
Real-time Intrusion Detection in IoT: Employing

Adaptive Models and Hardware Acceleration

PhD Dissertation Proposal

by

MsC. Eric García Huitzitl

Doctoral Advisors:

Ph.D. René Armando Cumplido Parra, INAOE

Ph.D. Lázaro Bustio Martínez, IBERO

Instituto Nacional de Astrofísica, Óptica y Electrónica

©Coordinación de Ciencias Computacionales

August, 2024

Santa María de Tonantzintla, Puebla, CP 72840



Contents

1 Introduction 4

2 Background 8

2.1 Methods for Concept Drift Detection in Continuous Data Streams . 8

2.2 Addressing Concept Drift in Dynamic Environments . . . . . . . . . 11

2.3 Towards Real-time Intrusion Detection: Hardware Acceleration . . . 14

2.4 Discussion and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Objectives 20

3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Expected Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Methodology 22

4.1 Justification of the Methodology . . . . . . . . . . . . . . . . . . . . . 26

5 Preliminary Results 27

5.1 Proposal for Detecting and Handling Concept Drift . . . . . . . . . . 27

5.1.1 Proposed Concept Drift Detection Method . . . . . . . . . . . 27



5.1.2 Enhancing Drift Handling with K-Means and Random Forest 30

5.1.3 Adaptive Random Forest Training and Prediction . . . . . . 33

5.2 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Analysis of the NSL-KDD dataset . . . . . . . . . . . . . . . 34

5.2.2 Analysis of the IoTID20 dataset . . . . . . . . . . . . . . . . . 38

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Work Plan 42

Abstract

The evolving landscape of IoT-generated data presents significant challenges, particu-

larly with concept drift, where shifts in statistical distributions within data streams can

become cybersecurity threats. Traditional machine learning, relying on static models,

struggles to effectively address concept drift highlighting the necessity for adaptive mod-

els tailored to streaming data. This paper explores strategies for enhancing IoT security

in dynamic data environments. A hybrid concept drift detection method that combines

error rate analysis with data distribution monitoring is proposed. Sliding window-based

data capture and drift analysis, coupled with K-means clustering and Random Forest,

enhance the training dataset, incorporating both fixed and adaptive windows. Adaptive

Random Forest is employed for anomaly detection and model retraining. Experimental

trials were conducted using the NSL-KDD and IoTID20 datasets to evaluate the model

performance. Principal Component Analysis (PCA) and Spearman’s correlation coefficient

are used to detect and quantify concept drift. The proposed adaptive model demonstrates

significant improvements, with Adaptive Random Forest achieving 98.66% and 99.69%

accuracy, 99.52% and 99.70% precision, 97.74% and 99.75% detection rate, 98.78% and

99.83% F1-score, and a low false alarm rate of 1.45% and 4.32%, respectively. However,



experimental results show that adaptation time exceeds prediction time, potentially im-

pairing model performance in real-time intrusion detection systems. Thus, investigating

hardware acceleration techniques and algorithmic optimization is crucial to improve sys-

tem performance.

Adaptive IDS Hybrid Approach Concept Drift Clustering

Classification

1 Introduction

In recent years, the number of devices connected to the internet has surged dra-

matically, accompanied by a rapid increase in data volume. According to [Statista,

2024], up to 39.6 billion IoT devices are projected to be connected to the internet

by 2033. However, alongside this rapid development, the number of network attacks

for various purposes has also increased in recent years. In 2023, Kaspersky reported

detecting around 411,000 malicious files, a nearly 3% increase from the previous

year [Kaspersky, 2023]. Most brute-force password attempts (97.91%) targeted Tel-

net, with only 2.09% focusing on SSH. The identified malicious files included DDoS

Botnets, Ransomware, Miners, DNS Changers, and Proxy Bots, which compromise

system security by overloading servers, encrypting data for ransom, mining cryp-

tocurrencies, redirecting traffic, or concealing malicious activities. Therefore, to

mitigate these evolving threats, advanced security measures are essential [L. Yang

and Shami, 2021].

In addressing this need, INTRUSION DETECTION SYSTEMS (IDS) stand out as

fundamental tools. An IDS is a security tool designed to monitor and analyze net-

work traffic or system activities for suspicious or unauthorized behavior that may

indicate a potential intrusion or attack [Yahyaoui et al., 2021]. IDS can be divided

into two main approaches: a) Signature-based detection and b) Anomaly-based de-

tection [Roshan et al., 2018]. Signature-based detection compares network traffic



against a database of known attacks signatures and malicious behaviors. While

signature-based IDS are notably swift and efficient at identifying known threats,

their reliance on pre-existing data renders them ineffective at detecting unknown at-

tacks, such as zero-day attacks, wherein assailants exploit vulnerabilities that have

not been previously identified [Roshan et al., 2018]. On the other hand, anomaly-

based detection discerns unusual patterns or behaviors in network traffic or system

activities that stray from a predefined baseline of normal behavior [L. Yang and

Shami, 2021]. This approach involves establishing a model of typical activity, of-

ten utilizing machine learning techniques, and subsequently utilizing this model to

predict new instances [Seth, Singh, and Chahal, 2021]. Anomaly-based detection

shines in identifying never-before-seen threats [Xiaolan et al., 2022]. This makes it

appealing for cybersecurity researchers as it can uncover new attack vectors that

traditional signature-based methods might miss.

However, the concept drift phenomenon, which signifies shifts in the rela-

tionship between input and output variables over time within predictive models,

is a crucial concern in the cybersecurity domain, particularly in IoT, where device

heterogeneity and diverse physical environments significantly influence it [L. Yang

and Shami, 2021]. The real-time deployment of IDS is especially vulnerable to false

positives due to the dynamic nature of cyber threats, which frequently alter the pat-

terns and behaviors these systems are designed to detect [Babüroğlu, Durmuşoğlu,

and Dereli, 2023]. For instance, Figure 1 reveals fluctuations in time, energy, traffic

level, and irregular patterns, characteristics typically associated with attacks. How-

ever, this distribution may not always remain constant. A firmware update can alter

data distribution, resembling a DDoS attack, and cause misclassification if the model

isn’t updated. This increase in false alarms and decline in detection accuracy forces

network administrators to seek alternative tools and solutions.

Developing adaptive models is crucial for adjusting to emerging patterns in

dynamic data streams [Seth, Singh, and Chahal, 2021]. Incremental learning algo-



Time EnergyLevel TrafficLevel IrregularPatterns

0

20

40

60

80

100 93.86 94.62 93.74
99.1

8.08 6.42 6.8 2.2

78.08
86.42 86.8

3.4

Features

Va
lu

e DDoS attack
Normal

Firmware Update

Figure 1: Data Distribution for Normal, DDoS Attacks, and Firmware Updates.

rithms, which continuously update models with new data, and concept drift detec-

tion methods are essential for maintaining model accuracy and relevance in dynamic

environments [L. Yang and Shami, 2021]; [Jain and Kaur, 2021]. Additionally, em-

ploying methods that do not solely rely on labeled datasets is necessary for effective

detection in environments with limited labeled data, thereby maintaining IDS sensi-

tivity to evolving cyber threats and enabling real-time attack detection [Jain, Kaur,

and Saxena, 2022]. Finally, given the limited computational resources and memory

constraints of IoT devices, which restrict their ability to handle large volumes of

data and complex learning models, it is crucial to develop adaptive models with low

complexity [L. Yang and Shami, 2021].

This proposal presents an adaptive model for IDS that includes a method for

detecting concept drift. The model aims to improve the performance and reliability

of IDS by dynamically adjusting to changes in data patterns over time. A hybrid

approach, combining K-Means and Random Forest, is employed to manage concept

drift. Additionally, Adaptive Random Forest is utilized for model updating and at-

tack detection. A hybrid concept drift detection method, based on distributed data

and error rates and employing a window-based technique, is proposed for identifying

concept drift. This method leverages Principal Component Analysis (PCA) and the

Spearman correlation coefficient to detect and quantify the severity of concept drift.

The effectiveness of the proposed adaptive IDS is rigorously evaluated using vari-



ous datasets, with comparisons made to recent research. Established performance

metrics are systematically applied to assess the efficacy of the proposed IDS.

The contributions of this proposal document can be summarized as follows:

⋄ Introduced a hybrid concept drift detection method that combines distribution

analysis and statistical metrics with an independent error rate-based method,

where the error rate-based method enhances the overall handling of concept

drift.

⋄ Developed a hybrid unsupervised approach with incremental learning for IDS

to manage concept drifts without needing a labeled dataset, allowing model

updates only when necessary and thereby reducing resource consumption.

The preliminary results demonstrate the effectiveness of the proposed adaptive

model and concept drift detection method. The Adaptive Random Forest achieved

classification accuracies of 98.66% on the NSL-KDD dataset and 99.83% on the

IoTID20 dataset. It also attained precision rates of 99.52% and 99.75%, detection

rates of 97.74% and 99.75%, and F1-scores of 99.78% and 99.83%, respectively, while

maintaining low false alarm rates of 1.14% and 4.32%. However, adaptation time

is significantly longer than prediction time, making real-time IDS implementation

impractical since inference cannot be paused. This results in suboptimal attack

detection. The findings highlight the need for seamless transitions between model

adaptation and responsiveness, and underscore potential performance degradation

without timely adaptation and hardware acceleration.

Subsequent sections include a literature review in Section 2, the problem state-

ment and objectives in Section 3, and the methodology in Section 4. Section 5

presents the adaptive model and concept drift detection method for IDS, along with

preliminary results. The work plan is detailed in Section 6, and references are pro-

vided at the end of the document.



2 Background

IDS are essential for network administrators, providing effective traffic analysis and

monitoring. They issue alerts for potential attacks, thereby protecting network in-

tegrity [Abdualrahman and Ibrahem, 2021]. However, the growing number of IoT

devices and their diverse data present challenges to traditional IDS, particularly

those that rely on machine learning and static models with large static datasets

[García and López, 2024]. These systems face difficulties with CONCEPT DRIFT, es-

pecially in IoT environments where dynamic data patterns, such as firmware updates

and changing conditions, complicate threat detection [Gómez and Rodríguez, 2024].

Adaptive models using incremental learning address concept drift by contin-

ually updating their knowledge, allowing IDS to adapt to the rapidly evolving IoT

landscape. Integrating incremental learning and concept drift detection enhances

real-time threat detection and response, thereby providing robust defense against

security breaches in the dynamic IoT environment [Seth, Singh, and Chahal, 2021].

The following sections will discuss related work on concept drift detection and adap-

tive models, summarizing existing approaches, and recent advancements in the field.

2.1 Methods for Concept Drift Detection in Continuous Data Streams

Concept drift refers to the shift in the statistical properties of input features and/or

the target variable over time, can significantly impact predictive model performance

by altering the relationship between these features and the target variable, which

may lead to a decline in model accuracy [Lu et al., 2018]; [L. Yang and Shami, 2021].

[Jain, Kaur, and Saxena, 2022] divides the detection of concept drift in data

streams into two approaches: (1) data distribution-based and (2) error rate-based.

Data distribution-based methods monitor changes in data distribution over



time by analyzing statistical properties, which help in detecting concept drift since

the measurements used indicate differences between data samples [Seth, Singh, and

Chahal, 2021]. For this purpose, they rely on window-based methods, particularly

sliding windows, which serve as snapshots in time, denoted as t0. These snapshots fa-

cilitate the comparison of distributions Pt0 and Pt1 , enabling the detection of changes

in data patterns (concept drift) [L. Yang and Shami, 2021].

[Qahtan et al., 2015] proposed using PCA to detect abrupt changes in unla-

beled multidimensional data streams. They used a Kullback-Leibler change score to

measure variation between consecutive windows, aggregated from PCA-selected com-

ponents. This method significantly reduces computational costs but may struggle

with subtle or gradual changes, potentially leading to delayed or missed detection.

[Wahab, 2022] proposed using PCA to compare feature variance between win-

dows. Drift is detected if the angle between eigenvalues is �60°, indicating significant

divergence. The method’s drawback is its sensitivity to the threshold angle, which

can cause false positives or missed detections if not well-calibrated.

[Chu et al., 2024] introduced an ensemble concept drift localization algorithm

using nonparametric statistical methods (Kolmogorov-Smirnov, Wilcoxon rank-sum,

and Mann-Kendall tests) to compare cumulative distribution functions of two sam-

ples. Drift is detected by significant differences (p-values below a threshold) between

two windows. While effective across data distributions, this method is computation-

ally intensive, increasing processing time and resource use.

However, despite their utility, fixed sliding windows have significant drawbacks:

they may not effectively capture gradual changes in data distribution and can be

inefficient due to their static nature [Seth, Singh, and Chahal, 2021]; [L. Yang and

Shami, 2021]. A large window might incorporate outdated information, while a

smaller window may lack sufficient context to accurately reflect changes. Conversely,

adaptive windowing methods, such as Adaptive Windowing (ADWIN), dynamically



adjust the window size based on changes in data distribution. ADWIN, for example,

uses variance as the primary criterion for adjustment, allowing for a more flexible

response to evolving data patterns [Seth, Singh, and Chahal, 2021].

Error rate-based methods detect concept drift by utilizing different perfor-

mance metrics to monitor changes in model performance [L. Yang and Shami, 2021].

By continuously tracking these metrics, these methods can signal when a model’s

predictions deviate from expected outcomes, thus indicating potential changes in

the underlying data distribution.

[Jain and Kaur, 2021] proposed an error rate-based concept drift detection

method monitoring accuracy and false alarm rate. Drift is indicated if accuracy

drops below a threshold and the false alarm rate exceeds another threshold, signaling

the need for model updates. Although this method does not measure drift severity

directly, accuracy decreases can serve as an indirect indicator.

[L. Yang and Shami, 2021] proposed the Optimized Adaptive Sliding Win-

dowing (OASW) method, combining sliding and adaptive window techniques with

error-based methods. It retains data samples in the sliding window when accuracy

drops, creating an adaptive window for model retraining. This method enables both

drift detection and adaptation through its dual-window approach.

[Mahdi et al., 2023] proposed a drift detection method combining a disagree-

ment measure with the Page-Hinkley test. The disagreement measure assesses the

ratio of accurate versus inaccurate classifier observations, while the Page-Hinkley test

tracks cumulative changes to detect drift. This method is computationally efficient

but requires fully supervised contexts, limiting its use where labels are unavailable.

To achieve comprehensive and effective concept drift detection, combining data

distribution-based and error rate-based methods is essential. This integration allows

for detecting sudden and gradual drifts, enhancing system robustness and respon-

siveness [Beshah, Abebe, and Melaku, 2024].



[Jain, Kaur, and Saxena, 2022] proposed a hybrid concept drift detection

method. It first uses an error rate-based approach with Bernoulli trials, then ap-

plies a data distribution-based method using Kullback-Leibler divergence to measure

dissimilarity. Combining these approaches enhances robustness and accuracy in de-

tecting concept drift by leveraging their strengths.

[Beshah, Abebe, and Melaku, 2024] proposed an ensemble combining ADWIN

with the Drift Detection Method (DDM). DDM evaluates model error rate and

standard deviation with predefined warning and drift thresholds to detect gradual

and sudden drifts effectively. This approach leverages both techniques’ strengths,

enhancing the system’s capability to manage diverse concept drift types.

2.2 Addressing Concept Drift in Dynamic Environments

After detecting concept drift, it’s crucial to manage these changes so the learning

model can adapt to new data patterns [Chuang, R.-C. Yang, and Wang, 2021].

Supervised, unsupervised, and hybrid methods enhance IDS robustness, adaptabil-

ity, and accuracy in dynamic environments, ensuring continuous protection against

evolving threats. The following sections describe recent works for each approach.

Supervised adaptive approaches involve training models with labeled data and

updating them upon detecting concept drift [Chouchen and Jemili, 2023]. This con-

tinuous updating maintains high accuracy and reduces false positives and negatives

[Seth, Singh, and Chahal, 2021]; [L. Yang and Shami, 2021].

[Seth, Singh, and Chahal, 2021] implemented an Adaptive Random Forest

(ARF) with an ADWIN drift detector for IDS. ARF updates the model incrementally

by integrating new samples and eliminating less informative trees, reducing the need

for complete retraining. This method reduces computational and memory usage,

outperforming Naive Bayes and K-nearest Neighbor (KNN) in analysis.



[L. Yang and Shami, 2021] used the Light Gradient Boosting Machine (LGBM)

with Optimized Adaptive Sliding Window (OASW). LGBM, an ensemble of decision

trees, excels with non-linear and high-dimensional data. Its hyperparameters are

tuned with Particle Swarm Optimization (PSO). While LGBM performs well in

streaming data, it lacks adaptability to evolving data without retraining.

[Chuang, R.-C. Yang, and Wang, 2021] proposed an IDS combining a real-time

Adaptive XGBoost model in the fog layer with an online Random Forest model in

the cloud. The real-time model detects anomalies, while the cloud model labels

traffic and updates the fog layer. This approach achieves good accuracy but faces

privacy risks and latency issues in IoT ecosystems.

[Wahab, 2022] implemented an online Deep Neural Network (DNN) with a

PCA-based drift detector. The DNN dynamically adjusts hidden layer sizes using

the Hedge weighting mechanism, improving adaptation to new data. While this

approach stabilizes intrusion detection performance, it requires significant compu-

tational resources, especially on IoT devices.

[Chouchen and Jemili, 2023] proposed an ensemble approach for online intru-

sion detection using adaptive stream learning to handle concept drift and reduce

retraining. It combines ARF and Support Vector Regression (SVR) with ADWIN.

This method enhances detection precision and adapts to unknown attacks, but still

requires costly labeled data for initial learning.

[Beshah, Abebe, and Melaku, 2024] introduced AUWPAE, an ensemble method

for zero-day DDoS detection. It combines ARF-ADWIN, ARF-DDM, KNN-ADWIN,

and Streaming Random Patches-DDM, using weighted average predictions. AUW-

PAE achieved high accuracy against DDoS attacks despite concept drift but increases

complexity and computational demands.

[Chu et al., 2024] proposed combining XGBoost with the Whale Optimization

Algorithm (WOA) for evolving data streams. XGBoost is trained on historical data,



with concept drift detected using non-parametric metrics. WOA optimizes hyper-

parameters to improve performance. This approach enhances accuracy but faces

challenges due to increased computational complexity and tuning time.

Unsupervised adaptive approaches enhance model adaptability and effective-

ness in detecting intrusions by analyzing data without labeled examples [Xiaolan

et al., 2022]. These methods identify patterns and anomalies based on data struc-

ture and distribution [Bigdeli et al., 2018]. Unsupervised techniques are useful when

labeled data is scarce, improving detection by adapting to changing patterns and

inherently detecting concept drift.

[Bigdeli et al., 2018] introduced an incremental anomaly detection method

using Gaussian Mixture Models (GMMs). New instances are clustered and merged

with existing clusters. A modified Kullback-The Leibler distance is utilized for merg-

ing based on similarity, significantly accelerating labeling and updating processes by

20 to 50 times compared to one-class SVM. However, this approach depends on the

initial cluster quality and can be computationally intensive.

[Roshan et al., 2018] proposed an adaptive IDS using Extreme Learning Ma-

chines (ELM). The system clusters data with ELM’s smooth approximation, iden-

tifies errors via mean squared error (MSE), and updates the model for real-time

detection without full retraining. Despite its effectiveness, ELM’s computational

demands challenge resource-limited environments.

[Xiaolan et al., 2022] introduced the Evolving Adaptive Dynamic Network

Stream Detection (EADNSD) scheme, which updates normal patterns and detects

outliers through micro-clustering. It uses a global threshold for outliers and a buffer

to prevent misclassification. While efficient in real-time, it assumes datasets are

mostly normal, which may cause misclassification and has high memory usage.

[Zou et al., 2023] proposed an unsupervised anomaly detection algorithm that

combines grid clustering with Gaussian distribution. It assigns data points to a grid,



applies filtering, and clusters grids by density and centrality, using deviations from

normal clusters to compute anomaly scores. This approach is efficient for real-time

applications but may struggle with high-dimensional datasets.

Hybrid approaches combine supervised and unsupervised learning to enhance

accuracy, adaptability, and robustness in IDS [Jain, Kaur, and Saxena, 2022]. They

detect known and unknown anomalies, improving overall capabilities. By integrating

unsupervised methods, these approaches reduce dependency on extensive labeled

datasets and complement the supervised learning process [Jain and Kaur, 2021].

[Jain and Kaur, 2021] proposed a distributed anomaly detection method that

combines K-Means clustering with hybrid ensemble techniques, employing Random

Forest (RF) and Logistic Regression as base learners, and Support Vector Machine

(SVM) as the meta-learner. This approach integrates multiple algorithms to en-

hance detection accuracy and robustness, leveraging K-Means to reduce sample size

and address data imbalance. However, the use of ensemble techniques can increase

computational complexity, requiring more processing power and memory resources.

[Jain, Kaur, and Saxena, 2022] developed a network anomaly detection method

combining K-means and SVM. K-means reduces sample size and labels data, while

SVM classifies based on clusters. This combination enhances detection efficiency

in data streams by preprocessing the data, leading to faster and more accurate

classification in real-time environments. However, this approach may be sensitive to

data imbalance and noise, which could impact clustering performance.

2.3 Towards Real-time Intrusion Detection: Hardware Acceleration

This section outlines the critical role of hardware acceleration in IDS. First, it reviews

recent advancements aimed at enhancing system inference times to achieve real-time

predictions. Next, it discusses efforts to reduce model training times, taking into



account factors such as memory usage and device resources.

Ideally, real-time intrusion detection requires predictions or inferences on new

instances to occur with minimal latency, ensuring swift and effective detection

[Todorov, Efnusheva, and Nikolić, 2021]. Therefore, significant research efforts have

focused on optimizing inference speed through hardware acceleration, thereby en-

hancing performance, efficiency, and responsiveness of IDS.

[Ioannou and Fahmy, 2019] deployed an Artificial Neural Network (ANN) on

FPGA SoCs for IoT gateways, enabling line-rate packet processing and adaptive

model updates. They used TensorFlow for training and hardware accelerators for

inference. The accelerator achieved a 161.7% performance improvement over soft-

ware on the Zynq ARM core and attained up to 80.52% accuracy.

[Todorov, Efnusheva, and Nikolić, 2021] implemented a Naive Bayes (NB) clas-

sifier for IDS on a FPGA. Training was done on a CPU, and the model was imported

to the FPGA for inference. The system achieved detection decisions in 240 ns, using

only 2% of the FPGA area. However, the system demonstrated 70% accuracy, which

may reflect Naive Bayes’ sensitivity to concept drift.

[Ngo, Lightbody, et al., 2022] proposed a framework for network intrusion

detection employing lightweight ANN models within IoT networks. Training is done

on a GPU, while inference is accelerated by an AI microcontroller and an SoC FPGA

(PYNQ-Z2). The microcontroller is 11.3 times faster than an Intel Core i7 and 21.3

times faster than an NVIDIA GPU, with the FPGA being 53.5 times faster.

Hardware acceleration significantly reduces latency during intrusion detection

inference, as demonstrated by [Ioannou and Fahmy, 2019]; [Ngo, Lightbody, et al.,

2022]; [Todorov, Efnusheva, and Nikolić, 2021]. However, for real-time adaptive

models, minimizing training time is crucial [Roorda and Wilton, 2023]. Therefore,

accelerating machine learning model training with hardware acceleration is essential.



[Maciel, Souza, and Freitas, 2019] developed a reconfigurable K-means/K-

modes algorithm on FPGA for IDS. This approach allows real-time adjustments

of parameters like centroids and iterations, showing up to 91% fewer cycles and 99%

less energy consumption compared to parallel software on Intel Xeon processors.

[Elnawawy, Sagahyroon, and Shanableh, 2020] implemented an RF classifier

on FPGA, comparing it to NB, SVM, KNN, and ANN. The FPGA-based RF clas-

sifier achieved 96.5% accuracy and a 0.834 F-score, with speedups of up to 92.64x

and 47.68x on the UNIBS and UNB datasets, respectively, resulting in an average

throughput of 163.24 Gbps.

[Murovič and Trost, 2020] proposed an architecture for Binary Neural Networks

(BNNs) on FPGAs for edge-based IDS, emphasizing resource optimization through

binary weights and activations. The results showed a 39% improvement in slice

usage, a 28.2% reduction in nets used, and a 51.9% decrease in power consumption,

though excessive weight minimization may compromise inference accuracy.

[Todorov, Efnusheva, and Nikolić, 2021] proposed a hardware-based Naive

Bayes IDS on a Virtex 7 VC709 FPGA board, achieving a 240ns inference time

with only 2% FPGA area usage. However, the accuracy was 70%, making it suitable

for low-latency, low-resource applications but with lower performance.

[Zeng and Hara-Azumi, 2024] developed a RF classifier for real-time IoT IDS,

utilizing an ensemble feature selection technique based on the Gini index and Out-

of-Bag (OOB) score. This was implemented within a hardware/software co-design

framework on a heterogeneous Zynq SoC. The Verilog HDL RF accelerator on FPGA

achieved a 135x speedup over the ARM Cortex-A9, with a 1.07 ms inference time.



2.4 Discussion and Motivation

This section provides an overview of the literature, summarized in Tables 1 , 2, and

3, focusing on challenges in detecting and handling concept drift, real-time adaptive

model implementation, and hardware acceleration to enhance IDS performance.

Supervised adaptive approaches effectively detect and adapt to attacks, with

the ARF classifier excelling on complex datasets [Seth, Singh, and Chahal, 2021];

[Chouchen and Jemili, 2023]. Hybrid approaches, which combine K-Means with

supervised learning, enhance performance by leveraging K-Means’ efficiency and its

capability to operate without labeled data [Jain and Kaur, 2021]; [Jain, Kaur, and

Saxena, 2022]. This approach updates models only upon detecting concept drift,

thereby conserving resources compared to continuous clustering [Bigdeli et al., 2018];

[Xiaolan et al., 2022]. Nevertheless, since these approaches utilize unsupervised

learning for model updates, they may experience reduced performance due to data

imbalance and the presence of noisy data [Jain, Kaur, and Saxena, 2022].

Error rate-based concept drift detection typically requires ground-truth labels

for optimal performance [L. Yang and Shami, 2021]. However, it can be adapted to

unsupervised methods by using K-Means for data labeling [Jain and Kaur, 2021].

Combining this approach with distribution-based methods and sliding window tech-

niques enhances accuracy by capturing data changes and quantifying the severity of

concept drift. This approach effectively detects both gradual and abrupt changes,

even with limited labeled data [Jain, Kaur, and Saxena, 2022]. Additionally, while

distribution-based methods alone cannot quantify the severity of concept drift, they

can be integrated with statistical metrics to achieve this [Chu et al., 2024]; [Qahtan

et al., 2015]. Finally, sliding windows enable continuous monitoring and adapta-

tion, while adaptive windows retain extensive data patterns, thereby enhancing the

model’s performance and adaptability to new trends [L. Yang and Shami, 2021];

[Seth, Singh, and Chahal, 2021].



Numerous IDS studies have focused on enhancing inference speed [Todorov,

Efnusheva, and Nikolić, 2021] and employing hardware acceleration for improved

training efficiency [Zeng and Hara-Azumi, 2024]. However, few studies address IDS

synchronization. Proper synchronization between inference and training is crucial

to prevent model degradation and ensure effective intrusion detection [Roorda and

Wilton, 2023]. This study proposes minimizing adaptation time through hardware-

friendly algorithms, efficient architecture, and algorithmic optimization. The goal is

near-simultaneous adaptation and inference to maintain real-time detection robust-

ness without pausing the inference or prediction process.

Table 1: Overview of Adaptive Models for Intrusion Detection Systems

Reference Method Drift Detector Dataset Approach Normalization Feature Selection

[Roshan et al., 2018] ELM Drift is not detected NSL-KDD Unsupervised Z-score Not-Mentioned

[Bigdeli et al., 2018] GMM Drift is not detected KDDCUP99, DARPA98, NSL-KDD, DataSetMe, and IUSTSip Unsupervised Not-mentioned Not-Mentioned

[Seth, Singh, and Chahal, 2021] ARF ADWIN CIC-IDS 2018 Supervised Not-mentioned Random Feature Selection

[L. Yang and Shami, 2021] LGBM OASW IoTID20 and NSL KDD Supervised Not-mentioned Not-mentioned

[Chuang, R.-C. Yang, and Wang, 2021] Adaptive XGBoost and RF Concept drift is not detected UNSW-NB15 and CIC-IDS2017 Supervised Not-mentioned Not-mentioned

[Togbe et al., 2021] IF ADWIN and KSWIN Forest Cover, Shuttle, SMTP Unsupervised Not-mentioned Not-mentioned

[Jain, Kaur, and Saxena, 2022] K-means and SVM Kullbak-Leibler divergence and Statistical Theory Testbed, NSL-KDD, and CIDDS-2017 Hybrid Unsupervised Not used Not-mentioned

[Jain and Kaur, 2021] RF, LR, SVM and K-means Error-based drift detection based on Acc. and FPR Testbed, NSL-KDD, and CIDDS-2017 Hybrid Unsupervised Min-Max and Zscore Attribute Ratio

[Martindale, Ismail, and Talbert, 2020] ARF and HAT Drift Detection is controlled KDD CUP 99 Supervised Not-mentioned Not-mentioned

[Abdualrahman and Ibrahem, 2021] SGD Drift Detection is controlled CICIDS2017 Supervised Z-score C5.0 algorithm

[Yahyaoui et al., 2021] RF Drift is not detected KDDCUP99 and N-BaIoT Supervised Not-mentioned OneRAttributeEval

[Xiaolan et al., 2022] EADNSD Drift is not detected KDDCUP99, NSL-KDD, and CIDDS–001 Unsupervised Min-Max Not-mentioned

[Chouchen and Jemili, 2023] ARF and SVR ADWIN Fukuda laboratory Dataset Supervised Not-mentioned Not-mentioned

[Wahab, 2022] DNN PCA DS2OS traffic traces Supervised Not-mentioned Not-mentioned

[Zou et al., 2023] GC-ADS ADWIN+DDM Nab dataset Unsupervised Not-mentioned Not-mentioned

[Beshah, Abebe, and Melaku, 2024] AUWPAE ADWIN+DDM IoTID20 and CICIoT2023 Supervised Z-score and Min-Max IG and Pearson Correlation

Table 3: Overview of the State-of-the-Art IDS Utilizing Hardware Acceleration

Reference Method Datasets Accuracy Speed-up Adaptive Latency Bandwidth

[Pham-Quoc, Bao, and Thinh, 2023] Autoencoder and MLP NSL-KDD, UNSW-NB15, CICIDS2017 90.87%, 87.49%, 98.22% 12.46x vs CPU, 31.16x vs GPU No Not-mentioned 8.7 Gbps, 34.74 Gbps

[Ngo, Temko, et al., 2021] ANN IoT-23 99.43% 6.6x vs GPU, 40.5x vs CPU No Not-mentioned Not-mentioned

[Ioannou and Fahmy, 2019] ANN NSL-KDD 96.02%, 80.52% 161.7x vs CPU No 0.4 µs 10 Gbps

[Ngo, Lightbody, et al., 2022] ANN IoT-23, UNSW-NB15 98.57%, 99.66% 11.3x vs CPU, 21.3x vs GPU No 0.43 ms 453.5 Gbps

[Vreča et al., 2021] BNN UNSW-NB15 82.10% 128x vs CPU No Not-mentioned Not-mentioned

[Murovič and Trost, 2021] BNN NSL-KDD, UNSW-NB15 77.28-98.96% Not-mentioned No 16 ns, 19 ns 288 Gbps, 256 Gbps

[Gordon et al., 2021] K-NN UNSW-NB15 95% 14.25x vs CPU No 4 ms Not-mentioned

[Nsunza, Tetteh, and Hei, 2018] CNN NSL-KDD 82.83% Not-mentioned No Not-mentioned Not-mentioned

[Murovič and Trost, 2020] BNN UNSW-NB15 90.74% Not-mentioned No 23.5 ns Not-mentioned

[Murovic and Trost, 2019] BNN NSL-KDD, UNSW-NB15 77.7%, 98.96% Not-mentioned No 19.6 ns Not-mentioned

[Maciel, Souza, and Freitas, 2019] K-means and K-Modes NSL-KDD Not-mentioned 15x, 994x vs CPU No 1.2 ms Not-mentioned

[Ngo, Tran-Thanh, et al., 2019] ANN, DT NSL-KDD 87.30%, 95.19% 83x vs CPU, 11x vs GPU No 12 ms, 4 ms 9.58 Gbps

[Elnawawy, Sagahyroon, and Shanableh, 2020] RF UNIBS, UNB 98.50% 92.64x, 47.68x vs CPU No 28.571 ns/T 163.24 Gbps

[Ridder, Chen, and Alachiotis, 2023] ARF KDD CUP 99 98.42% 33.82x vs CPU, 21.21x vs GPU Yes 19.99 s Not-mentioned



Ta
bl

e
2:

Pe
rfo

rm
an

ce
C

om
pa

ris
on

:A
cc

ur
ac

y,
Pr

ec
isi

on
,D

et
ec

tio
n

R
at

e,
Fa

lse
A

la
rm

R
at

e,
F1

-S
co

re
an

d
La

te
nc

y
A

cr
os

s

R
el

at
ed

W
or

ks

R
ef

er
en

ce
Io

T
ID

20
N

SL
-K

D
D

C
IC

ID
S2

01
7

K
D

D
C

U
P’

99
U

N
SW

-N
B1

5

x
A

cc
ur

ac
y

Pr
ec

isi
on

D
R

FA
R

F1
-S

co
re

A
cc

ur
ac

y
Pr

ec
isi

on
D

R
FA

R
F1

-S
co

re
A

cc
ur

ac
y

Pr
ec

isi
on

D
R

FA
R

F1
-S

co
re

A
cc

ur
ac

y
Pr

ec
isi

on
D

R
FA

R
F1

-S
co

re
A

cc
ur

ac
y

Pr
ec

isi
on

D
R

FA
R

F1
-s

co
re

[S
et

h,
Si

ng
h,

an
d

C
ha

ha
l,

20
21

]
0.

99
50

0.
99

92
0.

99
80

0.
92

42

T
im

e
no

t
sp

ec
ifi

ed

[L
.Y

an
g

an
d

Sh
am

i,
20

21
]

0.
99

92
0.

99
93

0.
99

98
x

0.
99

96
0.

98
31

0.
98

57
0.

98
30

x
0.

98
43

7.
8m

s
x

62
,5

78
in

st
an

ce
s.

9.
1m

s
x

35
,1

40
in

st
an

ce
s

[C
hu

an
g,

R
.-C

.Y
an

g,
an

d
W

an
g,

20
21

]
0.

99
22

0.
96

81
0.

83
55

x
0.

89
69

0.
99

22
0.

96
81

0.
92

77
x

0.
92

26

1s
x

86
,2

53
.9

in
st

an
ce

s
1s

x
86

,2
53

.9
in

st
an

ce
s

[J
ai

n,
K

au
r,

an
d

Sa
xe

na
,2

02
2]

0.
91

33
0.

88
30

0.
91

70
0.

02
11

0.
89

60
0.

99
80

0.
99

10
0.

99
20

0.
05

92
0.

99
15

T
im

e
is

no
t

sp
ec

ifi
ed

T
im

e
is

no
t

sp
ec

ifi
ed

[J
ai

n
an

d
K

au
r,

20
21

]
0.

93
00

0.
96

00
0.

94
00

0.
09

60
0.

94
00

0.
98

00
0.

97
00

0.
98

00
0.

02
00

0.
98

00

66
.1

s
x

50
,0

00
in

st
an

ce
s

54
.5

2s
x

50
,0

00
in

st
an

ce
s

[M
ar

tin
da

le
,I

sm
ai

l,
an

d
Ta

lb
er

t,
20

20
]

RO
C

C
ur

ve

55
.5

9s
x

70
0,

00
0

in
st

an
ce

s

[A
bd

ua
lra

hm
an

an
d

Ib
ra

he
m

,2
02

1]
0.

99
44

x
x

x
x

0.
53

83
T

/s
ec

[Y
ah

ya
ou

ie
t

al
.,

20
21

]
0.

99
96

x
x

x
x

19
2,

30
7

p/
s

[R
os

ha
n

et
al

.,
20

18
]

x
x

0.
77

00
0.

03
05

x

T
im

e
is

no
t

sp
ec

ifi
ed

[B
ig

de
li

et
al

.,
20

18
]

x
x

0.
85

00
0.

07
00

x
x

x
0.

98
00

0.
02

00
x

24
5s

22
5s

[X
ia

ol
an

et
al

.,
20

22
]

0.
91

80
x

0.
90

10
0.

07
60

x
0.

98
86

x
0.

99
99

0.
01

25
x

0.
93

10
x

0.
99

35
0.

07
50

x

15
s

x
10

0,
55

0
in

st
an

ce
s

15
s

x
10

0,
55

0
in

st
an

ce
s

15
s

x
10

0,
55

0
in

st
an

ce
s

[B
es

ha
h,

A
be

be
,a

nd
M

el
ak

u,
20

24
]

0.
99

54
0.

99
51

0.
99

99
x

0.
99

76

1s
x

36
5

in
st

an
ce

s



3 Objectives

This section delineates the problem statement, overarching goals, specific objectives,

research questions, and anticipated contributions, providing a comprehensive frame-

work for understanding the study’s scope, aims, and expected impact.

3.1 Problem Statement

In the dynamic landscape of the IoT, the increasing proliferation of interconnected

devices has heightened the need to implement robust cybersecurity measures. How-

ever, IDS face significant challenges, such as concept drift, which compromises

their effectiveness [L. Yang and Shami, 2021]. To address this issue, it is crucial

to adopt incremental and unsupervised learning algorithms in adaptive IDS, em-

phasizing the detection and management of concept drift. These algorithms enable

effective detection of unknown attacks and handle changes in data patterns, ensur-

ing resilience against emerging threats [Jain, Kaur, and Saxena, 2022]. However, the

real-time implementation of adaptive IDS is hindered by adaptation time issues,

as the inference process cannot be paused to perform necessary adaptations [Roorda

and Wilton, 2023]. Therefore, leveraging hardware acceleration and algorithm op-

timization becomes indispensable for addressing these challenges, particularly those

associated with real-time processing and the limited resources of IoT devices [Ridder,

Chen, and Alachiotis, 2023]; [Zeng and Hara-Azumi, 2024].

3.2 Research Questions

1. What are the most effective incremental learning algorithms for adapting IDS

to concept drift in real-time IoT data streams, and what are their limitations?

2. What are the most effective methods for detecting concept drift in IoT stream-



ing data, and how can the severity of this drift be quantified?

3. What are the primary challenges associated with adaptation time in adaptive

models for real-time IoT IDS, and what techniques can be utilized to mitigate

these challenges to enhance system effectiveness and overall performance?

4. What are the primary challenges in implementing hardware accelerators for

real-time IoT IDS, and what strategies can be employed to effectively address

these challenges to enhance adaptation time and concept drift detection?

3.3 General Objective

To design and implement an adaptive model with concept drift detection for Intru-

sion Detection Systems (IDS) to protect Internet of Things (IoT) networks. The

model will leverage incremental learning on dynamic data streams, balancing in-

ference speed with adaptation to concept drift at the algorithmic level. It will be

supported by hardware acceleration techniques to enhance adaptation time, mini-

mize performance degradation, and ensure real-time detection.

3.4 Specific Objectives

⋄ Investigate and analyze the dynamics of data in IoT environments, identify

patterns of concept drift and associated security challenges.

⋄ Design and implement an adaptive model with concept drift detection to en-

hance IDS capabilities, facilitating real-time updates in dynamic data streams

without dependence on labeled datasets.

⋄ To optimize the proposed adaptive model’s algorithms, including its concept

drift detection, and to explore hardware acceleration techniques to reduce

adaptation time, minimize model degradation, and ensure real-time detection.



⋄ Evaluate the IDS’s effectiveness and adaptability by focusing on key metrics

including accuracy, precision, F1-score, detection rate, false alarm rate, and

the balance between inference and adaptation time over time.

3.5 Expected Contributions

1. Adaptive IDS Model: Develop an adaptive model for IoT data streams to

effectively respond to concept drift, improving IDS performance in dynamic

environments.

2. Concept Drift Detection Method: Propose a concept drift detection method

that identifies and measures the severity of drift to prevent model degradation

over time, thereby ensuring sustained accuracy and reliability in dynamic en-

vironments.

3. Real-time Intrusion Detection. Optimize the adaptive model algorithmi-

cally and use hardware accelerators to minimize adaptation time while balanc-

ing inference and adaptation speeds for rapid threat detection.

4. Rigorous Experimental Validation. Undertake thorough experimentation

in real-world IoT scenarios to quantitatively evaluate the performance of IDS.

Emphasis will be placed on its capacity to manage data streams affected by

concept drift and maintain resilience over time.

4 Methodology

The objective of this proposal is to develop an adaptive model with concept drift

detection for real-time IDS on IoT data streams. This section outlines the overall re-

search strategy, including the techniques and approaches to be used and the proposed

extensions or modifications. It also describes the evaluation approach, encompassing



the experimental setup, simulation, and testing procedures. Figure 2 provides an

overview of the adaptive IDS architecture, illustrating its key components and their

interactions within the system for better understanding.

Network Sensor

Data Preprocessing

Concept Drift Detection

Training

Inference

Handling Concept Drift 

Update

Feature Extractor

Normal Attack

Figure 2: Overview of the Adaptive IDS Architecture, Including Its Key Components

The following will outline the research strategy, as well as the proposed exten-

sions and modifications to the IDS components.

• Data Collection: Collect network traffic data from trusted sources, such as

public databases, to avoid network sensors and feature extraction.

• Preprocessing: Implement and analyze normalization techniques like min-

max and z-score normalization, and evaluate transformation methods for cat-

egorical data, such as label and one-hot encoding.

• Training: Implement and evaluate supervised algorithms, such as RF, SVM,

ANN, and Naive Bayes, among others, for initial anomaly detection, leveraging

their proven effectiveness in classification tasks.

• Development of a Concept Drift Detection Method: Investigate con-

cept drift detection methods using error metrics and data distribution analysis.



⋄ Extensions and Modifications: Design and implement a hybrid con-

cept drift detection method to effectively identify and respond to both

gradual and abrupt shifts in data patterns. Integrate dimensionality re-

duction techniques, such as PCA, with non-parametric statistical mea-

sures to quantify the extent of concept drift. Additionally, explore metrics

like Detection Rate and False Alarm Rate to evaluate model error and

identify potential concept drift scenarios.

• Development of an Adaptive Model for Handling Concept Drift: De-

velop and analyze adaptive models for concept drift, using clustering for pat-

tern identification and supervised incremental learning for updates.

⋄ Extensions and Modifications: Design and implement a hybrid ap-

proach that uses both supervised and unsupervised learning to dynami-

cally handle concept drift, activating drift handling only when needed.

Implement incremental learning algorithms like ARF to minimize re-

source consumption, and utilize similarity metrics to enhance data re-

lationships and mitigate the effects of noise. Finally, employ clustering

methods like K-Means for labeling data and addressing the class imbal-

ance problem.

• Experimental Setup:

⋄ The effectiveness and efficiency of various adaptive models will be eval-

uated using the IoTID20 [Ullah and Mahmoud, 2020] and NSL-KDD

[Tavallaee et al., 2009] datasets.

⋄ Evaluation Metrics for Attack Detection:

∗ Accuracy. This metric measures the proportion of correct classifi-

cations among total instances, as illustrated in Eq. (1).

Accuracy =
TP + TN

TP + FN + TN + FP
(1)



∗ Precision. This measure evaluates the proportion of true positives

to all positives predicted by the model, as outlined in Eq. (2).

Precision =
TP

TP + FP
(2)

∗ Detection Rate (DR). This metric evaluates the proportion of cor-

rect predictions relative to missed instances, as depicted in Eq. (3).

DR =
TP

TP + FN
(3)

∗ The False Alarm Rate (FAR) quantifies the proportion of negative

instances misclassified as positive, as defined in Eq. (4).

FAR =
FP

FP + TN
(4)

∗ F1-score combines precision and recall, balancing them in a classi-

fication model’s performance, as shown in Eq. (5).

2 ∗ Precision ∗Recall

Precision+Recall
(5)

• Simulation and Testing:

⋄ Data Partitioning Using Sliding Windows: Preprocess the dataset

into data streams and use a sliding window technique for incremental

analysis. This approach manages large volumes, detects changes, and

adapts to concept drift. Optimize the window parameters to match data

characteristics and analysis needs.

∗ Extensions and Modifications: Investigate adaptive sliding win-

dows to capture relevant information and detect underlying struc-

tures for improved concept drift management and model performance.

⋄ Performance Analysis: Evaluate the model’s performance with and

without concept drift handling using the experimental setup. Assess the

method’s effectiveness in detecting and measuring concept drift. Compare



training and update times with inference time, and examine their impact

on model performance and degradation over time.

⋄ Extensions and Modifications: Design and Implementation of Hard-

ware Architecture for Enhanced Adaptive IDS. This involves exploring a

range of platforms, including GPUs, FPGAs, and homogeneous hardware

systems, as well as examining various code-design approaches. The aim

is to thoroughly assess these technologies and identify the most effective

solution for addressing model degradation over time.

4.1 Justification of the Methodology

The presented methodology addresses the need to effectively manage concept drift in

IoT environments where resources and time are constrained. Many machine learn-

ing algorithms can handle concept drift, but some are slow, complex, or memory-

intensive, making them unsuitable for real-time applications. Additionally, some

methods rely on labeled datasets, which may not be available. Traditional fixed

sliding windows can be inefficient, as they may either miss critical information or

include irrelevant data, leading to suboptimal performance. To overcome these lim-

itations, adaptive sliding windows are essential for capturing the most relevant in-

formation dynamically. Hybrid unsupervised approaches with incremental learning

can be used, managing concept drift only when necessary and optimizing processing

time and memory usage. Effective management also requires detecting various types

of concept drift and measuring their severity to fine-tune models accordingly. Fur-

thermore, incorporating hardware acceleration significantly enhances training and

adjustment speeds, preventing model degradation and ensuring robust performance

in dynamic settings. Thus, the methodology’s integration of hybrid approaches,

comprehensive drift detection, adaptive sliding windows, and hardware acceleration

provides a well-rounded solution for real-time IoT scenarios.



5 Preliminary Results

This section details the proposed adaptive model, which incorporates a concept

drift detection method. These advancements align with the components of CONCEPT

DRIFT DETECTION and HANDLING CONCEPT DRIFT outlined in Section 4, which are

integral to the proposed methodology. Furthermore, the experimental analysis is

elaborated upon, and finally, a comprehensive discussion of the results is presented.

5.1 Proposal for Detecting and Handling Concept Drift

The proposed approach for detecting and managing concept drift integrates two

types of sliding windows to handle dynamic data: a fixed sliding window for

stability in model performance and an adaptive sliding window for retraining to

accommodate new data patterns. This adaptive mechanism enables the system to

continually adapt and refine its understanding, ensuring robustness and accuracy

in handling evolving data patterns. The concept drift detection is founded upon

the analysis of data distribution and error rate analysis, with a hybrid unsupervised

approach being employed for managing the concept drift. Subsequent subsections

detail the proposed adaptive model with concept drift detection.

5.1.1 Proposed Concept Drift Detection Method

The proposed method for concept drift detection harnesses PCA alongside Spear-

man’s Correlation Coefficient (SCC). In data streams without drifts, the monotonic

relationship is strong. The explanation is simple: during an attack, certain features

such as connection time, energy consumption, and traffic level consistently rise on

the targeted device. However, in a firmware update, while values like connection

time, energy consumption, and traffic levels may rise, irregular patterns do not nec-

essarily follow suit. This could suggest the presence of concept drift between two



consecutive fixed sliding windows.

SCC is a statistical measure that evaluates the strength and direction of the re-

lationship between two ordinal or quantitative variables [Ali Abd Al-Hameed, 2022].

Unlike Pearson’s correlation coefficient, which assesses the linear relationship be-

tween variables, Spearman evaluates the relationship based on the ranks of variable

values. This feature allows it to capture relationships that do not necessarily follow

a linear pattern. The formula for SCC is given by Eq. 6.

ρ = 1− 6
∑

d2i
n(n2 − 1)

(6)

Where ρ is the SCC, di are the differences between the ranks of the two vari-

ables, and n is the number of observations. PCA is a statistical technique used

to reduce the dimensionality of a dataset while preserving most of its variability

[Greenacre et al., 2022]. It achieves this by transforming the original variables into

a new set of variables, called principal components, which are linear combinations

of the original variables. These principal components are ordered in terms of the

amount of variability they explain in the data, with the first component explaining

the most variability, followed by the second, and so on.

In the proposed approach, PCA is applied to each fixed sliding window SWi to

extract the two principal components PC1 and PC2. These components represent

the most significant variance in the data. SCC is then used to measure the mono-

tonic relationship between these two components. For each sliding window SWi,

PCA is performed to reduce the dimensionality of the data to the two principal

components PC1 and PC2. SCC (ρi) is computed between PC1 and PC2 within

SWi. SCC evaluates the monotonic relationship, capturing both linear and non-

linear correlations. In data streams without changes in the underlying concept, SCC

is expected to remain constant across different sliding windows (SWi, SWi+1). A

significant change δ in SCC between (ρ1) and (ρ2) indicates potential concept drift.



A large δ may suggest an abrupt change, whereas a small δ could represent a gradual

change. Therefore, (δ) can serve as an indicator of the severity of the concept drift.

Algorithm 1 Concept Drift Detection Method
1: Input: Sliding windows SWi, SWi+1, Threshold threshold

2: Output: Concept drift detection (Boolean)

3: procedure PCA(SWi, SWi+1)

4: pcsi ← PCA(SWi)

5: pcsi+1 ← PCA(SWi+1)

6: d1 ← pcsi[1]

7: d2 ← pcsi[2]

8: d3 ← pcsi+1[1]

9: d4 ← pcsi+1[2]

10: return (d1, d2, d3, d4)

11: procedure Spearman_Calculation((pc1i, pc2i, pc1i+1, pc2i+1))

12: ρ1 ← SpearmanCorr(d1, d2)

13: ρ2 ← SpearmanCorr(d3, d4)

14: return (ρ1, ρ2)

15: procedure Drift_Detection(SWi, SWi+1, threshold)

16: (d1, d2, d3, d4)← PCA(SWi, SWi+1)

17: (ρ1, ρ2)← Spearman_Calculation(d1, d2, d3, d4)

18: if (δ ← (ρ1 − ρ2) < threshold) then

19: Concept drift

20: else

21: Concept drift not detected

Algorithm 1 continuously monitors the data stream, applies PCA for dimen-

sionality reduction (see lines 3-10 in Algoritm 1), and uses SCC to evaluate the

monotonic relationship between the principal components (see lines 11-14 in Al-

gorithm 1). A significant change in SCC between consecutive windows indicates

concept drift (see lines 18-19 in Algoritm 1). For practical implementation, selecting

the sliding window size and the threshold δ for detecting significant changes in SCC

is crucial. These parameters should be optimized based on the specific characteristics

of the data stream and the application requirements.



5.1.2 Enhancing Drift Handling with K-Means and Random Forest

To address concept drift, the adaptability of K-Means and RF to evolving data pat-

terns over time is leveraged. A comprehensive strategy for enhancing drift handling

is outlined in Algorithm 2, providing a detailed process. Firstly, the data are divided

into fixed sliding windows of size n, forming a set S = (SW1, SW2, SW3, ..., SWn).

Subsequently, Algorithm 1 is applied to precisely detect concept drift between two

sliding windows (SWi, SWi+1). To effectively manage potential concept drift propa-

gation to consecutive windows, an adaptive sliding window is utilized to retain these

windows and extract the necessary information (see lines 3-10 in Algorithm 2).

The proposed approach suggests using the adaptive sliding window to identify

clusters with similar statistical distributions. To achieve this, a pairwise similarity

matrix is constructed using the Manhattan distance (see line 22 in Algorithm 2).

This metric is selected for its strong generalization to higher dimensions, efficiency

in parallel processing environments, and reduced computation time [Pandit, Gupta,

et al., 2011], all of which are crucial for real-time adaptive IDS models.

K-Means is used to partition the pairwise distance matrix into k clusters, with

k being a user-defined parameter (see line 23 in Algorithm 2). This strategy ensures

that the clustering process not only organizes the data into meaningful clusters but

also captures the inherent relationships between instances, leasing to more accurate

and insightful results [Geng and Tang, 2020]. To determine the optimal value for k,

Canopy clustering is employed. This method evaluates various potential values for

k and suggests initial cluster centers [Jain, Kaur, and Saxena, 2022].

The proposed model addresses two scenarios related to concept drift: (1) in-

stances previously classified as normal are now attack, reducing the Detection Rate

(DR) and indicating new threats; (2) instances previously attack are now normal, in-

creasing the FAR and suggesting changes in network behavior. To effectively define

these scenarios, a concept drift detection method based on error rates, specifically



focusing on DR and FAR, is proposed as outlined in Algorithm 2 (see lines 11-18 in

Algorithm 2). Given the absence of ground-truth labels, clusters generated by K-

Means are utilized to assign labels [Jain, Kaur, and Saxena, 2022]; [Jain and Kaur,

2021]. This approach facilitates the effective determination of each scenario type,

allowing for a robust identification and response to evolving data patterns.

If the DR metric decreases, it is crucial to identify attack instances that the

current model fails to recognize. To address this, clusters with the least variance

are selected to focus on significant examples according to their similarity, reducing

sample size and managing data imbalance. Previous research shows that cluster-

ing enhances model performance by focusing on representative examples, effectively

addressing data imbalance [Jain and Kaur, 2021]; [Jain, Kaur, and Saxena, 2022].

Analyzing these low-variance clusters helps differentiate between correctly and in-

correctly classified distributions. The Random Forest classifier is used to classify

these low-variance clusters into normal and attack categories. When concept drift

occurs, it reveals new attacks that may be misclassified as normal, allowing for model

refinement (see lines 26-28 in Algorithm 2). When the FAR increases, previously

classified attack instances are reassessed to enhance the classification of normal in-

stances (see lines 29-31 in Algorithm 2). Fig. 3 illustrates how the model handles

concept drift in both scenarios.

Training Data

Drift Data

Adaptive Sliding 

Window

Preprocessing 

Data
K-Means 

clustering

Random Forest

A

B

C

D

E 

B

Adaptive Sliding Window

SW1 SW2 SW3 SW4 SWt
SWt+1 SWt+2 SWt+3 SWt+4 SWt+i

Similarity 

Adaptive Random Forest
Normal

Attack

Update as “Attack”

Scenario 1 

Update as “Normal”

Scenario 2 

D

BD

Clusters with the 

least variance

Figure 3: Hybrid Approach: K-Means & RF for Effective Concept Drift Handling



Algorithm 2 Concept Drift Manager
1: Input: Testing Data, Threshold: Thresh_DR, Threshold: Thresh_FAR

2: Output: Update Adaptive Random Forest Model

3: procedure Adaptive_Sliding_window(Testing data)

4: Divide the testing data into fixed sliding windows of size n, forming a set

S = {SW1, SW2, SW3, ..., SWn}.

5: for each sliding window SWi in the set S do

6: if Drift_Detection(SWi, SWi+1) == True then ▷ Algorithm 1

7: Add SWi+1 to the Adaptive Sliding Window (ASW ).

8: else

9: Predict on SWi+1

10: return ASW

11: procedure scenario_identification(Thresh_DR, Thresh_FAR)

12: Perform Random Forest classifier on SWi

13: (DR,FAR)← PredictWithCurrentModel(SWi+1)

14: if DR < Thresh_DR then

15: scenario← 1

16: else if FAR > Thresh_FAR then

17: scenario← 2

18: return scenario

19: procedure Handling_concept_drift(Testing_Data, Thresh_DR, Thresh_FAR)

20: scenario← SCENARIO_IDENTIFICATION(Thresh_DR, Thresh_FAR)

21: ASW ← ADAPTIV E_SLIDING_WINDOW (Testing_Data)

22: X ← PairwiseDistanceCalculation(ASW )

23: (cx = {c1, c2, c3, c4, c5})← KMeans(X, k = 5)

24: kx ← Lowest_V ariance(cx)

25: (normal, attacks)← PredictWithCurrentModel(kx)

26: if scenario == 1 then

27: new_attack_instances← normal

28: current_model ← UpdateRandomForestModel(new_attack_instances)

29: else if scenario == 2 then

30: new_normal_instances← attacks

31: current_model ← UpdateRandomForestModel(new_normal_instances)



5.1.3 Adaptive Random Forest Training and Prediction

The primary aim of this study is to detect anomalies in network traffic. For this pur-

pose, an ARF classifier was chosen due to its effectiveness in detecting and adapting

to attacks [Leon, Markovic, and Punnekkat, 2022]; [Seth, Singh, and Chahal, 2021].

Due to the presence of concept drift, a model trained once cannot be reliably ap-

plied at all times, necessitating retraining upon detecting drift. To ascertain drift in

traffic, an SCC between the principal components of consecutive sliding windows is

calculated over time. Fig. 4 provides an overview of the proposed approach for man-

aging concept drift and detecting anomalies. The next section provides the results

obtained using the proposed adaptive model.

Adaptive Random Forest

Capture Data in Next Window

Drift 
Detected?

Y

ASW 

== 

Empty?  

N

Handling Concept Drift

N

ASW = Empty

Network Data Retrieval

SW...SWSWSW

K-Means
Initial Model

Prediction on New Data

Add Window to Adaptive Sliding Window (ASW)

Y

1tt+1t+n

Prediction on Current Model

Figure 4: Overview of the Proposed Adaptive IDS with Concept Drift Detection

In this section, an adaptive model with concept drift detection for IDS is pre-

sented to address the challenges posed by concept drift. It explains how this approach

enables the system to detect concept drift and dynamically adapt to fluctuations in

input data, thereby enhancing its intrusion detection capabilities. In the following

section, a detailed analysis of the obtained results will be conducted, evaluating the

system’s performance according to the methodology outlined in this document.



5.2 Experimental Analysis

The primary aim of the experimental results is to evaluate the adaptive model’s

ability to adjust to evolving data when detecting concept drift. These experiments

were conducted on Google Colab, utilizing hardware resources including an Intel(R)

Xeon(R) CPU @ 2.20GHz and 12.67 GB of RAM.

5.2.1 Analysis of the NSL-KDD dataset

The NSL-KDD dataset is a commonly preferred public dataset for network intrusion

detection research [Jain and Kaur, 2021]. It contains 148,517 records with 41 features

plus a label class as the 42nd feature. Among the features, 32 are continuous, and 9

are categorical. The dataset is divided into training and test sets. The training set

includes 22 attack types, categorized into four classes: Denial of Service (DoS),

User to Root (U2R), Remote to Local (R2L), and Probe. The test set includes

17 additional attack types in the same classes. Table 4 illustrates the attack types

in both sets; bold text denotes new attacks in the test set, while italic text indicates

those exclusive to the training set. A notable drift from the training set to the test

set occurs due to the absence of certain unknown attacks in the training set, leading

to their misclassification as normal traffic in the test set [L. Yang and Shami, 2021].

Table 4: NSL-KDD Dataset Attack Types

DoS Probe R2L U2R

apache2, back,

land, mailbomb,

neptune, pod,

processtable,

smurf, teardrop,

udpstorm

ipsweep,

mscan,

nmap,

portsweep,

saint, sa-

tan

spy, warezclient,

ftp_write, guesspasswd,

httptunnel, imap, multi-

hop, named, phf, sendmail,

snmpgetattack, warezmas-

ter, xlock, xsnopp

bufferoverflow, load-

module, perl, ps,

rootkit, snmpguess,

sqlattack, worm,

xterm



Table 5: Concept Drift Indicator Between SW0 and Subsequent Sliding Windows

SW0 SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10

δ 0.0127 0.0584 0.0073 0.2550 0.2871 0.0274 0.0122 0.0059 0.2333 0.0284

Firstly, categorical attributes were converted to numerical values using label

encoding, and feature values were normalized with min-max normalization to en-

sure equal contribution and improve convergence during training. This preprocessing

step is crucial for maintaining data integrity and enhancing the adaptive IDS’s effec-

tiveness. For data integration, two sets were merged by randomly selecting windows

from each. A downsized NSL-KDD dataset with 5.0 × 103 instances was selected

after testing various sliding window sizes to determine the optimal size. It is essen-

tial to balance detection sensitivity and model performance since larger windows can

dilute concept drifts, while smaller windows might reduce effective detection.

After randomly merging the windows from the two sets, the objective is to

detect concept drift between the sliding windows. This involves monitoring changes

in the data distribution over time to identify shifts in patterns or relationships.

Table 5 presents the results obtained after employing the proposed concept drift

detection method described in Subsection 5.1.1. As observed in Table 5, there are

no significant changes (δ) in the SCC across sliding windows SW0 through SW3.

However, this pattern is disrupted between windows SW3 and SW4, where a sudden

change becomes noticeable. This suggests a significant abrupt conceptual change,

which persists in the subsequent window SW5, and finally reappears in window SW9.

In this case, the adaptive sliding window is initially filled with data from windows

SW4 and SW5 and is then used to update the model. Additionally, as shown in Table

5, the value of (δ) in SW9 is lower than in SW4 and SW5, which is reflected in the

accuracy results presented in Table 6. This demonstrates the method’s effectiveness

in detecting gradual changes.

Figure 5 depicts the data distribution of the two principal components within



sliding windows SW3 and SW4, along with the SCC for each of them. In SW3, a

consistent pattern is evident, as the points tend to follow a uniform trajectory in

the graph, indicating a coherent relationship between the variables represented by

the principal components. However, in the presence of a concept drift in SW4, the

monotonic relationship between the points diminishes. This suggests that the points

may scatter more randomly on the graph or follow a less predictable trajectory.

Figure 5: Data Distribution of Principal Components and SSC of SW3 and SW4

Tables 6 and 7 present the accuracy, precision, DR, FAR, and F1-score before

and after drift handling in the NSL-KDD dataset. Table 6 highlights a signifi-

cant decline in anomaly detection performance for (SW3, SW4), (SW4, SW5), and

(SW8, SW9). This highlights the effectiveness of the proposed method in identify-

ing abrupt concept drift through distribution changes. Consequently, prediction of

the subsequent windowed data was based on the newly adapted model. Enhanced

accuracy, precision, DR, FAR, and F1-score are evident in Table 7. These improve-

ments observed further validate the system’s capability in mitigating drift-induced

performance degradation. Figure 6a illustrates the evolution of accuracy over time.

The graph shows accuracy fluctuations over time, with notable increases at specific

intervals. For instance, a significant rise in accuracy occurs between the fourth and

fifth data points, attributed to concept drift management.

Figure 6b illustrates that the adaptation time is considerably higher for 1×104



Table 6: Performance Evaluation Before Drift Handling (NSL-KDD dataset)

Sliding Window Id Accuracy Precision DR FAR F1-score Drift Detected

(SW0, SW1) 0.9988 0.9985 0.9985 0.001 0.9985 No
(SW1, SW2) 0.9990 0.9995 0.9980 0.0003 0.9987 No
(SW2, SW3) 0.9990 1 0.9974 0 0.9987 No

(SW3, SW4) 0.4986 0.9596 0.4021 0.0748 0.5667 Yes
(SW4, SW5) 0.4904 0.9623 0.3930 0.0695 0.5580 Yes

(SW5, SW6) 0.9865 0.9953 0.9715 0.0031 0.9833 No
(SW6, SW7) 0.9832 0.9990 0.9608 0.00006 0.9795 No
(SW7, SW8) 0.9884 0.9979 0.9732 0.0013 0.9854 No

(SW8, SW9) 0.5136 0.9609 0.4216 0.0764 0.5861 Yes

(SW9, SW10) 0.9820 0.9924 0.9310 0.0050 0.9775 No

Average 0.8439 0.9865 0.8047 0.0231 0.8632 —

Table 7: Performance Evaluation After Drift Handling (NSL-KDD Dataset)

Sliding Window Id Accuracy Precision DR FAR F1-score Adaptation Time Inference Time

(SW3, SW4) 0.9832 0.9918 0.9874 0.0357 0.9896
25.04s 0.0590s

(SW4, SW5) 0.9662 0.9863 0.9721 0.0607 0.9792

(SW8, SW9) 0.9806 0.9913 0.9848 0.0382 0.9880 14.41s 0.0863s

(a) Accuracy of the classifier before and af-

ter applying concept drift detection tech-

nique within drift windows on the NSL-

KDD dataset.

(b) Prediction Time for 5× 103 Instances

versus Adaptation Time for 1 × 104 In-

stances.

Figure 6: Comparison of Classifier Accuracy and Prediction vs. Adaptation Time

instances compared to the prediction time for 5 × 103 instances. From this, it is



possible to infer that in real-time scenarios, the system could process approximately

166.885 windows before the model is able to adapt. Consequently, there would be a

degradation in the model’s performance, as demonstrated in Table 6.

Table 8: Performance of Proposed Approach on NSL-KDD dataset

Reference Method Av. Accuracy Av. Precision Av. DR Av. F1-Score Av. FAR Approach

[L. Yang and Shami, 2021] LGBM 98.31% 98.57% 98.30% 98.43% Not-reported Supervised

[Roshan et al., 2018] ELM Not-reported Not-reported 77% Not-reported 3.05% Hybrid Unsupervised

[Jain and Kaur, 2021] RF, LR, SVM and K-means 93% 96% 94% 94% 9.60% Hybrid Unsupervised

[Jain, Kaur, and Saxena, 2022] K-means+SVM 91.33% 88.3% 91.7% 89.6% 2.11% Hybrid Unsupervised

[Xiaolan et al., 2022] EADNSD 91.80% Not-reported 90.10% Not-reported 7.60% Unsupervised

[Bigdeli et al., 2018] Incremental GMM-based clustering Not-reported Not-reported 85% Not-reported 7% Unsupervised

Proposed Approach K-means+Random Forest 98.66% 99.52% 97.74% 99.78% 1.14% Hybrid Unsupervised

Table 8 compares the proposed adaptive model with alternative approaches

from related studies. The data shows that the proposed model generally outperforms

its peers in key attack detection metrics and, in some cases, matches the performance

of supervised adaptive models. This highlights the effectiveness and competitive edge

of the proposed adaptive model.

5.2.2 Analysis of the IoTID20 dataset

The IoTID20 dataset [Ullah and Mahmoud, 2020] is a recently developed and com-

prehensive resource specifically designed for detecting anomalous activities in IoT

networks. It includes both intrusion and regular activities recorded from devices

such as Wi-Fi routers, SKT NGU computers, and EZVIZ cameras. The dataset

consists of 625,783 instances and 83 attributes, with nominal attributes omitted,

resulting in 79 characteristics. It provides detailed labels for intrusion detection,

including binary, category, and sub-category labels. Table 9 presents the detailed

distribution of dataset records between standard and intrusion operations. It also

includes the binary, category, and sub-category labels found in the IoTID20 dataset.

Categorical attributes were converted to numerical values using label encoding,

and feature values were normalized using min-max normalization to ensure equal



Table 9: IoTID20 Distribution

Binary Category Sub_Category 75% 25%

Dataset IoTID20 625,783 Anomaly 585,710
Anomaly-Scan 75,265

Hot Port 22,192 For Training 16,644 For Test 5,548

Port OS 53,073 For Training 39,805 For Test 13,268

Anomaly-Mirai 415,676

ACK Flooding 55,124 For Training 41,343 For Test 13,781

Host BruteForceg 121,181 For Training 90,886 For Test 30,295

HTTP Flooding 55,818 For Training 41,864 For Test 13,995

UDP Flooding 183,553 For Training 137,665 For Test 45,888

Anomaly-MITM ARP 35,377 MITM ARP Spoofing 35,377 For Training 26,533 For Test 8,844

Anomaly-DOS 59,392 Synflooding 59,391 For Training 44,544 For Test 14,848

Normally 40,073 Normal 40,073 Normal 40,073 For Training 30,055 For Test 10,018

Total Sample 469,337 For Test 156,446

contribution and improve convergence during training. A downsized IoTID20 dataset

with 5.0 × 103 instances was selected to test the detection and handling of concept

drift. Table 10 presents the SCC calculated between the initial window SW0 and the

subsequent sliding windows. As illustrated in the pairs (SW0, SW6), (SW0, SW3),

(SW0, SW7), and (SW0, SW4), a gradual concept drift is observed, which impacts

the performance of the IDS, as detailed in Table 11. In this case, the adaptive sliding

window is initially filled with data from windows SW3 and SW4 and is then used to

update the model. The same process is applied for windows SW6 and SW7. Table

12 displays the performance results of the ARF classifier following concept drift han-

dling. Table 12 highlights the improvements in accuracy, precision, DR, FAR, and

F1-score achieved by the system. These enhancements demonstrate the system’s

effectiveness in adapting to gradual changes. However, the columns for Adaptation

Time and Inference Time in Table 12 reveal that the system can process approx-

imately 165 windows before the model is fully adapted. This suggests a trade-off

between adaptation speed and real-time processing capability, underscoring the need

for efficient adaptation strategies in dynamic environments.

Table 10: Concept Drift Indicator Between SW0 and Subsequent Sliding Windows

SW0 SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10

(δ) -0.0034 -0.0044 -0.0126 0.0250 -0.0010 0.0105 -0.0234 0.0015 0.0027 -0.0053



Table 11: Performance Evaluation before Drift Handling (IoTID20 dataset).

Sliding Window Id Accuracy Precision DR FAR F1-score Drift Detected

(SW0, SW1) 0.9960 0.9963 0.9993 0.0568 0.9978 No
(SW1, SW2) 0.9960 0.9960 0.9996 0.0546 0.9978 No

(SW2, SW3) 0.9917 0.9932 0.9978 0.0916 0.9956 Yes
(SW3, SW4) 0.9940 0.9951 0.9984 0.0740 0.9968 Yes

(SW4, SW5) 0.9960 0.9963 0.9993 0.0558 0.9978 No

(SW5, SW6) 0.9951 0.9957 0.9990 0.0616 0.9974 Yes
(SW6, SW7) 0.9934 0.9935 0.9993 0.0853 0.9964 Yes

(SW7, SW8) 0.9940 0.9938 0.9996 0.0796 0.9967 No
(SW8, SW9) 0.9942 0.9945 0.9993 0.0841 0.9969 No
(SW9, SW10) 0.9951 0.9948 1 0.0765 0.9974 No

Average 0.9945 0.9949 0.9991 0.07199 0.9970 —

Table 12: Performance Evaluation after Drift Handling (IoTID20 dataset).

Sliding Window Id Accuracy Precision DR FAR F1-score Adaptation Time Inference Time

(SW2, SW3) 0.9971 0.9969 0.9947 0.0416 0.9984
19.24s 0.1162s

(SW3, SW4) 0.9988 0.9987 0.9954 0.0185 0.9993

(SW5, SW6) 0.9988 0.9987 0.9981 0.0176 0.9993
18.14s 0.144s

(SW6, SW7) 0.9977 0.9975 0.9975 0.0325 0.9987

Table 13: Performance of Proposed Approach on IoTID20 dataset.

Reference Method Av. Accuracy Av. Precision Av. DR Av. F1-Score Av. FAR Approach

[L. Yang and Shami, 2021] LGBM 99.92% 99.93% 99.98% 0.9996 - Supervised

Proposed Approach K-means+Random Forest 99.69% 99.70% 99.75% 99.83% 4.32% Hybrid Unsupervised

Table 13 provides a comparison between the proposed adaptive model and al-

ternative methods, such as the one suggested by [L. Yang and Shami, 2021], using

the IoTID20 dataset. The results demonstrate that the performance of the pro-

posed model is comparable to that of supervised adaptive approaches, despite not

utilizing label knowledge. Additionally, these results reveal a low FAR of just 4.32%,

showcasing the model’s effectiveness in reducing false positives while preserving high

detection accuracy.



5.3 Discussion

Section 2 emphasizes the challenges faced by adaptive models for IDS, particularly

in relying on supervised learning and labeled datasets for attack detection. The

proposed adaptive model seeks to address this issue by exhibiting robust detection

capabilities that are comparable to those of established supervised approaches, such

as those described by [L. Yang and Shami, 2021]. Unlike unsupervised approaches,

such as those proposed by [Roshan et al., 2018], [Xiaolan et al., 2022] and [Bigdeli

et al., 2018], which continuously cluster real-time data, the proposed adaptive model

identifies and manages concept drift only when necessary. This approach optimizes

processing time, resource usage, and adaptability. Hybrid approaches, such as those

introduced by [Jain, Kaur, and Saxena, 2022] and [Jain and Kaur, 2021], integrate

supervised and unsupervised methods to enhance detection performance while main-

taining a low FAR. In contrast, the proposed adaptive model focus on identifying

patterns through clustering on the similarity matrix rather than directly analyzing

raw data. This methodology facilitates the grouping of data distributions based

on their similarities, allowing the detection of distributions familiar to the current

model using Random Forest. By applying a concept drift detection method based

on DR and FAR, it becomes possible to identify distributions that the model fails

to recognize, enabling timely model updates and enhancing overall performance.

Moreover, employing an adaptive window helps retain critical information and

manage the propagation of concept drift, enhancing pattern recognition and facilitat-

ing model updates. The proposed concept drift method, based on distribution data,

accurately identifies both abrupt and gradual changes by dynamically adjusting the

threshold (δ). In contrast, traditional methods like ADWIN and PCA+Kullback-

Leibler, as proposed by [Qahtan et al., 2015], are limited to detecting only abrupt

changes and may miss subtler, gradual shifts.

Finally, experimental results demonstrated that the adaptation time exceeds



the inference time, highlighting the necessity to explore hardware acceleration tech-

niques and algorithmic optimization. These measures are essential to prevent model

degradation when implementing the proposed adaptive model in real-time IDS.

6 Work Plan

This section delineates the proposed work plan for the research. Figure 7 illustrates

the Gantt chart detailing the timelines for each activity. The plan encompasses es-

sential phases such as literature review, data collection, analysis, experimentation,

and presentation of findings, ensuring systematic progress and optimal resource allo-

cation. Each phase is meticulously designed to achieve the research objectives within

the specified timeframes. The forthcoming section provides a detailed description of

the proposed activities.

1. Literature Review

(a) Review and summarize at least 50 relevant articles on the research topic.

(b) Identify at least 3 emerging trends of interest from the literature review.

(c) Identify at least 3 key research questions from the literature review.

2. Objective Definition

(a) Identify and describe the thesis research problem concisely.

(b) Define research objectives clearly to guide the study effectively.

(c) Formulate at least three specific and relevant research questions.

3. Establish Experimental Setup

(a) Identify at least 2 relevant datasets aligned with research objectives.

(b) Identify at least 3 metrics aligned with study objectives.



4. Algorithm Selection

(a) Evaluate at least three algorithms for handling concept drift.

(b) Evaluate at least three concept drift methods for detection effectiveness.

5. To Design and Implement of Adaptive Model

(a) Develop an adaptive model for IoT data streams with over 90% DR and

under 10% FAR.

(b) Develop a robust concept drift detection method proficient in accurately

identifying shifts within IoT data streams, targeting an accuracy of 90%.

(c) Optimize the adaptive model at the algorithmic level to achieve at least

a 20% increase in processing speed and a 15% reduction in resource con-

sumption.

6. Experimental Analysis

(a) Conduct experiments to evaluate and compare the adaptive model across

different concept drift scenarios using the proposed experimental setup,

and benchmark it against findings from the literature.

(b) Evaluate the limitations of the proposed adaptive model and explore areas

for improvement and potential future directions.

7. Article Writting

(a) Write a draft of the scientific article based on the experimental results.

(b) Submit the article to the selected journal or conference for peer review.

8. Proposal Doctoral Presentation

(a) Present and defend the doctoral proposal successfully.

9. Design of Hardware Acceleration and Optimization of Algorithms



(a) Design and implement a hardware architecture to accelerate the adaptive

model, targeting a 50% improvement in processing speed compared to

the initial software version.

10. Experimental Analysis

(a) Assess acceleration hardware’s impact on model performance, aiming for

a 2x speedup compared to baseline without hardware.

(b) Conduct real-time hardware tests for at least 100 Mbps throughput and

10 ms latency.

(c) Compare results with literature to identify at least 2 contributions.

(d) Article Writing (Repeat 7).

11. Thesis Writing

(a) Draft and refine the entire doctoral thesis, incorporating research findings

and conclusions into a cohesive document.

12. Thesis Defense

(a) Present and defend the doctoral thesis successfully.

References

Abdualrahman, Amer Abdulmajeed and Mahmood Khalel Ibrahem (2021). “Intru-

sion Detection System Using Data Stream Classification”. In: Iraqi Journal of

Science, pp. 319–328.

Ali Abd Al-Hameed, Khawla (2022). “Spearman’s correlation coefficient in statistical

analysis”. In: International Journal of Nonlinear Analysis and Applications 13.1,

pp. 3249–3255.



Figure 7: Proposed Activity Schedule: Gantt Diagram.

Babüroğlu, Elif Selen, Alptekin Durmuşoğlu, and Türkay Dereli (2023). “Concept

drift from 1980 to 2020: a comprehensive bibliometric analysis with future re-

search insight”. In: Evolving Systems, pp. 1–21.

Beshah, Yonas Kibret, Surafel Lemma Abebe, and Henock Mulugeta Melaku (2024).

“Drift Adaptive Online DDoS Attack Detection Framework for IoT System”. In:

Electronics 13.6, p. 1004.

Bigdeli, Elnaz et al. (2018). “Incremental anomaly detection using two-layer cluster-

based structure”. In: Information Sciences 429, pp. 315–331.

Chouchen, Islem and Farah Jemili (2023). “Intrusion Detection based on Incremen-

tal Learning”. In: 2023 International Conference on Cyberworlds (CW). IEEE,

pp. 448–455.

Chu, Renjie et al. (2024). “Intrusion detection in the IoT data streams using concept

drift localization”. In: AIMS Mathematics 9.1, pp. 1535–1561.

Chuang, Shih-Hsien, Ren-Chieh Yang, and Sheng-De Wang (2021). “Network in-

trusion detection system with stream machine learning in fog layer and online

labeling in cloud layer”. In: 2021 International Conference on Electronic Com-

munications, Internet of Things and Big Data (ICEIB). IEEE, pp. 53–59.



Elnawawy, Mohammed, Assim Sagahyroon, and Tamer Shanableh (2020). “FPGA-

based network traffic classification using machine learning”. In: IEEE Access 8,

pp. 175637–175650.

García, María and Carlos López (2024). “Challenges in Intrusion Detection Systems

Leveraging Machine Learning and Batch Processing”. In: Journal of Cybersecu-

rity Research 12.2, pp. 87–102.

Geng, Xiurui and Hairong Tang (2020). “Clustering by connection center evolution”.

In: Pattern Recognition 98, p. 107063.

Gómez, Ana and Javier Rodríguez (2024). “Challenges in Machine Learning-Based

Intrusion Detection Systems for IoT”. In: Journal of Cybersecurity Research 15.1,

pp. 45–58.

Gordon, Holden et al. (2021). “An efficient SDN architecture for smart home security

accelerated by FPGA”. In: 2021 IEEE International Symposium on Local and

Metropolitan Area Networks (LANMAN). IEEE, pp. 1–3.

Greenacre, Michael et al. (2022). “Principal component analysis”. In: Nature Reviews

Methods Primers 2.1, p. 100.

Ioannou, Lenos and Suhaib A Fahmy (2019). “Network intrusion detection using

neural networks on FPGA SoCs”. In: 2019 29th International Conference on

Field Programmable Logic and Applications (FPL). IEEE, pp. 232–238.

Jain, Meenal and Gagandeep Kaur (2021). “Distributed anomaly detection using

concept drift detection based hybrid ensemble techniques in streamed network

data”. In: Cluster Computing 24, pp. 2099–2114.

Jain, Meenal, Gagandeep Kaur, and Vikas Saxena (2022). “A K-Means clustering

and SVM based hybrid concept drift detection technique for network anomaly

detection”. In: Expert Systems with Applications 193, p. 116510.

Kaspersky (2023). Rising threats: cybercriminals unleash 411,000 malicious files

daily in 2023. Accessed: 2024-05-21. url: https://www.kaspersky.com/about/

press - releases / 2023 % 5C _ rising - threats - cybercriminals - unleash -

411000-malicious-files-daily-in-2023.

https://www.kaspersky.com/about/press-releases/2023%5C_rising-threats-cybercriminals-unleash-411000-malicious-files-daily-in-2023
https://www.kaspersky.com/about/press-releases/2023%5C_rising-threats-cybercriminals-unleash-411000-malicious-files-daily-in-2023
https://www.kaspersky.com/about/press-releases/2023%5C_rising-threats-cybercriminals-unleash-411000-malicious-files-daily-in-2023


Leon, Miguel, Tijana Markovic, and Sasikumar Punnekkat (2022). “Comparative

evaluation of machine learning algorithms for network intrusion detection and

attack classification”. In: 2022 international joint conference on neural networks

(IJCNN). IEEE, pp. 01–08.

Lu, Jie et al. (2018). “Learning under concept drift: A review”. In: IEEE transactions

on knowledge and data engineering 31.12, pp. 2346–2363.

Maciel, Lucas Andrade, Matheus Alcântara Souza, and Henrique Cota de Freitas

(2019). “Reconfigurable FPGA-based K-means/K-modes architecture for net-

work intrusion detection”. In: IEEE Transactions on Circuits and Systems II:

Express Briefs 67.8, pp. 1459–1463.

Mahdi, Osama A et al. (2023). “Enhancing IoT Intrusion Detection System Perfor-

mance with the Diversity Measure as a Novel Drift Detection Method”. In: 2023

9th International Conference on Information Technology Trends (ITT). IEEE,

pp. 50–54.

Martindale, Nathan, Muhammad Ismail, and Douglas A Talbert (2020). “Ensemble-

based online machine learning algorithms for network intrusion detection systems

using streaming data”. In: Information 11.6, p. 315.

Murovic, Tadej and Andrej Trost (2019). “Massively parallel combinational binary

neural networks for edge processing”. In: Elektrotehniski Vestnik 86.1/2, pp. 47–

53.

Murovič, Tadej and Andrej Trost (2020). “Resource-optimized combinational binary

neural network circuits”. In: Microelectronics Journal 97, p. 104724.

— (2021). “Genetically optimized massively parallel binary neural networks for in-

trusion detection systems”. In: Computer Communications 179, pp. 1–10.

Ngo, Duc-Minh, Dominic Lightbody, et al. (2022). “HH-NIDS: heterogeneous hardware-

based network intrusion detection framework for IoT security”. In: Future Inter-

net 15.1, p. 9.

Ngo, Duc-Minh, Andriy Temko, et al. (2021). “FPGA hardware acceleration frame-

work for anomaly-based intrusion detection system in IoT”. In: 2021 31st In-



ternational Conference on Field-Programmable Logic and Applications (FPL).

IEEE, pp. 69–75.

Ngo, Duc-Minh, Binh Tran-Thanh, et al. (2019). “High-throughput machine learn-

ing approaches for network attacks detection on FPGA”. In: Context-Aware Sys-

tems and Applications, and Nature of Computation and Communication: 8th

EAI International Conference, ICCASA 2019, and 5th EAI International Confer-

ence, ICTCC 2019, My Tho City, Vietnam, November 28-29, 2019, Proceedings.

Springer, pp. 47–60.

Nsunza, Watipatsa W, A-Q Ransford Tetteh, and Xiaojun Hei (2018). “Accelerating

a secure programmable edge network system for smart classroom”. In: 2018 IEEE

SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Com-

puting, Scalable Computing & Communications, Cloud & Big Data Computing,

Internet of People and Smart City Innovation. IEEE, pp. 1384–1389.

Pandit, Shraddha, Suchita Gupta, et al. (2011). “A comparative study on distance

measuring approaches for clustering”. In: International journal of research in

computer science 2.1, pp. 29–31.

Pham-Quoc, Cuong, Tran Hoang Quoc Bao, and Tran Ngoc Thinh (2023). “FPGA/AI-

powered architecture for anomaly network intrusion detection systems”. In: Elec-

tronics 12.3, p. 668.

Qahtan, Abdulhakim A et al. (2015). “A pca-based change detection framework

for multidimensional data streams: Change detection in multidimensional data

streams”. In: Proceedings of the 21th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pp. 935–944.

Ridder, Frank, Kuan-Hsun Chen, and Nikolaos Alachiotis (2023). “Accelerated Real-

Time Classification of Evolving Data Streams using Adaptive Random Forests”.

In: 2023 International Conference on Field Programmable Technology (ICFPT).

IEEE, pp. 232–237.



Roorda, Esther and Steven JE Wilton (2023). “Online Training from Streaming

Data with Concept Drift on FPGAs”. In: 2023 24th International Symposium on

Quality Electronic Design (ISQED). IEEE, pp. 1–8.

Roshan, Setareh et al. (2018). “Adaptive and online network intrusion detection sys-

tem using clustering and extreme learning machines”. In: Journal of the Franklin

Institute 355.4, pp. 1752–1779.

Seth, S, G Singh, and K Chahal (2021). “Drift-based approach for evolving data

stream classification in Intrusion detection system”. In: Proceedings of the Work-

shop on Computer Networks & Communications, Goa, India, pp. 23–30.

Statista (2024). Statista - The Statistics Portal. url: https://www.statista.com/

statistics/1183457/iot-connected-devices-worldwide/.

Tavallaee, Mahbod et al. (2009). “A detailed analysis of the KDD CUP 99 data

set”. In: 2009 IEEE Symposium on Computational Intelligence for Security and

Defense Applications, pp. 1–6. doi: 10.1109/CISDA.2009.5356528.

Todorov, Zdravko, Danijela Efnusheva, and T Nikolić (2021). “Fpga implementation

of computer network security protection with machine learning”. In: 2021 IEEE

32nd International Conference on Microelectronics (MIEL). IEEE, pp. 263–266.

Togbe, Maurras Ulbricht et al. (2021). “Anomalies detection using isolation in concept-

drifting data streams”. In: Computers 10.1, p. 13.

Ullah, Imtiaz and Qusay Mahmoud (May 2020). “A Scheme for Generating a Dataset

for Anomalous Activity Detection in IoT Networks”. In: pp. 508–520. doi: 10.

1007/978-3-030-47358-7_52.

Vreča, Jure et al. (2021). “Detecting network intrusion using binarized neural net-

works”. In: 2021 IEEE 7th World Forum on Internet of Things (WF-IoT). IEEE,

pp. 622–627.

Wahab, Omar Abdel (2022). “Intrusion detection in the iot under data and concept

drifts: Online deep learning approach”. In: IEEE Internet of Things Journal 9.20,

pp. 19706–19716.

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1007/978-3-030-47358-7_52
https://doi.org/10.1007/978-3-030-47358-7_52


Xiaolan, Wang et al. (2022). “Evolving anomaly detection for network streaming

data”. In: Information Sciences 608, pp. 757–777.

Yahyaoui, Aymen et al. (2021). “Machine learning based network intrusion detection

for data streaming IoT applications”. In: 2021 21st ACIS International Winter

Conference on Software Engineering, Artificial Intelligence, Networking and Par-

allel/Distributed Computing (SNPD-Winter). IEEE, pp. 51–56.

Yang, Li and Abdallah Shami (2021). “A lightweight concept drift detection and

adaptation framework for IoT data streams”. In: IEEE Internet of Things Mag-

azine 4.2, pp. 96–101.

Zeng, Qingyu and Yuko Hara-Azumi (2024). “Hardware/Software Codesign of Real-

Time Intrusion Detection System for Internet of Things Devices”. In: IEEE In-

ternet of Things Journal.

Zou, Beiji et al. (2023). “Anomaly detection for streaming data based on grid-

clustering and Gaussian distribution”. In: Information Sciences 638, p. 118989.


	Introduction
	Background
	 Methods for Concept Drift Detection in Continuous Data Streams
	Addressing Concept Drift in Dynamic Environments
	Towards Real-time Intrusion Detection: Hardware Acceleration
	Discussion and Motivation

	Objectives
	Problem Statement
	Research Questions
	General Objective
	Specific Objectives
	Expected Contributions

	Methodology
	Justification of the Methodology

	Preliminary Results
	Proposal for Detecting and Handling Concept Drift
	Proposed Concept Drift Detection Method
	Enhancing Drift Handling with K-Means and Random Forest
	 Adaptive Random Forest Training and Prediction

	Experimental Analysis
	Analysis of the NSL-KDD dataset
	Analysis of the IoTID20 dataset

	Discussion

	Work Plan

