[Compall] [IEEE CAI] CFP: Workshop on Neural Architecture Search @ IEEE CAI [15 January, 2025]

Saúl Zapotecas Martínez szapotecas en inaoe.mx
Mar Dic 31 20:51:04 CST 2024


<We apologize for multiple postings. Please kindly disseminate this Call
for Papers to your colleagues and contacts>

Dear Colleagues,

On behalf of the  Workshop on the *IEEE CAI2025
<https://cai.ieee.org/2025/>* Workshop on Neural Architecture Search
<https://sites.google.com/view/ieee-cai-nas/> organizers, I would like to
send our best wishes to you and your family for a happy, healthy, and
prosperous New Year 2025!

We are inviting you to submit your research work to the *CAI2025
<https://cai.ieee.org/2025/>* Workshop on Neural Architecture Search
<https://sites.google.com/view/ieee-cai-nas/>.

We would appreciate it if you forwarded this CFP to the appropriate
communities.

=============

Call for Papers
-------------------------------
 Workshop on the *IEEE CAI2025* Workshop on Neural Architecture Search
-------------------------------
*IEEE Conference on Artificial Intelligence (CAI)*
<https://cai.ieee.org/2025/>
*May 5-7, 2025*
Venue - Santa Clara, California, USA
-------------------------------

*Scope*

Neural Architecture Search (NAS) is a powerful machine learning technique
that automates the design of neural network architectures instead of
manually defining the network's structure, such as layers, number of
neurons, and activation functions. NAS can discover innovative
architectures that surpass those designed manually, often resulting in more
accurate, efficient, or straightforward models. NAS  involves searching
through a predefined space of potential architectures to find the most
effective one for a specific task, such as image classification or natural
language processing. NAS aims to optimize aspects like accuracy,
efficiency, and model size, often using techniques such as:

*Reinforcement Learning*: Agents explore different architectures and learn
to improve designs based on performance feedback.

*Evolutionary Algorithms*: Inspired by natural selection, these algorithms
evolve architectures over successive generations.

*Gradient-Based Methods*: Utilize differentiable architecture
representations to optimize structures using gradient descent.

The goal of NAS is to reduce the time and expertise required to design
high-performing neural networks, making the process more efficient and
accessible.

*Topics of Interest*

The workshop will explore evolutionary NAS's latest advancements and
methodologies, focusing on its application across various domains such as
computer vision, natural language processing, and reinforcement learning.
It will cover theoretical foundations, search strategies, evaluation
techniques, and practical implementations, providing participants with a
comprehensive understanding of the NAS landscape. A broad range of topics
will be discussed, including but not limited to:

   1. Representation and Encoding of Neural Networks
   2. Development of Objective Functions
   3. Multi-Objective NAS
   4. Bilevel NAS
   5. Parallel and Distributed search algorithms for NAS
   6. Assessment Methodologies
   7. Interpretability and Explainability
   8. Theoretical Foundations of NAS
   9. Real-World Applications and Case Studies

*Submissions*

We invite submissions of the following types of papers: regular research
papers (up to 6 pages) and short position papers (up to 2 pages). Accepted
workshop papers are published in the conference proceedings in the workshop
section, available online via IEEE, and indexed by IEEE Xplore.

Important Dates

   - *Paper Submission Deadline*: 15 January, 2025
   - *Paper Acceptance Notification*: 1 March, 2025
   - *Final Paper Submission Deadline*: 7 March, 2025

The submission procedure, deadlines, and paper format follow the same
guidelines as the IEEE CAI'2025 main conference. Submissions must be made
via the IEEE CAI'2025 online system.

Organizers

--- *Saúl Zapotecas-Martínez* (szapotecas en inaoep.mx)
Computer Science Department
Instituto Nacional de Astrofísica Óptica y Electrónica, Tonantzintla,
Puebla, Mexico

--- *Alejandro Rosales-Pérez* (alejandro.rosales en cimat.mx)
Centro de Investigación en Matemáticas (CIMAT) Monterrey Campus

--- *Efrén Mezura-Montes* (emezura en uv.mx)
Artificial Intelligence Research Institute
University of Veracruz, MEXICO

-- 
Dr. Saúl Zapotecas-Martínez
Computer Science Department,
National Institute of Astrophysics, Optics and Electronics,
Luis Enrique Erro No. 1, Tonantzintla, Puebla 72840, MEXICO

szapotecas en inaoe.mx
https://ccc.inaoep.mx/~szapotecas/

-- 
==========================

AVISO DE CONFIDENCIALIDAD: Este
correo 
electrónico, incluyendo en su caso, los archivos adjuntos al mismo
pueden 
contener información de carácter confidencial y/o privilegiada, y se
envían 
a la atención única y exclusivamente de la persona y/o entidad a quien
va 
dirigido. La copia, revisión, uso, revelación y/o distribución de dicha
información confidencial sin la autorización por escrito del Instituto 
Nacional
de Astrofísica, Óptica y Electrónica (INAOE) está prohibida. Si 
usted no es el
destinatario a quien se dirige el presente correo, favor de 
contactar al
remitente respondiendo al presente correo y eliminar el correo 
original
incluyendo sus archivos, así como cualquiera copia de este. 
Mediante la
recepción del presente correo usted reconoce y acepta que en 
caso de
incumplimiento de su parte y/o de sus representantes a los términos 
antes
mencionados, este Centro Público de Investigación tendrá el derecho 
de reclamar
los daños y perjuicios que dicha vulneración le cause; asimismo 
se hace de su conocimiento
que el Instituto Nacional de Astrofísica, Óptica 
y Electrónica (INAOE) está
obligado a salvaguardar los datos personales que 
le sean proporcionados por
terceros, en los términos de la Ley General de 
Protección de Datos Personales
en

















Posesión



 de Sujetos 
Obligados.




AVISO DE PRIVACIDAD, En
cumplimiento con la Ley General de 
Protección de Datos Personales en Posesión
de Sujetos Obligados, al recibir 
datos de carácter personal a través de este
medio, se entiende el 
consentimiento expreso del titular de los datos
personales para utilizarlos 
en actividades propias del Instituto Nacional de
Astrofísica, Óptica y 
Electrónica (INAOE). Para mayor información, lo invitamos
a consultar el 
Aviso de Privacidad en nuestro portal: https://www.inaoep.mx 
<https://www.inaoep.mx>


DISCLAIMER: This e-mail,
including, if 
applicable, the files attached to it, may contain information of
a 
confidential and/or privileged nature, and are sent to the sole and 
exclusive
attention of the person and/or entity to whom it is addressed. 
The copying,
review, use, disclosure and/or distribution of such 
confidential information
without the written authorization of the Instituto 
Nacional de Astrofísica,
Óptica y Electrónica (INAOE) is prohibited. If you 
are not the intended
recipient of this e-mail, please contact the sender by 
replying to this e-mail
and delete the original e-mail including your 
files, as well as any copies
thereof. By receiving this email you 
acknowledge and agree that in case of
breach by you and/or your 
representatives to the above terms, this Public
Research Center will have 
the right to claim damages that such violation causes
you; also it is made 
of your knowledge that the National Institute of
Astrophysics, Optics and 
Electronics (INAOE) is obliged to safeguard the
personal data provided by 
third parties, under the terms of the mexican General
Law on Protection of 
Personal Data in the 

















Possession



 of Obligated
Subjects."





------------ próxima parte ------------
Se ha borrado un adjunto en formato HTML...
URL: <http://ccc.inaoep.mx/pipermail/compall/attachments/20241231/51081915/attachment.htm>


Más información sobre la lista de distribución Compall