest on M and Btest scenarios.
Train OC-SVM on Etrain

Test OC-SVM on Etest

Return TP, TN, FP, and FN outcomes
End

To assess our proposal’s performance in detecting anomalies, we utilize stan-

dard metrics based on the True Positive (TP), False Positive (FP), True Negative

(TN), and False Negative (FN) values, such as:

Accuracy =
TP + TN

TP + TN + FP + FN
(19)

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)

F1-Score = 2× Precision×Recall

Precision+Recall
(22)

Table 5 compares the anomaly detection performance of OC-SVM using the

proposed concatenated embeddings and the pre-processed network traffic features

provided by the works that developed the IoMT datasets.
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Dataset Feature Engineering Accuracy Precision Recall F1-score

CICIoMT
Ours 84.41 84.43 98.73 91.02

Dadkhah et al. [52] 80.65 80.69 99.88 89.26

IoMT Traffic Data
Ours 88.57 92.04 94.85 93.42

Areia et al. [53] 74.37 65.63 99.64 79.13

Table 3: Anomaly detection performance of OC-SVM using proposed feature engineering
approach and pre-processed network traffic features.

Table 5 compare our proposal with current unsupervised DL-based anomaly

detection methods evaluated in IoT-based environments, beyond IoMT settings, dis-

cussed in Section 3.3.

Dataset Work Accuracy Precision Recall F1-score

CICIoMT
Ours

84.41 84.43 98.73 91.02
IoMT Traffic Data 88.57 92.04 94.85 93.42

Bot-IoT Zixu et al. [84] 95.12 98.74 93.64 96.03
ToN-IoT Alsaedi et al. [85] - 70.59 90.01 79.13
IoTID20 Arifeen et al. [86] 89.89 93.31 96.07 -

MQTT-IoT-IDS2020 Boppana et al. [87] 80 86.80 80 81.40
RT-IoT2022 Sharmila et al. [88] 96.35 96.35 96.36 98.10

ToN-IoT Vaisakhkrishnan et al. [89] 92 88 91 90

Table 4: Anomaly detection performance comparison with unsupervised DL-based mod-
els for IoT environments.

These initial findings suggest that our approach can improve the performance

of the OC-SVM when compared to utilizing the pre-processed features given by

the authors of the IoMT datasets. Moreover, our approach achieves comparable

anomaly detection performance with unsupervised DL-based models, such as gener-

ative adversarial networks and autoencoders, proposed for IoT environments. The

following step of our study will analyze different feature mapping methods for trans-

forming classical data into quantum states for unsupervised anomaly detection in

IoMT environments.
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6 Conclusions

Unsupervised anomaly detection remains a significant challenge in the Internet of

Medical Things. Motivated by the potential of quantum computing, this research

proposal aims to develop a novel unsupervised anomaly detection method utilizing

the principles of quantum machine learning. This proposal is envisioned to improve

current methods in IoMT environments and contribute to future research on unsu-

pervised anomaly detection.

This study offers several key contributions: an analysis of current anomaly de-

tection methods for IoMT, including their feature engineering approaches; a review

of unsupervised anomaly detection techniques for IoT applications; and a discussion

of quantum machine learning-driven anomaly detection strategies, extending beyond

both IoMT and IoT settings. Moreover, our preliminary achievements show a novel

approach for unsupervised anomaly detection in IoMT that leverages natural lan-

guage processing techniques, such as Word2vec and the Transformer architecture.

These early findings suggest that there is still significant work to be done, especially

considering the complex nature of IoMT environments. Moving forward, we will

continue with the next steps of our methodology, refining our approach to address

the proposed research problem.
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[60] Savanović, N., Toskovic, A., Petrovic, A., Zivkovic, M., Damaševičius, R., Jo-
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