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José Antonio Sánchez Tiro

Doctoral Advisors:
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Abstract

Overlapping clustering algorithms allow objects to belong to multiple clusters

simultaneously. One of the most widely used algorithms in overlapping clustering

is overlapping k-means, which has motivated the development of several other al-

gorithms. However, although these algorithms build good clusters, they are time-

consuming for large datasets. This research proposal aims to develop an overlapping

k-means clustering algorithm for large datasets.

Keywords: Overlapping clustering, k-means, large datasets.



1 Introduction

After facing data collection and storage challenges, the problem has shifted to handling

enormous amounts of data today. Websites, social networks, cloud-connected electronic

devices, and user activity, produce large datasets continuously. This has become increas-

ingly crucial due to the diverse fields that demand analysis for large datasets, requiring

more efficient algorithms. In this context, clustering analysis is essential for exploring

and identifying structures for large datasets.

Clustering is a fundamental unsupervised learning techniques in which the label of

the data is unknown, and learning is done through observation rather of examples. The

main task is to group objects into clusters so that objects are most similar within each

cluster while objects in other cluster are differ. These similarities are a function of a

specific measurement that assesses the features of the objects.

Over the years, various clustering approaches have been developed with the result-

ing clusters being exclusive, fuzzy, and overlapping. Disjoint or exclusive clustering in-

volves dividing the data into subsets where each object belongs to a single cluster. Fuzzy

clustering, each object can belong to all groups with a membership value between {0,1}.

Overlapping clustering reflects multiple assignments; each object can be simultaneously

more than one cluster [1]. In this research proposal, the focus is on this last approach.

In the literature, there has been a wide range of different clustering algorithms that

have been applied in application areas, such as biology, security, health and web search,

for different purposes, such as organizing or revealing patterns. In this sense, also many

applications (for example, biology, documents or health) require assigning an object to

several clusters and overlapping clustering algorithms become relevant because they can

be naturally associated with real datasets since they contain innate overlaps.

Despite the progress in exclusive and fuzzy clustering algorithms, the overlapping

clustering algorithms proposed so far have limitations that prevent them from efficiently
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satisfying practical requirements. One of limitations is the ability of algorithms to process

large datasets (in high dimensionality or in the number of objects) in a reasonable runtime,

which reduces their usefulness in a wide variety of applications.

This research work aims to develop an overlapping clustering algorithm for large

datasets. It is intended to combine the advantages of overlapping clustering and large

datasets manipulation strategies.
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2 Related work and State-of-the-art

In the current era, the amount of data generated and collected has reached enormous vol-

umes, ao ability to manage, organize and extract information from data in its natural form

has become essential. Overlapping clustering emerges as a fundamental tool for identify-

ing patterns and extracting knowledge from data.

Various works have reported clustering algorithms handling large datasets for differ-

ent problems [2, 3, 4]. However, this section will focus on works introducing overlapping

clustering algorithms whose contribution is on the algorithmic aspect, i.e., those works re-

porting algorithms considering hardware architectures for handling large datasets are out

of the scope of this thesis.

Over the years, many works have addressed the problem of overlapping cluster-

ing by extending classical algorithms. The [5] proposes a categorization of overlapping

clustering algorithms. Overlapping clustering algorithms are divided into hierarchical

[6, 7, 8], graphical [9, 10, 11, 12, 13, 14, 11, 15], generative [16, 17, 18], partitional

[19, 20, 21, 22, 23, 24, 25, 23, 26, 27], correlation [28, 29, 30], and topological [31, 32].

Partitional overlapping clustering algorithms are divided into Uncertain Memberships and

Hard Memberships (geometrical and additive). [33] showed the advantages and disadvan-

tages of some of the clustering algorithms that are based on k-means. In this research pro-

posal, we extend the categorization proposed in [5] as: graphical, correlation, hierarchical,

generative, fuzzy, additive, three-way, topological, density, and k-means-based. We ex-

tend the category of partition-based clustering to fuzzy, additive, and k-means-based, as

each new category shares unique characteristics. And we add the categories of density

[34] and three-way [35, 36, 37] because their algorithms do not belong to any existing

category.

In the algorithms based on graph theory, a network is used that is represented as a

directed or undirected graph [5]. The algorithms based on graph theory are [10, 12, 13,
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14, 11, 15, 9]. The main difference between them is the criteria used to sort and select the

subgraphs. These algorithms generally suffer from high computation time, many clusters,

and high overlap [5, 33].

The overlapping correlation clustering algorithms seek to map of the similarity be-

tween objects that coincide as closely as possible with the clusters. The overlap is gen-

erated through the relaxation of the function to the cluster assignment; the algorithms

reported are [28, 29, 30]. The disadvantages of this category are that they tend to be

sensitive to noise and are very expensive, which makes it difficult to handle large datasets.

The algorithms based on hierarchies, the clustering algorithm combine the advan-

tages of hierarchies with overlap to have representations that allow visualizing similarity

structures in datasets and better understanding the relationships between objects. The

main disadvantage is that they do not analyze all possible combinations to select the clus-

ters to overlap. The works based on this category are [6, 7, 8].

Additive algorithms model cluster overlap as the sum of centroids of the clusters

[38][5]. These algorithms aim at minimizing the sum of squared residuals between each

object and the sum of centroids to which the object in question belongs [38]. The dis-

advantage is the poor scalability for large datasets. Example of some works based on

additive classification are [39, 40, 41, 42, 23, 43, 27].

On the other hand, generative-based overlapping clustering algorithms use a Bayesian

perspective approach to represent the distribution of data and the probability of cluster

membership. Mixtures of distributions can be additive as in [16, 17] or multiplicative as

in [18]. Among their disadvantages, they are not parameterizable and some of the algo-

rithms are very expensive.

A fuzzy-based category assigns the membership of objects to clusters, where all ob-

jects have a degree of membership in a cluster. This category generally uses a membership

threshold to allow an object to belong to more than one cluster [19, 44, 45, 22]. However,

knowing the ideal threshold is difficult as the number of clusters and data increases.
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The algorithms based on three-way clustering have three ways of organizing the

data: Inside, containing objects that belong to a cluster; Outside, containing objects that

do not belong to any cluster; and Partial, containing objects that may belong to a single

cluster or more than one cluster. These works [35, 36, 37] generally use a threshold to

control overlap to allow multi-assignment. Among their disadvantages, these algorithms

are expensive when evaluating the three-way organization.

In overlapping clustering algorithms that extend topological maps (such as SOM

[46]), The general idea is to assign one or more neurons to an object, searching for a

subset of winning neurons and thus updating the weights of the winning neurons’ sub-

set and those of their neighborhood [5]. Examples of theses algorithms [31, 32]. Their

disadvantages are that they are highly expensive and not very scalable for large datasets.

Density-based algorithms are capable of generating overlapping clustering with ar-

bitrary and non-spherical shapes. [34] is the only algorithm that relies on density and

distances to detect highly dense regions and connected clusters. OC-DD does not need to

reconfigure the number of clusters. The disadvantage of OC-DD is that it is not scalable

for large datasets.

The main idea of k-means-based algorithms is to solve the clustering problem by

considering overlapping observations resulting from the intersections of the cluster bound-

aries. The k-means-based clustering algorithms are represented by prototype clusters

(centroids, medoids, etc.) with their own objective functions. Besides defining a distance

measure to evaluate an object with one or more prototype clusters. One of the most used

overlapping clustering algorithms is k-means, an algorithm widely studied in partitional

clustering. K-means aim is to minimize the distance from the centroid to each object by

dividing the space into k-clusters. K-means is considered an efficient algorithm because of

its heuristics and convergence rate and its simplicity in scaling it to different areas. In this

research proposal, we focus on the category of algorithms based on k-means, as k-means

is one of the most popular algorithms for high efficiency [47, 48, 49] and allows the user
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to specify the number of clusters. In this way, a description of the following algorithms is

presented.

OKM. It is an algorithm proposed in [20] that extends the k-means algorithm [50]

to produce overlapping clustering with three steps: choosing arbitrary k-centers and two

iterative steps, updating the clusters and assigning objects to one or more clusters. OKM’s

multi-assignment heuristic explores possible assignments for each object from the nearest

centroids clusters to the farthest ones; for this, OKM denotes the image of an object as

a combination of centroids of the clusters where the object appears, so the image is the

average of the centroids of each cluster to which the object belongs. The objective function

minimizes the distance of each object to its image. The heuristic starts by assigning each

object to the centroid of the nearest cluster and calculating the image; then, it assigns the

object to two clusters, the one of the nearest and the one of the second nearest centroid,

and calculates a new image considering both clusters. If the distance from the object to

the new image is less than the distance from the object to the initial image with only one

cluster, the object is assigned to the two clusters. The process continues assigning the

object to more clusters only if the distance to the new image with more clusters can be

reduced. While updating the centroids is done locally in the clusters, unlike k-means,

OKM considers multi-assignment of objects to the clusters. Among its limitations are

a) like k-means the resulting clustering depends on initial centroids; this is commonly

done randomly b) OKM is an expensive algorithm because it evaluates which clusters are

assigned to each object. Therefore, OKM is not scalable for large data sets.

OKMED. This overlapping clustering algorithm [21] extends to K-Medoid algo-

rithm [51] and OKM, that chooses centroids (medoids) from the data itself. In OKMED,

the image is defined using medoids; for each object, its image is the object closest to the

medoids to which it belongs. The objective function of OKMED minimizes the distance

of each object to its image. The multi-assignment uses the heuristic of OKM adapted

to medoids, searching for the nearest to the farthest medoid and assigning an object to

the cluster if the distance between the object and its image decreases. For the update in
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OKMED, each cluster tests each object until it finds the one that improves the objective

function, which becomes the new medoid. The OKMED algorithm is expensive as the

dataset grows, which is its main limitation.

WOKM. This algorithm [21] generalizes OKM and weighted k-means [52]. This

algorithm adds a vector of local feature weighting for each cluster. This allows objects

to be assigned to clusters according to their most important features. WOKM defines the

concept of image as the weighted average of the centroids of the clusters to which each

object belongs. The objective function minimizes the distance between each object and

its image by combining the weight vector of the clusters to which the object belongs. The

multi-assignment step, similar to the OKM algorithm, assigning each object to clusters

from closest to farthest, assigns the object to the cluster if the distance of each object from

its image by the weight vector of each cluster decreases. Unlike OKM, WOKM adds a

weight update, which calculates a new weight for each cluster, estimates the variance in

each feature, and updates it only if the objective function improves. The limitations of

WOKM are a) it is sensitive to initial centroids and b) it is expensive for large datasets.

R-OKM. R-OKM [53] is an extension of OKM, but unlike OKM, it adds the car-

dinality of the assignments to objective function and multi-assignment, which allows it to

regulate overlapping. Also, the authors develop another algorithm called Parametrized-

ROKM that carries out the R-OKM strategy; however, it adds a parameter to the cardi-

nality of the assignments to have greater control over overlapping, which improves per-

formance compared to R-OKM. Among the limitations of R-OKM and Parameterized R-

OKM are a) the value that regulates the overlap depends on the user b) random selection

of the initial centroids, and d) it is expensive for large datasets.

MCOKE. This algorithm proposed by [24], extended k-means. MCOKE starts by

using the k-means algorithm to assign each data point to a cluster. The maximum distance

in the k-means assignment of an object to any centroid is saved as a global threshold to

allow overlapping clustering. Then, MCOKE calculates the distance of each object to

11



each centroid of the clusters to which it does not belong. If the distance of each object

to each centroid is less than the global threshold, the object is assigned to that centroid

cluster. The limitations of MCOKE are a) the random initialization of centroids gives

different results for the overlap threshold and b) MCOKE is expensive for large datasets

since it re-evaluates the distances of the centroids to the objects to compare them with the

global threshold. Other algorithms have been developed that extend MCOKE to detect

outliers, such as [54, 55, 56]. In [57], a similar algorithm was proposed using the k-

median clustering. However, the extensions and MCOKE do not address the problem of

large datasets.

KOKM. KOKM algorithm generalizes kernel k-means and the multi-assignment

heuristic of OKM. This algorithm maps input objects to a higher feature space [58]. Then,

KOKM defines the concept of an object’s image as the average of the clusters to which the

object belongs in the feature space. The objective function minimizes the distance using

the Mercer Kernel similarity measure between each object and its image in the feature

space. In the multi-assignment step, each object is first assigned to the nearest cluster,

and the object’s image is updated. Then, the distance between the object and its image is

evaluated. Next, the algorithm searches for the next nearest centroid, updates the object’s

image, and assigns the object to that cluster if the distance between the object and its

image decreases. The process is repeated for each cluster centroid to which the object

does not belong. The process ends when the distance of the image with the most clusters

cannot be reduced. Centroid updates are defined as the average of the objects assigned to

each cluster according to the number of assignments each object has. is highly expensive

when evaluating the objective function [25], making it unsuitable for large datasets. On

the other hand, KOKMII algorithm was proposed that improves the efficiency of KOKM

with medoids [25]. The main difference between KOKMII and KOKM is the update step.

KOKMII defines each medoid as minimizing the sum of distances over all objects assigned

to the cluster using Mercer Kernel. Among its disadvantages, it is susceptible to choosing

the kernel function for each dataset, and the data mapping to a feature space requires a
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different parameter for each kernel function; a poor parameter affects the final clustering.

Furthermore, KOKMII is only more efficient than KOKM to handle larger datasets, as

KOKMII maintains the problem of being expensive when the number of objects increases.

NEO-KMeans. This algorithm [26] is a k-means variant, which allows overlap-

ping through thresholds. Threshold represents the number of assignments that must be

made in the overlapping clustering. NEO-KMeans proposes two strategies to estimate the

threshold, for both first apply k-means algorithm. The first strategy uses the clustering ob-

tained, and in each cluster, it calculates the distance of the objects to centroids and obtains

the mean and standard deviation of the distances. The threshold is the number of times

objects’ distance to clusters centroids they do not belong to is less than the mean plus

standard deviation multiplied by a fixed parameter. In the second strategy, the distances

of each object to the clusters centroids it belongs to are normalized. The threshold is the

number of times that objects whose distance to the clusters centroids to which they do

not belong is less than 1/(k+1). Afterward, NEO-KMeans calculates the distances of each

object to cluster centroids and sorts the objects in ascending order by their distance to the

cluster centroids. Then, in the multi-assignment step, look for the object with the shortest

distance to a centroid and assign the object to the cluster. This process is repeated until

the assignments specified by the threshold are completed. Centroids are updated similarly

to k-means by averaging the objects of each cluster. The limitation of NEO-KMeans is

determining the threshold, since it requires an initial clustering and the calculation of dis-

tances of each object with the clusters to which it does not belong. The threshold and

parameter are fixed for all clusters, which can generate errors in the overlap. Therefore,

NEO-KMeans is expensive for large datasets. In [59], a variant of NEO-KMeans was

made to avoid using fixed parameters; this algorithm is based on the cluster’s radius and

the distance between the clusters for overlapping clustering. However, the variant is more

expensive than NEO-KMeans since it performs more distance calculations and thus does

not solve large dataset problems.

KHM-OKM. This variant proposed by [60] combines K-Harmonic Means (KHM)
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[61] and OKM. The idea of using KHM is to initialize the centroids and then apply OKM.

This allows OKM not to have random initialization and to converge faster. The limitations

of this variant are the same of the OKM algorithm. On the other hand, an initial clustering

might not be beneficial for large datasets. In [62], a similar algorithm was proposed, but

it uses WOKM to build the overlapping clustering.

OCCW. This work [63] proposed a correlation-weighted overlapping clustering al-

gorithm similar to WOKM and OKM. OCCW defines the concept of membership weight

to indicate the degree of correlation between each object and the clusters to which it be-

longs; the image of each object is the average weight of the clusters to which it belongs.

The OCCW objective function minimizes the distance between each object and its im-

age. Multi-assignment uses the OKM heuristic; for each object, it searches for the cluster

centroid from closest to furthest but adds an intermediate step, calculating the correla-

tion weight between each object and the multiple assignments to the clusters to which

the object belongs. OCCW assigns an object to a new cluster if the distance between the

object and its image decreases. Updating centroids is similar to OKM, but OCCW uses

correlation weight. The disadvantages of this algorithm are that it is sensitive to initial

centroids and expensive because it evaluates which cluster is best to assign. Therefore, it

is expensive for large datasets.

RTKM. This algorithm [64], focuses on outlier detection and data overlap. The

objective of the algorithm is outliers and data overlap control using parameters. Then,

objective function is given by k-means but adds weights to each object that are associated

with each cluster to determine the extent to which the object belongs to clusters. Multi-

assignment depends on a threshold regulating the minimum number of clusters associated

with an object. RTKM adds a step to update the weights of each object. Updating cen-

troids of RTKM is similar to k-means. The limitations of this work are a) overlapping

threshold depends on knowing the overlap of the dataset, and b) it maintains the disadvan-

tages of the based k-means overlapping clustering algorithms, so RTKM is expensive for

large datasets.
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In [65], the authors propose applying the k-means clustering algorithm. Afterwards,

the multi-assignment is computed for every two clusters by calculating the distance of

each object of a cluster to each object of the other cluster. Then, the closest objects

between the two clusters are assigned to both clusters.

2.1 Discussion

Overlapping clustering allows objects to belong to more than one cluster. As it has been

shown, there are algorithms to solve overlapping clustering [1, 5, 33, 66]. Among them are

the k-means-based clustering algorithms, which are the most studied due to their good re-

sults. Most of the k-means-based clustering algorithms are based on three steps: selection

of centroids, multi-assignment and updating of representatives. However, these algorithms

share a common limitation: They are inefficient when applied to large datasets.

The related work showed that no k-means-based overlapping clustering algorithm

handles large datasets (see Table 1). Additionally, the above review shows that the multi-

assignment process of all these algorithms is time-consuming. Typically, after an object is

assigned to a cluster, it is required to re-evaluate whether it can be overlapped with another

cluster. Therefore, these algorithms are computationally expensive when applied to large

datasets, highlighting the practical need for an overlapping clustering algorithm suitable

for large datasets.

The above highlights a gap in the literature on overlapping clusters. Thus, this

doctoral research will focus on developing an overlapping clustering algorithm for large

datasets.
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Algorithms Contribution Type of data Large datasets

OKM Centroid combination and a
multi-assignment heuristic Numeric No

OKMED Medoid-based Any type No

WOKM Local weighting of the clusters Numeric No

R-OKM Overlap regulation Numeric No

MCOKE Threshold with maximum distance Numeric No

KOKM Kernel methods Any type No

KOKMII Kernel methods and medoid-based Any type No

NEO-KMeans Overlap regulation Numeric No

KHM-OKM K-Harmonic-Means-OKM Numeric No

OCCW Correlation weighting of the clusters Numeric No

RTKM Weights per object in each cluster Numeric No

Algorithm proposal Handle large datasets Numeric Yes

Table 1: Summary of k-means-based overlapping algorithms.
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3 Research Proposal

First, the proposal’s motivation and justification are discussed. Then, the problem is de-

fined. The research questions, hypotheses, and objectives are presented. Finally, the

methodology is described.

3.1 Motivation

Cluster analysis is an area focused on the analysis of unlabeled data. With the growth

of technology and the availability of large amounts of data generated by different infor-

mation systems, the need arises to develop new clustering algorithms to process large

datasets for analysis and interpretation. Several techniques and strategies for clustering

large datasets have been presented in the literature, ranging from parallel architectures

to optimization and dataset reduction [67, 68, 69]. The challenge arises when there are

overlapping clustering algorithms because they become slow for large datasets. The need

to develop scalable clustering algorithms opens new opportunities in areas not explored

as the overlapping clustering approach. Developing a strategy without using a parallel or

distributed infrastructure to manage large datasets allows it to require a small amount of

computational resources.

Currently, some works help solve partitional clustering for large datasets with differ-

ent techniques, while in overlapping clustering, there is a lack of research to handle large

datasets. Therefore, it is essential to continue this line of research and develop overlapping

clustering algorithms that can handle large datasets.

3.2 Justification

Clustering algorithms based on k-means are the most used due to their simplicity and

high efficiency, as well as because they allow the specification of the number of clusters to
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build. As seen in Section 2, the most successful overlapping clustering algorithms mod-

ify the objective function of classical clustering algorithms to decide whether to overlap

clusters, while others use thresholds. However, the problem with these overlapping clus-

tering algorithms is that they are expensive and cannot handle large datasets since they

need more calculations to perform the overlap.

For example, the most commonly used algorithm for solving data overlap in the lit-

erature is OKM, which has the disadvantage of its runtime, which can be extremely long

for large datasets. In OKM, the multi-assignment step is the most demanding computa-

tional task (in time). Since it is necessary to calculate the distances of the n objects with

the k centroids to be created, evaluating each object to determine whether it can belong

to more than one cluster is also time-consuming. On the other hand, other algorithms

that depend on thresholds need to run more times to obtain better results. Thus, handling

large datasets in overlapping clustering based on k-means is still a problem due to the

nonexistence of overlapping clustering algorithms that can handle large datasets. Thus it

would be important to develop an algorithm of this type that aims to reduce the clustering

time without losing much quality and that can process large datasets on computers without

specialized hardware.

3.3 Problem Statement

As mentioned above, k-means-based overlapping algorithms are widely used because they

achieve good results in the quality of overlapping clustering and are simple. However,

handling large datasets in overlapping clustering has been a little studied area, and those

algorithms are expensive for large datasets as they require more computations than k-

means. Therefore, this PhD research addresses the problem of developing an overlapping

clustering algorithm for large datasets.
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3.4 Research Questions

1. What is the appropriate strategy to develop an efficient overlapping clustering algo-

rithm for large datasets (high dimensionality and large numbers of objects)?

2. How can we guarantee the response time and the quality of the overlapping cluster-

ing when the dataset to be processed is very large?

3. Is it possible to develop a fast overlapping clustering algorithm for large datasets?

3.5 Hypothesis

It is possible to develop an overlapping k-means clustering algorithm for large datasets,

which significantly improves the runtime and maintains the quality of the results compared

to the k-means-based overlapping clustering algorithms reported in the literature.

3.6 Objectives

3.6.1 General objective

Develop an overlapping k-means clustering algorithm for large datasets that allows a

trade-off between the fast and quality of the solution obtained. The algorithm is oriented

to problems of large datasets in the overlapping clustering and partitional clustering areas.

3.6.2 Specific objectives

1. Develop an efficient strategy to manage large datasets by dividing them into small

subsets.

2. Develop a strategy to obtain representative objects from small subsets and merge

them to perform an overlapping clustering of the representative objects.
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3. Developing a fast strategy to map objects to the overlapping clustering of represen-

tative objects.

4. Develop an overlapping clustering algorithm for large datasets using 1), 2), and 3).

3.7 Scope and Limitations

Large datasets will be handled algorithmically. It will not be based on hardware architec-

tures or distributed or parallel frameworks. This research will define large datasets based

on the literature on overlapping clustering and partitional clustering algorithms.

3.8 Expected Contributions

The main contribution expected at the end of this Ph.D. research is:

1. An overlapping k-means clustering algorithm for large datasets.

3.9 Methodology

The following methodology is presented to achieve the objectives and validate the hypoth-

esis raised in this research proposal.

1. Literature review of overlapping clustering algorithms:

(a) Identify work that addresses overlapping clustering, including those focusing

on solving fast overlapping clustering or with large datasets, if any.

(b) Identify datasets used in clustering overlapping with real data where timing

issues exist. The closest works will be used in the evaluation to measure the

performance of this proposal.
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(c) Identify evaluation metrics used for overlapping clustering and evaluation meth-

ods when using large datasets.

2. To propose a solution to manage large datasets by dividing them into small subsets:

(a) Identify the strategies used to handle large datasets

i. Sampling strategy.

ii. Projection strategy.

iii. Approximation strategy.

iv. Divide and conquer strategy.

(b) Select the best strategy regarding overlapping clustering quality, performance,

and scalability.

(c) Propose strategies for small subsets that maintain a cost-benefit balance of

computational resources and are suitable for overlapping clustering.

i. Define the best strategy to handle large datasets with high dimensionality

and with a large number of objects.

ii. Define an efficient indexing structure for objects of each subset.

iii. Define a stopping criterion to generate subsets of the dataset.

3. Develop a strategy to obtain representative objects

(a) Identify the strategies used to obtain the representative objects of a subset.

i. Clustering algorithms based on distances.

ii. Clustering algorithms based on density.

iii. Clustering algorithms based on models.

(b) Select the fastest and most scalable strategy for selecting representative ob-

jects.

(c) Develop a fast and noise-robust algorithm to select the best representative ob-

jects of each small subset.
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4. Developing a fast strategy to map objects to the overlapping clustering of represen-

tative objects:

(a) Develop an efficient strategy to build a set of representative objects for the

whole dataset.

(b) Define a method to index each subset and its representative objects.

(c) Define a recursive criterion if the set of representative objects is large.

5. Develop an overlapping k-means clustering algorithm for large datasets using 2) 3)

and 4).

(a) Define an overlapping clustering algorithm to group representative objects ef-

ficiently.

i. Develop the fast initialization algorithm.

ii. Define the objective function with overlap.

iii. Define the multi-assignment strategy.

iv. Define updating of centroids.

(b) Extrapolate the results of the overlapping clustering of the representative ob-

jects to the subsets.

6. Evaluate the proposed algorithm

(a) The real multi-label datasets using for evaluating from the overlapping clus-

tering algorithms reported in the literature.

(b) The multi-label datasets reported in the literature that are considered large and

those that cause problems. Additionally, they will create multi-label synthetic

datasets.

(c) Perform experimental analyses to evaluate clustering quality and overlap qual-

ity with metrics reported in the literature for evaluating overlapping clustering.

For example, the Fbcubed metric evaluates overlapping clusters.
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(d) Perform a runtime analysis with datasets with high dimensionality and many

objects.

(e) Compare the proposed algorithm with overlapping clustering algorithms re-

ported in the literature regarding clustering quality and runtime.

(f) Determine the computational complexity of the developed algorithm.

(g) Analysis of the results obtained and determine the limitations that affect the

proposed algorithm. If these limitations exist, modify the algorithm to reduce

them.

3.10 Publications Plan

Three papers are expected to be published from the research in this PhD research, of which

two should be in journals and one in a conference. The publication plan is as follows:

1. The first paper will be submitted to a journal in the first quarter of 2025. This paper

will publish the algorithm presented as a preliminary result of this proposal.

2. The second paper will also be submitted to a journal in the first quarter of 2026 and

will present the final algorithm developed as a result of this PhD research.

3. The third paper will be submitted at a conference in the first quarter of January

2027. In it, we will report on the proposed algorithm’s application to a real data

from specific application.

23



3.11 Work Plan

2024 2025 2026 2027 2028

Literature review

Research proposal

Submit a paper to JCR Journal

To propose a solu-
tion to manage large
datasets

Develop a strategy to
obtain representative
objects

Developing a fast strat-
egy to map objects to
the overlapping clus-
tering

Develop an over-
lapping clustering
algorithm for large
datasets

Submit a paper to JCR Journal

Evaluation

Datasets collection

Analysis of results

Submit a paper to Conference

Thesis

Thesis writing

Ph.D. committe revision

Ph.D. defense

Figure 1: Research proposal schedule.
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4 Preliminary Results

In this section, as preliminary results of this Ph.D. research, the first version of a k-means-

based overlapping clustering algorithm for large datasets (OKCLD) has been developed

(Section 4.1). Section 4.2 shows the experiments performed that asses our proposed algo-

rithm are shown.

4.1 Proposed algorithm

The proposed algorithm uses the ”divide and conquer” heuristic, which is widely used for

processing large datasets. The idea is to split a large datasets into small and manageable

subsets. Then, a few objects are chosen from each subset as representatives. The selected

objects from all the subsets represent the large datasets; thus, instead of building an over-

lapping clustering over the large dataset, we propose building an overlapping clustering

over the set of representative objects. It is important to highlight that if the set of represen-

tative objects is still too large, OKCLD can be recursively applied. Once the overlapping

clustering of the representative objects has been built; the remaining objects are assigned

to the same clusters to which their representative objects belong to.

4.1.1 Split of the large dataset

Using the ”divide-and-conquer” heuristic for splitting small subsets and directly applying

an overlapping clustering algorithm to each subset would not reduce the computational

time due to the cost of these algorithms, and the cost of combining the results. Therefore,

splitting the large dataset X aims to work with small and manageable subsets of objects for

selecting a smaller set of representatie objects, which will be then overlapping clustered.

The manageable size depends on the available computer; thus, our proposed algorithm

OKCLD allows the final users, through a parameter p, to define the size of a manageable
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subset of objects in their context. Thus, we randomly split a dataset X into d subsets

S = {S1,S2,S3, ...,Sd} of size p, where d =
⌈
|X |
p

⌉
, and X =

⋃d
i=1 Si with Si ∩ S j = /0, for

i ̸= j, and ∀ i = 1, ...,d, Si ̸= /0. If |X | is not divisible by d, the objects in X are distributed

evenly across the subsets to ensure balance. Consequently, the size of each subset is define

as |Si| ∈ {⌊|X |/d⌋,⌈|X |/d⌉}.

4.1.2 Selecting Representative Objects

As already mentioned, the idea is to process a large dataset using a smaller set that rep-

resents the whole set. Therefore, once the large dataset is randomly divided, we propose

building clusters of similar objects into each subset, and from each of these clusters select

an object that represents it. In this way, the representative objects will allow us to reduce

the number of objects to work with and simultaneously represent the original large dataset

through them. In this sense, a clustering algorithm, like the well known k-means, would

allow us to build these groups and to select a representative for each cluster (the centroid).

The k-means clustering algorithm requires specifying the number of clusters to be

built (the parameter k). Hence, defining the value of k is critical to selecting a good set

of objects representing the large dataset. Thus, finding a balance of the size of k without

being too large to produce too many representative objects but not too small to make large

clusters that the centroids cannot adequately be represented by. Then, given that d ∗ k

represents the total number of representative objects, which must be less or equal to p,

the manageable size. Therefore, k should be such that d ∗ k ≤ p and since d =
⌈
|X |
p

⌉
;

then we compute k =
⌈

p2

|X |

⌉
. To ensure that k depends on the subset size, we calculate

k =
⌈
|Si|2
|X |

⌉
. When |Si|2 < |X |, we can obtain |Si|2

|X | ≤ 1; it implies k = 1 according to the

proposed formula. In this case, we use k = 2 as the number of representative objects per

subset. This value was obtained experimentally since it allows OKCLD to be faster and

obtain quality results similar to state-of-the-art algorithms.
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4.1.3 Overlapping clustering of the Representative Objects

Once the representative objects of each subset have been computed, the union of all rep-

resentative objects might be an unmanageable set (when p is too small compared to |X |),

which occurs when d ∗ k > p, resulting in a set of representative objects larger than p. In

this case, when the set is manageable we can apply our algorithm recursively to obtain an

overlapping clustering of the representative objects. Otherwise, we apply a k-means-based

overlapping clustering algorithm on the set of all representative objects.

4.1.4 Multiasigment to the whole dataset

In the final step, the multi-assignment performed by the overlapping clustering algorithm

on the set of representative objects is spread to the whole dataset. To this end, each

object in the large dataset is assigned to the clusters to which its representative object

belongs. This way, OKCLD indirectly finds the overlapping relationships between the

original objects through the representative objects.

Algorithm 1 OKCLD Algorithm
1: Input: A set of n data points X = {x1,x2, . . . ,xn}, the number of clusters K and p the

size of each subset.
2: Output: An overlapping clustering of X .
3: Randomly split X without replacement to build d =

⌈
|X |
p

⌉
subsets Si of size less than

or equal to p and the objects are evenly distributed among the subsets.
4: for each subset Si do
5: Set k =

⌈
|Si|2
|X |

⌉
if k ≥ 2, otherwise k = 2.

6: Apply k-means on Si with k
7: Save the set centroids from k-means in R.
8: if |R|> p then
9: OKCLD(R,K,p).

10: else
11: Apply a k-means-based overlapping clustering algorithm on R with K clusters.
12: Extends the multi-assignment of R to X .

Algorithm 1 shows the pseudocode of the OKCLD algorithm.
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4.2 Results

Four experiments were considered to evaluate the performance of the proposed overlap-

ping clustering algorithm: one varying the parameter p, a second comparing OKCLD

and state-of-the-art algorithms, a third showing the behavior of OKCLD regarding quality

and runtime on large datasets, and the last one showing the scalability of the OKCLD

algorithm.

For our experiments, we used state-of-the-art overlapping clustering algorithms fol-

lowing the k-means approach, which, as we have already commented, according to the

literature review, are commonly used. We chose the algorithms that have reported the best

clustering quality, OCCW [63], and HWOKM [21]; additionally, we chose OCKMEX

[57] since it is the most recent version of MCOKE [24]. We also used the alternative

NEO-KMeans [59] because it reported better results than RTKM [70]. Also, we added

OKM [20] since, according to [60], it is one of the most commonly used algorithms in the

literature. The algorithm reported in [65] was not chosen because it is oriented to solve

elliptic problems. For the HWOKM, the parameter β was set to 2.0, as suggested by its

authors [62]. For the OCKMEX, the distance from the centroid to the farthest object is

used as a threshold for multi-assignment for each cluster, as suggested by its authors [57].

Since our proposed algorithm allows the use of any k-means-based overlapping clus-

tering algorithm, we will evaluate our algorithm using the following: HWOKM (OKCLD-

HWOKM), NEO-KMeans (OKCLD-NEOKMEANS), OCCW (OKCLD-OCCW), OCK-

MEX (OKCLD-OCKMEX), and OKM (OKCLD-OKM).

In our experiment, each overlapping clustering algorithm was tested 20 times as in

[5], employing different centroid initialization in each run.

In Table 2, we show the small datasets used to assess the clustering quality of our

algorithm and compare it with the state-of-the-art algorithms. These datasets were chosen

since they are commonly used to assess overlapping clustering algorithms, and they con-
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tain few objects and few features. In Table 3, we show the large datasets used to assess

the clustering quality of our proposed algorithm. These datasets were chosen since they

are large in objects and features, and some have already been tested [62].

To evaluate the scalability of OKCLD in our last experiment, we generated synthetic

datasets using the sci-kit-learn library’s make multilabel classification 1 function, follow-

ing the setup described in [71]. We created fifteen synthetic datasets, dividing them into

three groups: scalability on the number of objects, scalability on the number of features,

and scalability on the number of classes. To generate overlap in the synthetic datasets, we

applied the suggested values of the make multilabel classification function. The values

used to generate overlap were: n labels=2 (the average number of labels per object),

and allow unlabeled=False (each object belongs to at least one class). Table 4 shows

the synthetic datasets.

All the overlapping clustering algorithms were implemented in the C++ program-

ming language. The experiments were performed on a computer with 8 GB RAM, an Intel

(R) core (TM) i5 – 7200 CPU at 2.50 GHz, and the Ubuntu 22.04.1 operating system.

We used FBcubed metric to compare the clustering quality of the algorithms because

this metric evaluates overlapping .

FBcubed is calculated using BcubedPrecision and BcubedRecall . BcubedPrecision metric

of xi is defined as [60, 72]:

Bcubedprecision(xi) =
∑x j∈D(xi)

Min(|π(xi)∩π(x j)|,|C(xi)∩C(x j)|)
|π(xi)∩π(x j)|

|D(xi)|
(1)

where D(xi) is the set of objects that share at least one cluster with xi, C(xi) are the class

labels associated to xi, π(xi) are the cluster labels associated to xi. BecubedRecall is defined

1
https://scikit-learn.org/1.5/modules/generated/sklearn.datasets.make multilabel classification.html
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Name Objects Features Labels
Birds 645 260 19

CHD 49 555 49 6
Emotions 593 72 6

Enron 1702 1001 53
GnegativeGO 1392 1717 8

GnegativePseAAC 1392 440 8
GpositivePseAAC 519 440 4
HumanPseAAC 3106 440 14

Image 2000 294 5
Medical 978 1449 45

PlantPseAAC 978 440 12
Scene 2407 294 6

Water-quality 1060 16 14
Yeast 2417 103 14
Yelp 10810 668 5

Table 2: Multi-label small datasets to assess the clustering quality.

Name Objects Features Labels
Arts 7485 23146 26

Bookmarks 87856 2150 208
Business 11214 21924 30

Computers 12444 34096 33
Education 12030 27534 33

Entertainmet 12730 32001 21
Health 9205 30605 32
IMDB 120919 1001 28

Mediamill 43907 120 101
Nus-Wide Bow 269648 500 81

Nus-Wide cVLADPlus 269600 129 81
Recreation 12830 30320 22

Science 6428 37190 40
Social 12110 52350 39

Society 14510 31802 27
Tmc2007 28696 49060 22

Table 3: Multi-label large datasets to assess the clustering quality.
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Name Objects Features Labels
SynO1 1,000 20 4
SynO2 10,000 20 4
SynO3 100,000 20 4
SynO4 1,000,000 20 4
SynO5 10,000,000 20 4
SynC1 10,000 20 10
SynC2 10,000 20 20
SynC3 10,000 20 30
SynC4 10,000 20 40
SynC5 10,000 20 50
SynF1 10,000 10 4
SynF2 10,000 50 4
SynF3 10,000 100 4
SynF4 10,000 1,000 4
SynF5 10,000 10,000 4

Table 4: Synthetic datasets.

as [60, 72]:

BcubedRecall(xi) =
∑x j∈H(xi)

Min(|π(xi)∩π(x j)|,|C(xi)∩C(x j)|)
|C(xi)∩C(x j)|

|H(xi)|
(2)

where H(xi) is the set of objects that share at least one class with xi including xi. Then,

the FBcubed metric [60, 72] is defined as:

FBcubed =
2(1

n ∑
n
i Bcubedprecision(xi))(

1
n ∑

n
i BcubedRecall(xi))

(1
n ∑

n
i Bcubedprecision(xi))+(1

n ∑
n
i BcubedRecall(xi))

(3)

The FBcubed metric evaluates the consistency of an overlapping clustering by as-

sessing the precision and recall relative to the ground truth. However, because it computes

cluster and class intersections for each pair of related objects in its clusters or classes, com-

puting FBcubed is expensive when the number of objects and classes is large. Therefore,

we introduce an alternative to compute FBcubed (AproxFBcubed) to evaluate the quality

of overlapping clustering for large datasets. AproxFBcubed randomly split the dataset X

into g subsets of size l, where l is a parameter (the manageable size for each subset). If

g =
⌈
|X |
l

⌉
is not an integer g, the objects are distributed equally as possible between the
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subsets to ensure balance. Once the subsets are built, the FBcubed metric is calculated

for each subset using the overlapping clustering labels and the ground truth labels cor-

responding only to the objects in that subset. Finally, the FBcubed values obtained for

each subset are averaged; we call this average the AproxFBcubed value. AproxFBcubed

approximates FBcubed but reduces the overhead when processing a large dataset.

To show that AproxFBcubed results are similar to FBcubed, we applied the OKM al-

gorithm on three datasets: emotion, scene, and yeast, which are widely used for assessing

overlapping clustering algorithms. The reported results correspond to the best outcome

from twenty OKM runs on each dataset, following the procedure described in [5]. The

value of k was set to the number of classes in the dataset. AproxFBcubed was tested with

the following manageable size values: 50, 100, 300, 500, and 1000; AproxFBcubed with

each manageable size was run five times. The results of the OKM algorithm, assessed

using the AproxFBcubed and FBcubed metrics for each dataset, were compared through

the Wilcoxon signed rank test with a significance level of α = 0.05. Table 5 shows the

dataset, FBcubed, l, the average of calculating 5 times AproxFBcubed, the difference be-

tween FBcubed and AproxFBcubed, the FBcubed computation time, the AproxFBcubed

computation time, the percentage improvement in computation time for AproxFBcubed

over FBcubed, and the statistical significance of the results. The dash in table indicates

that the parameter l cannot be applied to the dataset since the dataset size is smaller than

l. The quality of the clustering when measured with FBcubed and with AproxFBcubed

according to the statistical test there is no significant difference. In time, AproxFBcubed

is faster than FBcubed in computation.

4.2.1 Experiment 1: Evaluate OKCLD with different values for the parameter p.

Since our proposed algorithm uses the parameter p (the value of manageable size) as a

first experiment, we tested OKCLD with varying p values to study its behavior. This

experiment tested the most used datasets in the state-of-the-art and synthetic datasets.
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Dataset FBcubed l AproxFBcubed FBcubed-AproxFBcubed FBcubed time AproxFBcubed time % time improvement Significant

emotions 0.5282

50
100
300
500

1000

0.538178
0.531472
0.528678
0.528358

-

0.00997
0.0032712
0.00086492
0.0001573

-

27

2
4

12
13
-

92.59%
85.19%
55.56%
51.85%

-

No
No
No
No
-

scene 0.32321

50
100
300
500

1000

0.338971
0.330406
0.325182
0.324593
0.323879

0.015764
0.0071987
0.001975

0.0013858
0.00067207

358

9
17
46
83

137

97.49%
95.25%
87.15%
76.82%
61.73%

No
No
No
No
No

yeast 0.68439

50
100
300
500

1000

0.686264
0.685683
0.684533
0.684671
0.684451

0.0018691
0.0012882
0.00013864
0.00027657

0.000056803

853

26
43

114
172
301

96.95%
94.96%
86.64%
79.84%
64.71%

No
No
No
No
No

Table 5: Quality results of OKM with the FBcubed and AproxFBcubed metrics on Emo-
tions, Scene, and Yest are shown.

Synthetic datasets of different sizes were used: one small (1,000 objects) and one large

(100,000 objects). Other datasets with varying numbers of classes: one with 10 classes

and one with 30 classes, and the other with different numbers of features: one with 10

features and one with 1000 features. These were selected as they are where FBcubed can

be computed. The reported results correspond to the best result of twenty runs of each

algorithm in each dataset, following the procedure described in [5]. The value of k was

set to the number of classes in the dataset. The parameter l for AproxFBcubed was l = 50

as this value was shown to be faster statistically significant. Table 6 shows the datasets

tested with various values of p (50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550),

the results of each algorithm of OKCLD with FBcubed and AproxFBcubed metrics, and

the time (in miliseconds) for each dataset with each value of p. The OKCLD-HWOKM

algorithm showed the best clustering quality results on most of the evaluated datasets. In

table 6, the values for the parameter p with the best results in terms of FBcubed are in

the range from 50 to 300. Within this range, lower values of the parameter of p were

associated with faster runtimes for each algorithm. Finally, a consistent runtime behavior

was observed for all algorithms: as the value of p increases, the runtime also increases.
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Dataset FBcubed AproxFBcubed Time

Birds
100 200 300 400 500

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

100 200 300 400 500

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

100 200 300 400 500
p size

0

1000

2000

3000

4000

5000

6000

7000

8000

Ti
m
e

Emotions
50 100 150 200 250 300 350 400 450 500 550

p size

0.35

0.40

0.45

0.50

0.55

0.60

Qu
al
ity

50 100 150 200 250 300 350 400 450 500 550
p size

0.35

0.40

0.45

0.50

0.55

0.60

Qu
al
ity

100 200 300 400 500
p size

0

500

1000

1500

2000

Ti
m
e

Scene
50 100 150 200 250 300 350 400 450 500 550

p size

0.20

0.25

0.30

0.35

0.40

0.45

Qu
al
ity

50 100 150 200 250 300 350 400 450 500 550
p size

0.20

0.25

0.30

0.35

0.40

0.45

Qu
al
ity

100 200 300 400 500
p size

0

5000

10000

15000

20000

25000

30000

Ti
m
e

Yeast
50 100 150 200 250 300 350 400 450 500 550

p size

0.2

0.3

0.4

0.5

0.6

0.7

Qu
al
ity

50 100 150 200 250 300 350 400 450 500 550
p size

0.2

0.3

0.4

0.5

0.6

0.7

Qu
al
ity

100 200 300 400 500
p size

0

2000

4000

6000

8000

Ti
m
e

SynO1
100 200 300 400 500

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

100 200 300 400 500

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

100 200 300 400 500
p size

0

200

400

600

800

1000

Ti
m
e

SynO3
100 200 300 400 500

0.50

0.55

0.60

0.65

0.70

0.75

0.80

100 200 300 400 500

0.50

0.55

0.60

0.65

0.70

0.75

0.80

100 200 300 400 500
p size

1000

1500

2000

2500

3000

3500

Ti
m
e
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Dataset FBcubed AproxFBcubed Time

SynC1
100 200 300 400 500

0.40

0.45

0.50

0.55

0.60

100 200 300 400 500

0.40

0.45

0.50

0.55

0.60

100 200 300 400 500
p size

500

1000

1500

2000

Ti
m
e

SynC3
100 200 300 400 500

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

100 200 300 400 500

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

100 200 300 400 500
p size

0

1000

2000

3000

4000

5000

Ti
m
e

SynF1
100 200 300 400 500

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

100 200 300 400 500
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

100 200 300 400 500
p size

200

400

600

800

1000

1200

Ti
m
e

SynF4
100 200 300 400 500

0.50

0.55

0.60

0.65

0.70

0.75

0.80

100 200 300 400 500
0.50

0.55

0.60

0.65

0.70

0.75

0.80

100 200 300 400 500
p size

5000

10000

15000

20000

25000

30000

Ti
m
e

OKCLD-HWOKM OKCLD-NEOKMEANS OKCLD-OCCW OKCLD-OCKMEX OKCLD-OKM

Table 6: Results of varying the values for the parameter p for each algorithm on each
dataset.

4.2.2 Experiment 2: Compare the proposed algorithm with state-of-the-art algo-

rithms

In our second experiment, we compared OKCLD with state-of-the-art algorithms to evalu-

ate whether our algorithm achieves similar results regarding FBcubed on the small datasets
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listed in Table 2. For all algorithms, the parameter k was set to the number of classes in

each dataset. The parameter value p of OKCLD was p = 50; since it was the fastest value

in the first experiment and showed good results, and the best clustering result obtained of

the 20 runs of each algorithm with FBcubed metric was reported.

Table 7 shows the clustering results regarding FBcubed for all algorithms tested on

each small dataset. It highlights in bold the best results in the row regarding FBcubed

obtained for the state-of-the-art algorithms and our proposed algorithm using them. Ta-

ble 7 shows that the HWOKM algorithm achieved the best results in most data sets

among the state-of-the-art overlapping clustering algorithms evaluated. The proposed

OKCLD-HWOKM algorithm produced similar results and, in four datasets, outperformed

HWOKM. Meanwhile, the OKCLD-NEOKMEANS, OKCLD-OCCW, OKCLD-

OCKMEX, and OKCLD-OKM algorithms achieved better clustering quality in most

datasets compared to NEO-KMeans, OCCW, OCKMEX, and OKM, respectively. Fur-

thermore, in the Enron, HumanPseAAC, and Yelp datasets, all versions of OKCLD ob-

tained the best clustering quality. This experiment shows that OKCLD achieves compara-

ble results to the evaluated overlapping clustering algorithms based on k-means.

4.2.3 Experiment 3: OKCLD in large datasets

We present a third experiment evaluating our proposed algorithm to study its clustering

quality and runtime performance on the large datasets of Table 3. The overlapping clus-

tering algorithms tested on our proposed algorithm (OKCLD) for large datasets were:

HWOKM, NEO-KMeans, OCCW, OCKMEX, and OKM. For all algorithms, the param-

eter k was set to the number of classes in each dataset. The parameter p of OKCLD, was

p = 50; since it was the fastest value in the first experiment and showed good results. The

parameter value l for AproxFBcubed was l = 50; as this value was shown to be faster and

statistically significant. Table 8 reports the best clustering result regarding FBcubed from

the twenty runs for each algorithm. The best results in the rows concerning FBcubed and
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Dataset HWOKM NEO-KMeans OCCW OCKMEX OKM OKCLD-HWOKM OKCLD-NEOKMEANS OKCLD-OCCW OKCLD-OCKMEX OKCLD-OKM

Birds 0.293088 0.21172 0.222936 0.267353 0.268072 0.289599 0.273613 0.245515 0.275016 0.248133

CHD 49 0.774668 0.583091 0.488153 0.699665 0.737558 0.739679 0.657629 0.540359 0.696913 0.732747

Emotions 0.605184 0.348892 0.432705 0.511942 0.528201 0.615631 0.446979 0.454789 0.510104 0.530439

Enron 0.656738 0.413735 0.426414 0.539854 0.586151 0.673042 0.673221 0.672085 0.672189 0.664363

GnegativeGO 0.663198 0.637966 0.796632 0.61506 0.681878 0.657754 0.486207 0.634413 0.41569 0.636457

GnegativePseAAC 0.508416 0.507522 0.542914 0.427689 0.415722 0.467264 0.538041 0.558704 0.420954 0.424815

GpositivePseAAC 0.504483 0.513976 0.539203 0.396745 0.501458 0.469322 0.476347 0.517356 0.42725 0.457758

HumanPseAAC 0.360963 0.292801 0.33469 0.300605 0.291112 0.363938 0.338805 0.36285 0.337723 0.355577

Image 0.464319 0.396551 0.429133 0.30402 0.413324 0.462949 0.45366 0.462747 0.434171 0.449472

Medical 0.434894 0.410493 0.424625 0.239778 0.390913 0.351334 0.32924 0.372116 0.303278 0.193316

PlantPseAAC 0.31988 0.296972 0.314098 0.267966 0.257156 0.310793 0.313491 0.321485 0.307794 0.209364

Scene 0.472611 0.462385 0.493064 0.176984 0.335602 0.422528 0.400489 0.423614 0.336966 0.349296

Water-quality 0.714227 0.415795 0.358587 0.479398 0.618968 0.704476 0.512193 0.606486 0.527272 0.65554

Yeast 0.696485 0.395175 0.211607 0.586727 0.684395 0.634799 0.265882 0.322052 0.533927 0.700979

Yelp 0.660158 0.660158 0.628669 0.292535 0.64607 0.718568 0.71862 0.718353 0.718296 0.717921

Table 7: Clustering results in terms of FBcubed for state-of-the-art algorithms and their
OKCLD-applied versions on small datasets. The best results from comparing each state-
of-the-art algorithm with its OKCLD version are marked in bold.

AproxFBcubed obtained are highlighted in bold; the dash in table represents that FBcubed

was not be computed as it is expensive with the dataset in question either due to the num-

ber of objects or the number of classes. The table shows that OKCLD-OCCW achieves

the best results on eight of the large datasets. However, our proposed algorithm, which

includes variants such as OKCLD-HWOKM, OKCLD-NEOKMEANS, OKCLD-OCCW,

OKCLD-OCKMEX, and OKCLD-OKM, shows similar results across these variants. In

particular, in the Bookmarks and Mediamill datasets, the OKCLD-OKM variant shows

superior quality in terms of ApproxFBcubed compared to the other algorithms.

Figure 2, illustrates the runtime of the OKCLD versions on large datasets, with

the x-axis representing the datasets and the y-axis representing the runtime. OKCLD-

HWOKM was the algorithm with the longest runtime, appearing at the top of the graph

in most cases. Although the Mediamill dataset had the shortest runtime among the al-

gorithms, OKCLD-HWOKM still had the highest runtime, as the dataset contains 120

classes. This could be attributed to HWOKM using KHM to initialize the centroids, which
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Dataset OKCLD-HWOKM OKCLD-NEOKMEANS OKCLD-OCCW OKCLD-OCKMEX OKCLD-OKM

FBcubed AproxFBcubed FBcubed AproxFBcubed FBcubed AproxFBcubed FBcubed AproxFBcubed FBcubed AproxFBcubed

Arts 0.344683 0.356642 0.342795 0.363191 0.347268 0.36713 0.343951 0.359395 0.346568 0.368261

Bookmarks - 0.124192 - 0.125939 - 0.125495 - 0.109093 - 0.412554

Business 0.846574 0.845249 0.832929 0.832986 0.844846 0.843679 0.58335 0.606128 0.580501 0.585516

Computers 0.519883 0.527479 0.457874 0.489679 0.520823 0.527916 0.519289 0.529379 0.431692 0.478862

Education 0.359622 0.369731 0.327678 0.382984 0.361282 0.37144 0.35886 0.374342 0.360435 0.376683

Entertainment 0.343061 0.363042 0.339453 0.359033 0.344068 0.366353 0.340454 0.36722 0.343874 0.35847

Health 0.539755 0.54955 0.464743 0.478569 0.540449 0.54789 0.532122 0.548865 0.539875 0.546182

IMDB - 0.246539 - 0.225538 - 0.247316 - 0.247834 - 0.236446

Mediamill - 0.132833 - 0.449645 - 0.469248 - 0.422031 - 0.605072

Nus-Wide Bow - 0.364149 - 0.364295 - 0.364204 - 0.364127 - 0.258085

Nus-Wide cVLADPlus - 0.373993 - 0.366141 - 0.364438 - 0.300324 - 0.21406

Recreation 0.264306 0.28825 0.264919 0.289657 0.266272 0.277917 0.262944 0.281803 0.265083 0.28993

Science 0.25553 0.278301 0.257915 0.285558 0.261781 0.277352 0.252846 0.296137 0.259722 0.275341

Social 0.437484 0.452293 0.421133 0.430082 0.437484 0.546545 0.532122 0.545691 0.539875 0.546182

Society 0.487851 0.497173 0.456718 0.46838 0.483925 0.495196 0.488231 0.498838 0.487904 0.497509

Tmc2007 0.631933 0.637539 0.461578 0.493524 0.630227 0.637216 0.629371 0.631512 0.630554 0.637648

Table 8: Results of the FBcubed and AproxFBcubed metrics for each algorithm on differ-
ent datasets. The best results are shown in bold.

increases runtime when the data includes many classes or attributes. In contrast, the other

versions of OKCLD show similar runtimes across all datasets. In contrast, OKCLD-

OCKMEX and OKCLD-NEOKMEANS variants showed a lower runtime on five and

four large datasets respectively. The datasets that required the longest runtime were Arts,

Bookmarks, Business, Computers, Education, Science, Social, and Tmc2007, as these

datasets have more features and classes. This could explain the observed increase in run-

time.

In this experiment, the different versions of our algorithm, including HWOKM,

NEOKMEANS, OCCW, OCKMEX, and OKM, show similar clustering quality in terms

of FBcubed and AproxFBcubed, achieving good results across all versions. Furthermore,

the OKCLD variants strike a balance between quality and runtime.
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Figure 2: The runtime of each algorithm on each large dataset.

4.2.4 Experiment 4: OKCLD scalability

To assess the scalability of our proposed algorithm, we evaluated our OKCLD algorithm

with the different k-means-based clustering algorithms used in previous experiments on

the synthetic data shown in Table 4, varying the number of objects, features, and classes.

Figure 3a shows the behavior of OKCLD’s runtime when the number of objects increases,

using a fixed value of k = 4 and 20 features. In this figure, we can see that the pro-

posed algorithm’s runtime increases as the number of objects increases in a similar way,

regardless of the overlapping clustering employed. Figure 3b also shows the behavior of

OKCLD’s runtime as the number of classes increases, with a fixed number of objects and

features (10,000 objects and 20 features). In this experiment, as the number of classes

increases, our proposed algorithm employing OKCLD-OCKMEX was the fastest, show-

ing a runtime that decreases as the number of classes grows. On the other hand, when
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HWOKM was employed in OKCLD, our proposed algorithm became the most compu-

tationally expensive. Meanwhile, when the other overlapping clustering algorithms were

used in OKCLD they had a similar behavior. Finally, figure 3c shows the behavior of OK-

CLD’s runtime when the features are increased while keeping the number of objects and

classes constant (10,000 objects and k = 4). We can see that the proposed algorithm’s run-

time increases similarly as the number of objects increases, regardless of the overlapping

clustering employed.

In this experiment, our proposed algorithm showed that regardless of the k-means-

based overlapping clustering algorithms used, the runtimes were similar for any synthetic

dataset when the objects and features were increased. In contrast, when the classes in-

crease, our proposed algorithm with the overlapping clustering algorithm OCKMEX per-

formed best.
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Figure 3: Runtime for our proposed algorithm varying the number of (a) objects, (b)
classes, and (c) features.
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5 Final Remarks

In this document, the PhD research proposal has been presented, including the motivation

and justification, the problem statement, the research questions, the general and specific

objectives, the expected contributions, the methodology, the work plan and the preliminary

results.

From our experiment, we can conclude that regardless of the k-means-based over-

lapping clustering algorithm used, the proposed algorithm OKCLD gets a balance between

clustering quality and runtime on large datasets, where conventional algorithms would re-

quire a lot of time, sometimes impractical.

The preliminary results in this research proposal show that improving the clustering

quality and the runtime of the overlapping clustering algorithms for large datasets is still

possible. Although some state-of-the-art overlapping clustering algorithms show good re-

sults in clustering quality, the proposed algorithm is competitive, achieves similar results

in most cases, and still has the advantage that the proposed algorithm can be applied to

large datasets. Furthermore, the results presented above guide research to develop new,

faster strategies for each of the stages of the proposed algorithm. Finally, the objectives

can be achieved within the stipulated time with everything presented in this research pro-

posal.
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