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Andrei Andreyevich Markov
1856 Ryazan, Russia, 1922 St. Petersburg, Russia

In 1874, he entered the Faculty of Physics 
and Mathematics in St. Petersburg. He 
attended classes under Korkin, Zolotarev 
and especially Chebyshev, who was the 
head of the mathematics department. 
Markov was the most elegant spokesman 
and follower of Chebyshev's ideas. His 
contributions to Jacob Bernoulli's theorem 
known as the Law of Large Numbers, to 
two fundamental probability theorems due 
to Chebyshev, and to the method of least 
squares are notable.



Andrei Andreyevich Markov

 Markov is particularly remembered for his 
study of the so-called Markov chains, 
sequences of random variables in which 
the next variable is determined by the 
current variable but is independent of the 
previous ones. With this a new branch of 
probability theory arose and the theory of 
stochastic processes began. In 1923, 
Norbert Wiener rigorously introduced 
continuous Markov processes. However, 
the general theory was studied, in the 
1930s, by Andrei Kolmogorov.



Andrei Andreyevich Markov

 Markov developed his theory of chains, 
from a completely theoretical point of view, 
he also applied these ideas to chains of two 
states, vowels and consonants, in literary 
texts.

 Beginning in 1889, Georgy Voronyi studied 
at Saint Petersburg University, where he 
was a student of Andrey Markov. 



Hidden Markov Models

Markov chain theory has been extensively used to solve pattern recognition
problems. The main assumption is that one-, two-, and three-dimensional
signals can be characterized as a parametric random process, and that the
parameters of the stochastic process can be determined (estimated) in a
precise and well-defined manner. They are mainly used for time-varying
type of processes.
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Discrete-time Markov processes

A Markov chain consists of a set of states linked by links. The transition
from one state to another is determined by probabilities.
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Discrete-time Markov processes

The changes of states are called qt at time t. Probability that the Markov
chain is in a given state j

P[qt = j
∣∣ qt−1 = i , qt−2 = k , ...] = P[qt = j

∣∣ qt−1 = i ]

aij = P[qt = j
∣∣ qt−1 = i ], 1 ≤ i j ≤ N

0 ≤ aij ≤ 1 ∀ i , j

N∑
j=1

aij = 1 ∀i

This model is observable since the output is a set of states at each instant
where each state represents an observable event.
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Example

Suppose we have a weather model as described below:

Where: S1 = Rain; S2 = Cloudy ; S3 = Sunny
Time t is taken at 12:00 on the day.

Dr. Jesús Savage Workshop ICR 2024 Hidden Markov Models 13 de octubre de 2024 4 / 22



Example

A = {aij} =

 0. 4 0. 3 0. 3
0. 2 0. 6 0. 2
0. 1 0. 1 0. 8


Problem: What is the probability that the weather on 8 consecutive days
will be:
sunny, sunny, sunny, rainy, rainy, sunny, cloudy, sunny?
Defining the observation sequence O, as

O = (Sunny , Sunny ,Sunny ,Rainy ,

Rainy ,Sunny ,Cloudy , Sunny)

O = (S3,S3, S3,S1, S1, S3,S2, S3)

P(O|model) = Probability of observing the sequence O,

given the climate model
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Example

= P(S3,S3, S3, S1,S1, S3,S2, S3|model)

= P(S3)P [S3|S3]2 P [S1|S3]P [S1|S1]P [S3|S1]P [S2|S3]P [S3|S2]

= π3(a33)2 a31 a11 a13 a32 a23

= (1. 0)(0. 8)2(0. 1)(0. 4)(0. 3)(0. 1)(0. 2) = 1. 536x10−4

Where the following notation is used:

π3 = P [q1 = 3] = 1

πi are the initial probabilities, in this example when the experiment started
it was already a sunny day, therefore π3 = 1.
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Example

Suppose a person is flipping coins behind a curtain, with different coins
loaded.
The person only tells the result obtained without saying which coin he
used. How would a Hidden Markov Chain model be constructed that
would explain the recurrence of heads and tails obtained?

O = (O1,O2,O3, ...,OT )

= (TTHHT ...H)
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Model only one coin

Observations = TTHHTHTHH
States = 112212122
The states correspond to the observations.
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Two-coin model

Observations = TTHHTHTHH
States = 211122211
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Two-coin model

Observations = O = SSAASASAASSA

States = q = 312331111313

P1(T ) = P1; P2(T ) = P2; P3(T ) = P3

P1(H) = 1− P1; P2(H) = 1− P2; P3(H) = 1− P3

The ai s represent the probabilities of changing the coins when the toss is
made.
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Model of the ballot boxes with balls

There are N urns with M balls of different colors. A person randomly
chooses a ball from one of the urns and shows it, repeating this operation
several times. The entire process corresponds to an observable output of
an HMM.

O = {Green,Green,Blue,Red ,Yellow , ...,Blue}
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Elements of Hidden Markov Models (HMM)

Elements of HMM for discrete symbol observations.

1 N number of states in the model.
Although the states are hidden, for many practical applications there is
physical evidence for each of the states. Each state is denoted as
{1, 2, ...,N}, and the time in the state as qt

2 M, the number of distinct observations in each state, i.e., the
discrete-sized alphabet.
Observations correspond to physical outputs of the system being
modeled.
Individual symbols are represented as V = {V 1,V2, ...,VM}
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Model of the ballot boxes with balls

3 The probability distribution is of state change A = {aij} where

aij = P{qt+1 = j |qt = i}, 1 ≤ i , j ≤ N;

0 ≤ aij ≤ 1; ∀i , j

4 The probability distribution of the observed symbol, B = {bj(k)}

bj(k) = P[Ot = Vk |qt = j ], 1 ≤ k ≤ M

5 The distribution of the initial state π = πj

πi = P[q1 = i ], 1 ≤ i ≤ N
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Hidden Markov Models

The complete Hidden Markov Model (HMM) then requires the values of
N,M, the output symbols V and a specification of the probabilities A,B
and π. For convenience the following notation is used:

λ = (A,B, π)
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Basic problems of HMM’s

Problem 1:
Given the sequence of observations O = (O1,O2, ...,OT ) and the model
λ = (A,B, π), how do efficiently calculate the probability of the observed
sequence, given the model λ?
This problem is called the evaluation problem.

Problem 2:
Given the sequence of observations O = (O1,O2, ...,OT ) and the model λ,
how do you choose the optimal sequence q = (q1, q2, ..., qT ) that best
explains the given observations?
It is about finding the hidden variables in the model.

Problem 3:
How are the parameters of the model λ = (A,B, π) calculated that
maximize the p(O|λ)?
The procedure that maximizes the p(O|λ) is used to train the HMMs.
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Optimal sequence of states of an HMM

Given the observation sequence O = (O1,O2, ...,OT ) and the model λ of
an HMM, how do you choose the optimal sequence q = (q1, q2, ..., qT )
that best explains the given observations?
It is about finding the hidden variables in the model. One of the most used
algorithms to solve this problem is the Viterbi algorithm.
Trellis diagrams are used to visualize this algorithm.
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Applications of Hidden Markov Models in Robotics

1 Speech Recognition

2 Objects and Places Recognition

3 Robots Behaviors
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Single word recognition using HMMs

Each word is represented by a hidden Markov chain model, λi . For speech
signals, such as the one shown below:

The type of HMM to represent this type of speech signals is a left-to-right
one, as shown in the following figure.
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Single word recognition using HMMs

The block diagram for a single word recognizer using HMMs is shown
below.

Given the observation vector O = (O1,O2, ...,Ot , ...,OT ), obtained after
quantizing the speech signal, where each observation Ot corresponds to
the centroid index that most closely resembles the LPC vector of one of
the blocks of the speech signal, the probability pj = P(O|λj) is obtained.
The word i is recognized if:

i = argmax [P(O|λj)], 1 ≤ j ≤ M
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Keyword recognition spotting using HMMs
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Creating grammars with keywords using HMMs
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Introduction

The recognition and manipulation of every-
day objects represent a key challenge for
achieving proper operation of robotics.

It is desired that the training consume little
time, few computational resources and the
minimum of training images.

Robot Takeshi (Toyota Human Support Robot
[Yamamoto et al., 2018] ) viewing an object
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Proposal

In this work, we tackle this problem by es-
timating the object view dividing the space
around it in 4 possible areas Then, by taking
any image of the object it should be possible
to classify it as an image that belongs to one
of the feasible perspectives.

Top view of an object with its candidates pose

A sample of possible sequence
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Each model is defined by
λ = (A,B,π). (1)
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Development of the proposed architecture: Concatenation

The previous models are concatenated in order to form a new HMM for
each object. The news chains are re- trained.
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Development of the proposed architecture: Inference

Block diagram of the complete solution

Forward algorithm is used to predict the Object and the Viterbi algorithm
for the view sequence.



  

Introduction

● Localization for a service robot is of the 
utmost importance when it navigates in 
structured environments.

● At any given time, the mobile robot takes 
readings from its sensors, each of them 
subject to noise.

● The robots also make movements, also 
subject to errors.  



  

Introduction

● The sum of this errors over  time makes their 
position unreliable . Hence the need of 
estimating positions and the need of creating 
convenient environment  representations.

● Localization consists of estimating the location 
and orientation of a mobile robot given a map (or 
model) and sensor data. 

● In this work a stochastic model, Hidden Markov 
Models, is proposed for map representation of 
the environment where the robot navigates.



  

ViRBoT

● We have developed a system, 
named the VIRBOT, where 
operational algorithms for 
mobile robots can be tested.

The system consists of several 
layers that control the  operation 
of robots. 

● The Knowledge Management 
layer contains a Cartographer 
Module,  in which several 
map representations of the 
environment are available. 



  

● RAW MAPS        
        

● PROBABILISTIC MAPS
Using a Hidden Markov Model. ● TOPOLOGIC MAPS

● SYMBOLIC MAPS

Cartographer



  

Generation of the observable  
variable O

Laser Readings

● A lidar gives range 
distance from the 
sensor to nearby 
surfaces in different 
directions.

● An Mth order  vector is 
formed using  M laser 
readings.

     St = [rt
1, r

t
2 , … , rt

M ]



  

Generation of the Observations O
Using Vector Quantization

● Given a set of  range vectors, S,  a clustering 
technique, vector quantization, is used to find a 
set of centroids that best represent the vectors.

S1 = [r1
1, r

1
2 , … , r1

M ]

S2 = [r2
1, r

2
2 , … , r2

M ]

.

.

.

SJ = [rJ
1, r

J
2 , … , rJ

M ]



  

Generation of the Observations O

Ck  St

D(St,Ck) = min(D(St,Cj))

j = 1,…,Size Vector Quantizer

Ot = k

● With the set of centroids:

C = {C1, Ck,…,Cn}   

the observation O is found 

by finding the centroid Ck 

that best represent the input 

vector St = [rt
1, rt

2, … , rt
m ]

St = [rt
1, r

t
2 , … , rt

m ]



  

HMM Hidden Variable X

● The hidden random variable X represents the robot’s 
orientation.

● A λ
i
 HMM model is found for each region i in the 

environment. 



  

Training Behavior.
● Measuring Mode:

The robot rotates incrementing of 45° at a time until back to starting point.

● When the rotation is complete the robot enter in Reactive Mode.

● Reactive Mode:

The robot avoids obstacles with a max turning angle of 45°, every 
predetermined number  steps go to measuring mode.



  

Baum-Welch Algorithm

● Given an initial HMM λ=[A,B,π],  the goal is find an optimum λ 
that best represents the topological map that generates the set 
of observations O.

● The optimum HMM is found using the Baum-Welch algorithm. 
Given a number of training vectors, a λ HMM model is found, 
with the criterion to maximize  P(O| λ).



  

Forward Algorithm
● To find the region where the robot is, is by calculating the 
probability of  the regions’ model that most likely produced the 
observations: 

 

●This probability is too expensive to calculate directly ( order of 
Nt(ONt)), thus the Forward algorithm is used. 



  

X=Orientation, system overview.

● Once  a model is obtained from each region, 
localization is possible with the forward 
algorithm.

Sensors Vector 
Quantizer

Sensors

Forward

Algorithm.

Models

Database

Viterbi 
Algorithm

Symbol VT

Sensors 
readings ST

Model λ 

Model λ 

Symbol VT

Orientations 
Sequence XT.



  

X=Orientation.

● The  region is found by 
comparing which model 
most likely produced the 
observations.

● Once a model is 
chosen, the orientations 
sequence is obtained 
with the Viterbi 
algorithm. 



  

HMM For Regions

● Given a topological map of the environment 
an optimal node trajectory is found, using 
the Dijkstra algorithm, for going from a 
robot’s origin to a destination.

● Then the Viterbi algorithm is used to find the 
sequence of nodes most likely traversed.

● In this trajectory the robot makes a rotation  
to take readings at every 45° at each 
topological node.



Robot Behavior Using a FSM to Avoid Obstacles

The following figure shows an algorithn state machine (ASM) for an
obstacle avoidance behavior. The robot has two sensors in its left and
right side to detect obstacles.
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Discrete Hidden Markov Models for Robots Behaviors

In this work, we propose a probabilistic representation of a FSM through
HMM using a direct matching between the FSM inputs as observations in
the HMM, and the transitions from one state to another.
The following figures shows the deterministic FSM and its equivalent
stochastic FSM behavior of a robot that avoids obstacles while trying to
reach a light source:
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Discrete Hidden Markov Models for Robots Behaviors

Figure: Deterministic FSM. Figure: Stochastic FSM.

ICAART 2021 22



Discrete Hidden Markov Models for Robots Behaviors

At the end, the decision of moving to another state will also depend on
the probabilities of the observation symbols V , obtained from the sensory
data, as well as the observed symbol Ot at time t.
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Action Symbols

In our approach, we incorporate the outputs of the FSM as action symbols
attached to the states of the HMM. The action symbols are:
U = {U0,U1,U2,U3,U4,U5,U6,U7}, that is:
U = { stop, forward, backward, turn left (45◦), turn right (−45◦), turn
left and go forward, turn right and go forward and turn right twice (−90◦)
and go forward}
The following figure shows the structure of the HMM taking into
consideration the sensor symbols (FSM inputs) and the action symbols
(FSM outputs).
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Robot Behavior Using Markov Decision Process (MDP)

The following figure shows the complete enviroment where the robot
navigates and the observable enviroment with the robot’s sensors:

Figure: Complete environment. Figure: Observable environment.

In each state s the robot receives a reward for its actions, if the robot
reaches an state where there is not obstacle the reward is −0.04, if there is
an obstacle −1.0 and to reach a terminal state that represents the goal, it
receives 2.00.
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Robot Behavior Using Markov Decision Process (MDP)

Thus, for the previous observable environment, where the robot is positioned in row 3 and column 3, the following reward matrix
is generated, and even the goal is outside this frame it is positioned in the upper right part of the matrix:

Table: Reward Matrix

1 2 3 4 5 6

6 -0.04
� � �

-0.04 2.00

5 -0.04 -0.04
� �

-0.04 -0.04

4 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04

3 -0.04 -0.04 0.00 -0.04 -0.04 -0.04

2 -0.04 -0.04 -0.04 -0.04
� �

1 -0.04
� � �

-0.04
�
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Robot Behavior Using Markov Decision Process (MDP)

For each state s the robot can perform the following actions:
A(s) = { stop, forward, backward, turn left (45◦), turn right (−45◦), turn
left and go forward, turn right and go forward and turn right twice (−90◦)
and go forward}
For each of the actions A(s) there is a transition model probability matrix
P(s

� |s, a).
In the following example the robot is in the position (2, 2) and facing
north, if the command is to go forward the following table represents the
transition model probability:

Table: Transition Model Probability from Going Forward

1 2 3

3 0.100000 0.700000 0.100000

2 0.050000 0.000000 0.050000

1 0.000000 0.000000 0.000000
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Robot Behavior Using Markov Decision Process (MDP)

There are 8 transition model probabilities corresponding to each of the
actions that the robot can perform, with these an optimal policy is found:

Π∗
s = argmaxΠU

Π(s) = argmax(a∈A(s))
�

s�
P(s �|s, a)U(s �)

Where U(s) is the utility function:

U(s) = R(s) + γmax(a∈A(s))
�

s�
P(s �|s, a)U(s �)

The best U(s) is found solving the Bellman equation.
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Robot Behavior Using Markov Decision Process (MDP)

The following table shows an example of a movements’ policy Π:

Table: Movements’ Policy Π

1 2 3 4 5 6

6 � � � � → 2.00

5 � � � � � ↑
4 → → → � � ↑
3 � � � � � ↑
2 � � � � � �

1 � � � � � �
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