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Abstract

Nowadays, graphs based knowledge discovery algorithms do not consider numeric attributes (they are
discarded in the preprocessing step or they are treated as alphanumeric attributes with an exact matching
criterion), with the limitation to work with domains that do not have this type of attributes or finding patterns
without numeric attributes. If we solve this problem for graph based algorithms; the knowledge discovery
in databases process will allow finding classification and descriptive patterns using numeric ranges. In the
classification task, if the algorithm does not deal with numeric attributes and one of them is the only one that
helps to distinguish among classes, it will not be possible to find the best model with the available attributes.
Opposite to this, if the algorithm possessed this capacity, it would be able to find the best model (if such a
model is considered in its hypothesis space). For the description task, the power of expression of the model’s
patterns would be increased, being able to get more understandable, complete, and descriptive models.

1 Introduction

Knowledge discovery in databases is the process used to extract previously unknown, non trivial, and
useful patterns from databases [6]. This information is extracted with advanced artificial intelligence and
statistical techniques. The success of knowledge discovery depends on several factors such as data prepro-
cessing and knowledge representation.

Data representation is one of the most important issues in artificial intelligence; it allows us to store
descriptions of abstractions about the world so that they can be used by computer processes. These rep-
resentations can then be used to describe what is known about a domain (a specific abstraction related to
a domain such as a geographical database, or chemical compounds). Usually, entities (such as a tree or a
house) are understood as objects, and objects are described through attributes (such as color, size, and so
on), and there are also relationships among these objects (i.e. the tree is in front of the house).

In this way, we can describe part of the world in space and time using an adequate representation. A
knowledge representation will also provide a mechanism that allows us inferring with the knowledge it
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stores. There are different knowledge representation schemes (i.e. logic, graphs, etc.) and there are different
ways to represent an object or a set of related objects using one representation (i.e. there are different ways
to represent an object using graphs). In this thesis we work with a graph-based data representation that is
described in the methodology section.

Different types of data (data belonging to particular domains) can be classified according to their type.
There are flat domains that are used to describe objects with a set of attributes. There are also sequential
domains that are described by a sequence of elements in a specific order; and finally, there are structured
or complex domains where a set of objects is described as flat structures but we also consider the existent
relations among some of these objects. These relations can be of different nature such as spatial, related to
time, or physical properties of the objects, among others.

Given the previous data classification, a flat (attribute-value) domain consists of a set of records related
to abstract representations of events and each event is composed of a set of specific values describing it
(attributes). Some flat domains can be observed in commercial and scientific systems, where the events are
stored in a database. Events can describe the employees of a company, the earthquakes in a specific area, or
animals belonging to a habitat.

A sequential domain is represented by a group of examples which are described by a sequence of values.
Examples of sequential structures that we can find in nature are related to molecular biology and biochem-
istry, such as DNA in the form of a sequence of nucleotides, amino acids, or proteins. Other examples of
sequential (although artificial) domains are human language and written music [31].

Considering the above mentioned, a flat domain might become structured if each object (or some objects)
are somehow related. Now we need to represent these relations. A straight forward way to represent these
relations is using graphs where objects can be represented by vertices and the relations between objects
are represented with edges. We can use labeled graphs to give a name to objects and their relations, for
example, we can use two vertices to represent a tree and a house respectively and an edge labeled with the
name of an existing relation between these two objects such as “in front of”. This is how we can represent
flat, sequential, and structural domains with graphs.

Recently, artificial intelligence techniques have become a tool to solve real world problems and the need
to represent real world domains has increased. Many interesting real world domains have an inherently
structured character for which we need to find data representations to effectively apply AI algorithms to
them.

We have now classified data domains as flat, sequential, and structural according to their properties. We
can also divide data domains according to the characteristics of the attributes describing their objects (and
relations for the case of structural domains). Using this criterion there are domains containing attributes
with nominal values, those that contain characteristics with continuous (numerical) values, and those that
contain both types of attributes, continuous and nominal.

In this sense, many algorithms have been developed to manipulate domains with these data types. As
an example, graph based systems have been used to work with flat, sequential, and structured data [4].
Graph-based algorithms have been successfully used with acceptable results with nominal valued domains.
Domains with continuous values are not appropriately manipulated by graph based knowledge discovery
systems although they can be appropriately represented. There has not been developed a graph based knowl-
edge discovery algorithm to deal with continuous valued attributes.

A solution proposed in the literature to approach this problem is the use of discretization techniques as
a pre-processing or post-processing step but not at the knowledge discovery phase, however; we think that
these techniques do not use all the available knowledge that can be taken advantage of during the processing
phase. Thus, adding the capacity of dealing with continuous values would be a great contribution to the area
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of graph-based knowledge discovery that would allow finding more precise patterns containing continuous
valued attributes in the form of numerical ranges.

In order to achieve this goal, we will carry out a study of different approaches to work with numerical
values to identify ideas that have worked satisfactorily in other applications and take advantage and use them
in our graph-based algorithms. We will study the use of different data representations, clustering algorithms,
discretization algorithms, algorithms for numerical numerical ranges manipulation, and attribute selection
algorithms. We will analyze all these ideas to be able to extract useful concepts for the creation of a graph
based algorithm able to handle numerical ranges.

2 Related Work

2.1 Discretization

Continuous values have important roles in data mining and knowledge discovery. These are created as
intervals of numbers which are more concise to represent and specify, and easier to use and comprehend
(as they are closer to a higher knowledge-level representation) than continuous values [32]. Data usually
appears in nature in a mixed format, as nominal and continuous attributes, as we describe below.

� Continuous values are in the domain of real or integer numbers such as temperatures that can be
categorized when we find a cut value to assign their values to the corresponding category (i.e. high or
low temperature). This process is also known as discretization.

� Nominal. Nominal attributes define categories according to their meaning (i.e. eyes-color: black,
blue, green, and brown).

Discrete characteristics coming from numerical data as in Temperature with the values high and low are
closer to a higher level data representation, which are reduced or simplified through the discretization pro-
cess. Dealing with discrete characteristics is easier, either for the classification or the description task.
Discretization makes the learning process faster and precise.

2.1.1 The Discretization Process

Discretization can be univariable or multivariable. Univariable discretization quantifies one continuous
feature at a time while multivariable discretization simultaneously considers multiple features [3]. The
discretization process consists of four steps:

¬ Sorting the continuous values of the feature to be discretized,

­ Evaluating a cut-point for splitting adjacent intervals or for merging them,

® According to some criterion, split or merge intervals of continuous values,

¯ Finally, stop at some point. In the following we discuss these four steps in more detail.

Sorting. The continuous values of a feature are sorted in either descending or ascending order. It is
important to speed up the discretization process by selecting suitable sorting algorithms.

Choosing a cut-point. After sorting, the next step in the discretization process is to find the best “cut-
point” to split a range of continuous values or the best pair of adjacent intervals to merge.
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Splitting/Merging. In a top-down approach, intervals are split while for a bottom-up approach intervals
are merged.

Stopping criteria. A stopping criterion specifies when to stop the discretization process. It is usually
governed by a trade-off between lower arity with better understandability but less accuracy and a higher
arity with a poorer understandability but higher accuracy.

There are numerous discretization methods available in the literature. These methods can be categorized
according to the way they work. These can be dynamic vs. static, local vs. global, splitting vs. merging,
direct vs. incremental, and supervised vs. unsupervised. We can construct different combinations of these
levels to group the methods.

Each discretization method found in the literature discretizes a feature by either splitting the interval of
continuous values or by merging the adjacent intervals. Both, the splitting and merging categories can be
further grouped as supervised or unsupervised depending on whether class information is used or not.

Choosing a suitable discretization method is generally a complex task and depends on the need and other
user considerations as well as the type of data that we want to discretize.

The discretization method can be used for the generation of numerical ranges since it is a very similar
process, it generates data groups that can be seen as data ranges, the disadvantage is that the discretization
process is used in the pre-processing phase; and the numerical ranges are not modified during the Data
Mining process as we propose in this work.

2.2 Clustering

Clustering consists in a division of the data in groups based on the similarity of the objects. It is often
used to describe a new groups of data, which can be assigned a new label. A process that finds few groups
loses details, but it simplifies the representation. We prefer few groups with a better discrimination power.

Groups are not necessarily similar among them (actually we want groups to differ as most as possible)
but sometimes there might be overlap among some of them.

Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into
groups (clusters), clustering is a difficult combinatorial problem .The steps of the clustering process can be
described as [25]:

¬ Data representation including the features extraction and selection steps.

­ Select a distance measure appropriate to the data domain.

® Select the clustering method.

¯ Select the type of data abstraction (i.e. method to label the groups/classes and choose the evaluation
measure for the created groups)

° Select the type of evaluation according to the task: classification or description.

Clustering algorithms are classified according to these criteria:

¬ The form in which the cluster is generated

­ The structure of the data

® The distance function used to create the groups
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The different types of clustering algorithms can be divided depending of how the data is processed [25].

¬ In the first division we have hierarchical versus partitioning methods. A hierarchical method, gen-
erates small groups that have a pattern and sequentially construct a binary tree. The binary tree
establishes a relation and the length between edges is the distance between the nodes. Partitioning
methods, initially group all the information in only one cluster and successively separates them until
each of them is isolated as an entity. They construct several partitions and evaluate them following
some criterion.

­ Agglomerative vs. Divisive: An agglomerative approach begins with each object in a distinct cluster,
and successively merges clusters together until a stopping criterion is satisfied. A divisive method
begins with all objects in a single cluster and splits them until a stopping criterion is met.

® Mono-variable vs. Poly-Variable: The poly-variable algorithms uses all features for the computation
of distances between objects, and decisions are based on those distances. A mono-variable algorithm
only considers one feature to divide the given collection of objects.

¯ Hard vs. Fuzzy: A hard clustering algorithm allocates each object to a single cluster. A fuzzy cluster-
ing method assigns an object degrees of membership to several clusters.

° Incremental vs. Non-incremental: This issue arises when the set of objects to be clustered is large,
and constraints on execution time or memory space affect the architecture of the algorithm.

In clustering, the characteristics of the object are considered to generate a set of groups, for which the
distances between objects are calculated (considering all object attributes). In our work we want to use
the clustering distance measures to generate our numerical ranges where each range would correspond to a
cluster and the cluster centroid is the central point of the range.

2.3 Graph-Based Algorithms and Knowledge Discovery

Graph-based data mining systems can be grouped according to the way in which the graphs are built
(these graphs are built using a finite search space usually defined by the input graph, more specifically the
input vertices and edges). The construction of these graphs is generally known as expansion, which can be
done using a candidate generation or a non-candidate generation approach.

During the non-candidate generation expansion process (gSpan [9]), the key problem consists in deciding
which vertex should be expanded. This decision is generally based on the number of occurrences (support
or number of instances) of the new substructure using the input graph. The idea is to successively expand
the vertex that has more instances until a substructure with the desired size (number of vertices and edges)
is found.

In the case of candidate generation expansion (Apriori [18], AGM [20], FSG [26], Subdue [15], and
SEuS [11]), a set of initial substructures to expand is first found (usually a set of substructures with only
one vertex, each vertex representing a unique label of the input graph) and then these are expanded (each
of these candidate substructures is expanded by adding an edge or and edge and a vertex). After that, the
candidate substructures are evaluated (using some evaluation metric as in the case of Subdue that uses the
MDL principle) in order to choose the best of them (for this, it is necessary to look for the instances of each
candidate substructure in the input graph).
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Both of these expansion processes (with or without candidate generation) use the input graph to search
for instances of the substructures to be evaluated. This step is generally based on graph matching functions,
which can be either exact or inexact.

An exact graph matching function (AGM [20], FSG [26], SEuS [11], Subdue [15], SI-COBRA [28])
determines if two graphs are equal (considering vertices, edges, and their structure). The process that verifies
the equality between two graphs is known as graph isomorphism [5], the process that verifies if a graph is
contained in other graph is known as subgraph isomorphism.

A graph isomorphism test (Nauty [27]) verifies for two given graphs A and B if there exists a one to one
mapping among the vertices and edges of graph A to the vertices and edges of graph B (a bijective function)
keeping the same structure. For the case of labeled graphs, the previous definition is extended to also verify
that the labels (in vertices and edges) are also equal.

The subgraph isomorphism test (Ullmann’s algorithm [34]) verifies for two graphs A and B, (where A
is smaller than B) if all the graph vertices and edges of graph A can be mapped to graph B (this means that
graph A is included in graph B), including identical labels either for vertices as for edges and keeping the
structure of graph A.

The inexact graph match [9] (Subdue [15], SI-COBRA [28]) is necessary when there exist small differ-
ences among the graphs being evaluated but the graphs can still be considered to match. These differences
can be found in the values of vertices or edges or in the structure of the graphs and can be due to domain
characteristics (the nature of the data, variations of the data) or to noise that could not be detected in a clean-
ing phase. Some of the graph-based algorithms described in this section are related to the apriori algorithm
described below.

2.3.1 The Apriori Algorithm

Apriori [18] is a method used to generate association rules, it generates candidates at each iteration from
the candidates created for the previous iteration. The idea consists of combining two candidates (graphs in
our case) of size n that share all their items (vertices in our case) but the last one to create a new candidate
of size n+1 with the idea that if the two candidates were frequent there is a high probability that the new
candidate will also be frequent. There is also the possibility of discarding (pruning) candidates that we know
will not be frequent (this frequency is measured with the number of instances of the candidate in the input
graph). The original apriori algorithm has been modified in different ways to run faster [18]. The candidates
generation used in apriori has also been used to create graph-based candidate generation algorithms such as
AGM [18] and FSG [26].

2.3.2 The AGM Algorithm

The Apriori - based Graph Mining (AGM) algorithm ( [18], [19]), is a proposal based on the Apriori
strategy, which uses adjacency matrices to represent the graphs. This algorithm tries to decrease the di-
mension of the expansion set (the set of candidates) introducing a linear order for the vertices’ labels of the
graph. Due to this representation, AGM only works with simple graphs (simple graphs do not allow neither
loops nor more than one edge between a pair of vertices) and only allows labels in vertices (not for edges).
The way in which AGM creates candidates is by combining two adjacency matrices that only differ in one
column or a row. Finally, the graphs (adjacency matrices) are evaluated according to their support in the
input graph.
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2.3.3 The FSG Algorithm

The Frequent Sub-Graph discovery (FSG) Algorithm [26] is also based on the candidates generation
approach. This method finds all the connected sub-graphs from a set of simple and not directed graphs (the
input graph with an adjacency matrix representation). It uses a stepwise expansion strategy, adding an edge
at a time. This algorithm calculates the frequency of each label and uses it to prune those candidate graphs
that will not have the minimum support without the need to verify it in the input graph.

As we mentioned AGM and FSG generate candidates by combining structures that were already identified
as frequent (in a previous iteration). They do this with the idea that combining these substructures will
produce a new one with a large probability to have the minimum support (number of occurrences). The
problem here is that there might be multiple ways to combine candidates to represent the same graph, which
takes extra processing time that can be reduced as shown in other methods such as gSpan.

2.3.4 SEuS: Identification of substructures using summaries

Structure Extraction using Summaries (SEuS) [11] is a graph-based algorithm which strategy consists of
avoiding the access to the database (the input graph) in order to determine the support of common structures.
It generates a set of summaries or abstractions of the graph, which are used for the generation and support
estimation of common structures. SEus is implemented in three phases. In the first phase it pre-processes
the database (input graph) to produce the summaries. In the second phase it generates a set of candidates,
which are obtained by expanding the common structures generated in the previous iteration (adding an edge
at a time). These expansions are done according to the summaries created at the beginning of the process,
which avoids accessing the original database. Finally, in the third phase it obtains the exact support of the
structures found in phase two. In this way, SEuS delays the access to the input graph until it finds a set of
promising structures. This algorithm uses an economic expansion process carried out from the frequencies
of each vertex and edge of the input graph. SEuS is able to find all the substructures of the input graph.

2.3.5 The gSpan Algorithm

gSpan [37] is another graph-based system that finds all the existing substructures from an input graph,
restricted to simple and non-directed graphs. This system uses a representation based on lists of codes,
which are expanded step by step according to the existing patterns of the input graph (this means that
it does not generate candidates). Each code of a list of codes represents the relation vertex-edge-vertex.
The lists are called DFS (Depth First Search) codes, which are expanded by adding an input vertex at
the time. The expansion is directed by a set of rules, which restrict the type of edge that can be added
using a depth first search. The lists of codes that represent our graphs will be used to compare them and
obtain common substructures. However, even with the construction rules, it is possible to obtain several
DFS codes that represent the same graph. This is why gSpan adds a lexicographic order to the set of DFS
codes and chooses the lowest to represent the graph. These are the codes that are finally used to identify
common substructures. This strategy has several advantages that make the comparison among graphs faster
(besides, it does not generate candidates and implements pruning routines) but its main disadvantage is that
it repeatedly accesses the input graph.
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2.3.6 Multivariable Discretization by Recursive Supervised Bipartition of Graphs

In our search for related work we found an algorithm for multi-variable discretization that works with a
graph-based data representation. In this research by Sylvain Ferrandiz and Marc Boullé [8] they presented
a supervised, local, static, multi-variable and weakly biased graph partition algorithm. They propose an
evaluation criterion of bi-partitions, which is based on the Minimum Description Length (MDL) principle
and apply it recursively. This is an example of how it is possible to apply multi-variable discretization using
the properties of the graph that they build.

For the uni-variable case, they first consider the frequencies of each label of each class in a different
interval, and with this information they sort the labels of each class. To determine the information gain, they
use Shannon’s entropy, to sort the classes labels.

For the multi-variable case, they sort the data, and for each variable they create groups that represent the
intervals by means of the uni-variable process and later they calculate the entropy of each interval. For this
case it is necessary to consider a distance measure between two sequential labels to determine if they are
adjacent, they use the Gabriel distance measure (in the method to obtain the Gabriel adjacency measure,
a circle which perimeter touches both points A and B is drawn), which is the minimal number of edges
necessary to connect two sequential labels. The way in which they handle the properties of the graph, based
on the MDL principle is a good idea, though the authors do not directly work with the graph, they use the
graph properties to define a discretization metric.

2.3.7 Subdue

Subdue is a graph-based knowledge discovery system developed at the University of Texas at Arlington
by the machine learning group [14]. Subdue has been successfully used in different structural domains
such as DNA [7]. The input graph to Subdue is a graph that represents objects and their attributes with
labeled vertices and edges, vertices labels give names to these objects or their attributes. Relations between
objects and relations among objects with their attributes are represented by labeled edges, where the label
determines the name of the relation. This allows us working with any domain that can be represented with
graphs.

Subdue’s evaluation model decides which patterns are going to be chosen as important. For this, Subdue
implements two evaluation criteria.

The first evaluation method is called “Minimum Encoding” , which is a variant of the minimum descrip-
tion length principle (MDL) introduced by Rissanen [30]. This method chooses as best substructures those
that minimize the description length metric that corresponds to the length in number of bits of the graph
representation. The number of bits is calculated based on the size of the adjacency matrix representation of
the graph. According to this, the best substructure is the one that minimizes I(S) + I(G

�
S), where I(S) is

the description length of the input graph and I(G
�
S) is the number of bits required to describe graph G after

being compressed by substructure S [13].
The second method chooses the best substructures according to how well they compress the graph in terms

of their size in number of vertices and edges. Subdue uses a computationally constrained beam search. The
search begins with the substructures matching a single vertex in the graph. Each iteration, the algorithm
selects the best substructure and incrementally expands the instances of the substructure in all the possible
ways. The evaluation of each substructure is determined by how well the substructure compresses the input
graph according to the heuristic being used (MDL or Graph Size). The best substructure found by Subdue
can be used to compress the input graph, which can then be input to another iteration of Subdue.
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Subdue is also able to perform the concept learning task and this version of the algorithm is known as
SubdueCL [12]. SubdueCL accepts a set of positive and negative examples as its training set and uses
a set covering approach to find substructures that describe a sub-set of positive examples but not negative
examples. Then, the algorithm learns a set of rules in DNF [16]. Each iteration, SubdueCL chooses the
substructure that covers a large number of positive examples without covering negative examples (mini-
mizes the number of negative examples covered). The positive examples covered by a substructure are then
removed from the training set and the process is repeated with the rest of the examples until all the positive
examples have been covered.

The MDL Heuristic
Subdue’s heuristic for evaluating substructures is based on the Minimum Description Length (MDL) prin-
ciple, which states that the best theory to describe a data set is that theory which minimizes the description
length of the entire data set. The concept’s description length is the number of bits in the bit string.

This compression is calculated as [4]:

�	��

�����������������������! #"%$&�����!' �  #"
�����!'(" (1)

where DL(G) is the description length of the input graph, DL(S) is the description length of the substruc-
ture, and DL(G

�
S) is the description length of the input graph compressed by the substructure. Subdue has

a way to deal with an inexact matching in vertices and edges.

Inexact Numeric Label Match
Labels may represent numeric values in this case, the graph match algorithm is modified to allow some
variation in these values for the corresponding vertices and edges labels.

The three allowed options are [2]:

¬ Exact Match: Label X matches another label Y if X = Y.

­ Tolerance Match: Label X matches Y if the absolute value of their difference is less than t, a threshold
parameter.

® Difference Match: MatchCost(X, Y) is defined as the probability that Y is drawn from a probability
distribution with mean of X and standard deviation defined in the input file.

When Subdue is run on input graphs with numeric labels, these parameters are used to decide when two
numeric labels can be considered to match. The previous options are a very good approximation to the
non identical comparisons of the labels, but they have not given good results because they need domain
knowledge (from a human expert) to be able to choose the ideal parameters so that subdue can find useful
substructures.

Post-processing of Numeric Patterns
This is a post-processing method applied by Subdue when it prints the discovered substructures. For each
discovered substructure it finds all its similar instances with small variations in their labels (either in edges
or vertices). These local numerical ranges are given by the variations of the values of the discovered sub-
structures.

Subdue creates a substructure definition for each discovered pattern, these substructures definitions need
to provide the range of values covered by instances of the substructure in the graph [22].
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This method is an excellent solution to join the substructures found (substructures that slightly differ in
their numerical labels can be represented by a numerical range for each of those numerical labels). This
variation of the labels is local because they fix part of the substructure and find variations of the leaf nodes
that correspond to numerical labels (for each different attribute of the substructure); this process works bet-
ter when the labels are identical. This differs from our proposal because we will use numerical ranges to
discover new substructures (during the processing phase).

Clustering
Subdue was extended to perform the clustering task, this version of Subdue is called SubdueGL, which
constructs a hierarchical lattice of clusters, the substructure discovered after each iteration comprises a
cluster [23]. This cluster is inserted into the classification lattice and used to compress the input graph. The
compressed graph is passed again to Subdue to find another substructure. This iteration allows Subdue to
find new substructures defined in terms of previously discovered substructures.

In order to find the cluster in the input graph, it uses the variable concept, which is described in the fol-
lowing section.

Variables
A variable is a label that can be a vertex or an edge. The first step towards discovering variables is discov-
ering commonly-occurring substructures, since variability in the data can be detected by surrounding data.
If commonly occurring structures are connected to vertices with varying labels, these vertices can be turned
into variables [24].

SubdueGL discovers variables inside the ExtendSubstructure search operator. As mentioned before, Sub-
dueGL extends each instance of a substructure in all possible ways and groups the new instances that are
alike. After this step, it also groups new instances in a different way. Those that were extended from the
same vertices by the same edge in all instances, regardless of what vertices they point to, are grouped to-
gether [21]. Let (v1, e, v2) represent edge e from vertex v1 to vertex v2. Vertex v1 is part of the original
substructure which was extended by e and v2. For variable creation, instances are grouped using (v1, e, V),
where V is a variable (non-terminal) vertex whose values include the labels of all matching v2.

The previous concepts (clustering, and variables) used by SubdueGL to find substructures, differ from
our proposal because the variables are considered local to the substructure discovered at each iteration. We
will work with dynamic numerical ranges at each iteration that consider all the values of each label in that
iteration (the input graph of each iteration is different because of the graph compression or set covering
approach being used) to generate the numerical ranges sets, additionally in our work we will implement new
metrics that consider comparisons between numerical ranges and between numerical ranges vs numerical
values.

2.3.8 Analysis

Currently, Subdue is able to perform many tasks but it can be enhanced to work with real world domains
containing mixed data (nominal and continuous), to find interesting and unknown patterns (substructures
that include dynamic numerical ranges), for the tasks of classification and concepts description.

For this work we will use the minimum description length MDL evaluation heuristic, because it has given
significant results, and it does not need from domain knowledge to work properly. This evaluation heuristic
considers that the best substructure (pattern) is the one that better compresses the input graph. Up to now we
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have not considered a modification of this evaluation heuristic, but we might need to do it. In addition we are
considering that the numerical ranges generated should be used either for the concepts description (MDL)
as for the classification task (Set Covering). Therefore, we might also need to modify the set covering
evaluation measure.

We also need to consider a modification to the subgraph isomorphism algorithm used inside the substruc-
tures search process, because the substructures (patterns) will have numerical ranges. This modification will
be used for the comparison of these new type of numerical labels.

The inexact numerical label match of subdue will not be used in this work, it will be replaced with the
numerical ranges handling that we propose. We decided to replace it because as we described before, it is
difficult to use due to the need of domain knowledge to choose subdue’s input parameters. It is very difficult
to find the right parameters that make subdue find interesting substructures.

We cannot use the current Subdue’s comparison functions in our implementation for the numerical ranges
handling, because at each new iteration we will have new labels that correspond to our numerical ranges,
which will be compared with other numerical ranges, or with a numerical label. Then, it is necessary to
implement a new comparison function, which must consider the points exposed in the methodology (com-
parisons between numerical ranges, between numerical labels and between numerical labels and numerical
ranges).

Subdue has an implementation to perform the conceptual clustering task (SubdueGL). This implementa-
tion uses a post-processing of the substructures (when it prints the found substructures) which is used to join
the substructures that belong to the same cluster (based on local values of the variable), using the concept
of variables discovery, in which a range of possible values can arise for each variable. These substructures
are then given to Subdue as predefined substructures to find their instances. This implementation allows
finding substructures with small variations in their labels, grouping them in a cluster, which allows the clus-
ter to grow in a post-processing phase (local to each variable) and therefore, it involves a new search of
the substructures. This consumes time and resources, because the substructures that will be expanded are
substructures that were already found and Subdue will not discover new knowledge.

As we can see, this work differs with others because we consider numerical ranges during the search of
the substructures (in the processing phase), not as a data post-processing, in such a way that the discovered
substructures may contain numerical ranges labels. The numerical ranges used at each iteration are dynamic
(regenerated in each iteration), which must generate better substructures (more useful for the classification
task), which involves an extension to the Subdue algorithm.

Although decision trees are not a graph-based algorithm we will use them to compare the results of our
graph-based algorithm. Its is important to note that the graph based algorithms described before are not able

Method Type of Graph Type of Expansion Complete Available Code Numerical Attribute
AGM Simple (no)directed Generation of candidates No No No
FSG Simple label (no)directed Generation of candidates Yes No No

gSpan Simple no directed No generation of candidates Yes No No
SEuS Simple label (no)directed Generation of candidates Yes No No

SUBDUE General Generation of candidates No Yes No

Table 1. Graph-Based Algorithms.

to deal with numerical attributes without using a discretization during a preprocesing phase.
Table 1 shows a summary of the characteristics of the graph-based algorithms described in this section

according to the type of graphs that they use, the type of expansion that they follow, whether they are
complete or not, if there is code available to be able to compare with them and finally we show if they are
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able to deal with numerical attributes. As we can see from this table, none of these graph-based algorithms
currently deal with numerical attributes in the way we described.

2.4 Decision Trees

Decision trees are one of the most popular methods used for inductive inference. They are robust for
noisy data and capable of learning disjunctive expressions. A decision tree is a k-ary tree where each of the
internal nodes specifies a test on some attributes from the input feature set used to represent the data. Each
branch descending from a vertex corresponds to one of the possible values of the feature specified at that
vertex. The basic algorithm for decision tree induction is a greedy algorithm that constructs decision trees in
a top-down recursive divide-and-conquer way. C4.5 [29] builds a decision tree using the standard TDIDT
(top-down induction of decision trees) approach, recursively partitioning the data into smaller subsets, based
on the value of an attribute. At each step in the construction of the decision tree, C4.5 selects the attribute
that maximizes the information gain ratio. The induced decision tree is pruned using pessimistic error
estimation.

The decision tree algorithm usually uses an entropy-based measure known as “information gain” (al-
though other measures are also possible) as a heuristic for selecting the attribute that will best split the
training data into separate classes. C4.5 algorithm computes the information gain of each attribute, and in
each round, the one with the highest information gain will be chosen as the test attribute for the given set of
training data. A well-chosen split point should help to split the data to the best possible extent.

We use this algorithm to compare our graph-based classification results when we use numerical ranges
(static and dynamic).

3 Proposal

3.1 The problem

Graph based algorithms have been used for years to describe (in a natural way) flat, sequential, and
structural domains with acceptable results [13]. Some of these domains contain important numeric attributes
(attributes with continuous values). Although these domains can be represented with graphs, the algorithms
that processes them do not treat these attributes in a special way and due to this, graph-based classification
algorithms do not obtain results as effective as other algorithms that are able to deal with numeric attributes
(such as the C4.5 [29] classification algorithm that although it does not work with structured domains, it
does manage numeric attributes for flat domains). If we are able to provide graph-based algorithms with the
capability to handle numerical ranges, we will be able to work with structured domains containing numeric
attributes and in this way it could be possible to improve the classification accuracy and the descriptive
power of the patterns found with graph-based algorithms for structured domains.

3.2 Motivation

In some research areas such as data mining and machine learning, the domain data representation is a
fundamental aspect that determines in great measure the quality of the results of the discovery process. Then,
when a domain can be represented in multiple ways, we need to find the best one through experimentation.
Depending on the domain, the Data Mining process analyzes a data collection (such as files, log files,
relational databases, etc.) to discover patterns, relationships, rules, associations, or useful exceptions to be
used for decision making and for the prediction of events and/or concepts description.
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Selecting the Data Mining algorithm to use for a specific domain is another important task, there are
several factors in consideration such as the knowledge representation we need to use because of the nature
of our data (as we mentioned, it can be flat, sequential, or structured), the Data Mining task that the algorithm
approaches (such as classification, association rules, or summarization), and the data types (such as nominal,
binary, or continuous valued) of the involved attributes so that the algorithm can thoroughly analyze the data.
Then, we need to carefully study the Data Mining algorithms and data characteristics in order to take a good
decision when choosing an algorithm to work with. If we select several algorithms, we choose the best one
through experimentation or we may end using several of them. On the other hand, we also need to choose
one or several representations and experiment over them to select the best one.

This mainly happens when working with structured domains. It is here where we want to center our
research, providing graph-based algorithms with the capacity to deal with numeric attributes.

Numeric values, as any other attribute type, play an important role in the data mining and knowledge
discovery process. These are usually generalized as numerical ranges when finding patterns and these can
be represented in different ways to be used by knowledge discovery algorithms.

In our work we use graphs as our data representation. This decision was taken because of the easiness
and flexibility that graphs provide as a way to describe structured domains. These structured domains,
as expected, contain attributes with numeric values, but graph-based algorithms do not treat these numeric
characteristics in a special way because they are considered as alphanumeric labels [21] (they do not identify
that number 2.1 is similar to 2.2 and takes them as totally different values). This is the reason why these
algorithms do not obtain so rich results as other algorithms that manage numeric attributes in a special way.

3.3 Justification

Up to now, graph based knowledge discovery algorithms do not consider numeric attributes (they are
discarded in the preprocessing step or they are treated as alphanumeric with an exact match criterion), with
the limitation to work with domains that do not have this type of attributes or finding patterns without nu-
meric attributes. If we solve this problem for graph based algorithms; the knowledge discovery in databases
process will allow finding classification and descriptive patterns using numerical ranges.

In the classification task, if the algorithm does not deal with numeric attributes and one of them is the only
one that helps to distinguish among classes, it will not be possible to find the best model with the available
attributes. Contrary to this, if the algorithm possesses this capacity, it would find the best model (provided it
is considered in its hypothesis space). For the description task, the power of expression of its patterns would
be increased, being able to get more understandable, complete, and descriptive models.

3.4 Hypothesis

Does the manipulation of numeric data for graph-based data representations in graph based knowledge
discovery improves the predictive / descriptive capacity of the discovered patterns in comparison with the
results reported in the literature for other graph based algorithms?

Would adding graph-based algorithms with the capacity to deal with numeric attributes allow them finding
numeric patterns that are more understandable, and descriptive for the user when working with structural
domains with mixed data types?

3.5 General Objective

Provide a graph-based Data Mining algorithm with the capacity of dealing with numeric attributes.
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3.5.1 Particular Objective

¬ Extend a sub-graph-isomorphism algorithm to be able to deal with mixed attributes (continuous valued
attributes)

­ Create an algorithm for the generation of numerical ranges to feed a graph-based data mining tool that
deals with continuous attributes.

® Decide if we will use a candidate generation or non-candidate generation graph-based data mining
algorithm.

¯ Extend the selected graph-based data mining algorithm to deal with numeric attributes using the ex-
tended sub-graph-isomorphism and the numerical ranges generator algorithms.

¬ In case of working with a Candidate Generation Algorithm

¬ Extend the graph-based data mining algorithm to be a single-variable (only considers one
numeric variable)

­ Extend the single -variable algorithm to be multi-variable

­ In case of working with a non-Candidate Generation Algorithm

¬ Extend the graph-based data mining algorithm to deal with multiple variables

° Create or use an attributes selection algorithm to choose the continuous attributes to be used in the
graph-based data mining process.

± Extend the graph-based algorithm with the capability of multi-variables numerical ranges handling
with attributes selection, during a pre-processing phase.

² Extend the graph-based algorithm with the capability of multi-variables numerical ranges handling
with attributes selection, during a processing phase.

³ Extend the graph-based algorithm with the capability of multi-variables numerical ranges handling
with attributes selection, during a post-processing phase.

3.6 Scientific Contribution

The main contribution of this work consists of the creation of a graph-based representation for mixed data
types (continuous and nominal) and also the creation of an algorithm for the manipulation of these graphs
with numerical ranges for the data mining task (classification and description). In order to accomplish the
previous contributions, we need to extend a sub-graph isomorphism algorithm to give it the capacity to
handle numeric attributes by means of numerical ranges.

Achieving the previous contributions will make us able to create a graph-based algorithm able to handle
numeric attributes for the classification and description Data Mining tasks. This will also allow working
with domains represented with graphs containing numeric attributes in a more effective way.
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4 Methodology

In order to add to the graph based knowledge discovery system Subdue the capacity to handle numerical
ranges, we propose a graph-based data representation (for this example of a flat domain we use a star graph
but we will also work with structural domains), as we show in figure 1 for the attributes “Temp” with a
value of “4.5” and “Hum” with a value of “3.2” , in which the vertex labeled as “Exa” is in the center of
the graph and the attributes describing the example identified by vertex “Exa” are represented with vertices
linked to it. We need to extend this representation to allow the use of numerical ranges as we show in figure
2 where attribute “Temp” now may have a value between “3.8” and “9.5” representing the range [3.8, 9.5]
and attribute “Hum” may take values between “3.0” and “4.7” for the range [3.0,4.7]. It is important to note
that having a graph-based data representation that allows using numerical ranges also needs as complement
an algorithm that manipulates it for the description and classification tasks that we consider in this work. It is
necessary to implement the corresponding graph operations (such as the subgraph-isomorphism algorithm)
needed for the discovery phase. For the knowledge discovery task, we need to be able to manipulate data

Exa 4.5
Temp

Yes

3.2

Wind

Hum

Figure 1. Vertices with Numerical Labels.

Exa
3.8
9.5

Temp

Yes

3.0
4.7

Wind

Hum

Figure 2. Vertices with Numerical Ranges.

with numerical ranges whether the domain is flat or structured. For this, we need to:

� Discover the occurrences of the substructures that contain numerical values.

� Identify those interesting substructures (for the user) that contain numerical values.

Since we look for regularities in the data, for the nominal attributes case, the problem consists of finding
a model that describes the classes using the attributes values of the description. For numerical data the
problem consists of finding a set of numerical ranges for each continuous variable such that these numerical
ranges help to describe the class attribute.

For the classification task, if the algorithm does not handle numerical attributes and these are the attributes
that better help to distinguish between the classes, then it is not going to be possible to find the best model
given the available attributes, opposite to this, if the algorithm has this capacity, it is going to find the best
model (if it belongs to its hypothesis space).

For the description task, the power of expression of the found patterns would be increased, obtaining
understandable and descriptive models.

Dealing with numerical attributes is a complex task because of different reasons such as:

� The number of different values for continuous variables is infinite, which is almost always known by
the user.
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� A single domain may contain several continuous attributes.

� It would be good to consider the dependence or independence among the continuous attributes of a
domain.

� It would also be good to consider the dependence or independence of the classes with the continuous
attributes.

Given a continuous variable, there are different ways to generate numerical ranges from it (different ways
to discretize it), the selection of the best set of numerical ranges (obtained with a specific discretization
method) is based on its capability to accurately classify the dataset.

The evaluation algorithm must have the property of finding the lower possible number of cut points that
generalizes the domain without coming to specialization. The problem now consists of finding the borders
of the intervals and the number of intervals (or groups) for each numerical attribute.

Another problem that we have to consider is that there are databases with thousands of records and each
of these records has many attributes (more than 20), then we may have storage space and execution time
problems. Here the trivial process becomes complicated because of the quantity of data to process.

The most effective way of solving this is to consider subsets of information and attributes selection, in
order to generate representative subsets of data for the domain. It is also necessary to think that most of
these large databases have missing data, some of these records do not contain values for all their attributes,
and many of these values can be erroneous, considered as noise.

Considering all these characteristics, our methodology for the numerical ranges handling is based on the
knowledge discovery process and we focus in the graph-based data mining algorithm Subdue to implement
the proposed solution. Figure 3 shows a modification of the knowledge discovery process so that it shows the
methodology that we will follow in this thesis, and focus in describing details of our graph based approach
(shows how we are going to solve the objectives of this thesis). In the data mining section we try with three
schemes, which depend on where we are going to introduce the numerical ranges to Subdue. Figure 4
shows the scheme in which we use data pre-processing and later we apply the Subdue data mining algorithm
and finally we evaluate the found substructures, this is similar to the discretization process.

Figure 5 shows the scheme in which we apply a postprocessing step, to find more instances of the reported
substructures, this is similar to the work performed by SubdueGL (reported in the section of related work),
but we are going to generate different sets of numerical ranges for each attribute (this is a proposal for the
generation of numerical ranges), and later we evaluate which numerical ranges set find more instances and
increase the accuracy of the final model. Figure 6 shows the scheme in which the generation of numerical
ranges is performed during the data mining process, to generate dynamic numerical ranges that can find
better patterns during the substructures expansion and search processes.

A very important part of our work is related to the Subdue system, which will be extended to deal with
numerical ranges. Figure 7 shows how Subdue works, it receives an input graph (or set of graphs) and it
looks in it for the best substructure in each iteration, the search process is described in more detail through
figure 8.

When Subdue finds the best substructure it compresses the input graph by substituting the best substruc-
ture instances with one vertex, this process is also explained with more detail in the following paragraph,
Subdue reports the best substructure and depending on the input parameters it continues with a new iteration
until a termination condition is reached or the graph can not be further compressed. The processes described
below are more detailed because the work of this thesis is directly related with them. Figure 8 describes the
part of the algorithm that searches for the best substructure and the part that compresses the graph.
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Figure 3. General Methodology of the Thesis.
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Figure 4. Working with Numerical Ranges during a Preprocessing Phase.

Inside the graph compression process, the algorithm applies a subgraph isomorphism test which has three
evaluation methods to determine when two sub-graphs are considered to match, the selection of the method
to use is given by the user through parameters. We need to modify this process to perform an inexact graph
match able to considerer sub-graphs that could have in their labels the generated numerical ranges, this
comparative process will include the following considerations:

¬ The basic comparisons (i.e. nominal labels, nominal vs numerical).

­ Comparisons between numerical labels and a range, to determine if a numerical label is covered by
the range.

® Comparisons between two numerical ranges, due to the fact that there exist different ways of generat-
ing numerical ranges some methods could generate numerical ranges that are included in another, or
numerical ranges with some intersection, or disjoints.
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Figure 6. Working with Numerical Ranges during the Data Mining Processing Phase (Dynamical
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Figure 8 shows the process to search for the best substructure, in this section we need to add Subdue the
capability to generate numerical ranges, then we will modify the “Expand substructures” module to consider
the numerical ranges at the moment to perform the search. Once we have generated the numerical ranges
using the six techniques that we describe at the end of this section we will determine which of them will be
used. We will first try giving all of them to Subdue and let it decide through its evaluation process which of
them will be selected in its substructure selection process or we could eliminate some of them according to
a criterion such as entropy or overlapping among them.

In the following step Subdue generates a substructure from each unique label contained in the input
graph including the new generated numerical ranges, in such a way that now, those unique labels, may be
numerical ranges.

The following step consists of the expansion in the initial substructures. Traditionally, Subdue expands
each substructure by adding an edge (for substructures containing at least two vertices) or an edge an a
vertex. Now this expansion may connect a substructure with a vertex with a numerical range.

We now order the substructures by their number of instances. The substructure with more instances will
be considered as the best. We then evaluate the substructures.

After we evaluated our substructures they are ordered (according to the used evaluation method). It is
important to note that Subdue may use two main evaluation methods. The first uses the MDL principle
to compress the graph (which works as an unsupervised version) and the other works with a set covering
approach (supervised), then there are two ways in which the substructures can be ordered. The ordered
substructures are stored in a list and we reject those that do not satisfy the input parameters (such as the
beam size). Subdue uses a beam search algorithm. The default value for the beam is 4 but it can be modified
in the input parameters.

When the termination condition is reached the best substructure is reported and used to compress the
input graph to be used in the next iteration.

In figure 9 we show the process to evaluate a substructure with Subdue. The evaluation method is given
to Subdue as an input parameter, it can be MDL, Size, Set Cover, and probably the modification to MDL
that we might add.
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Figure 7. Subdue’s General Process with Numerical Attributes.

Subdue reports a value that tells us how the best substructure performed with the specific evaluation
method used and its number of instances. It stores the substructure in a list of best substructures (limited by
the beam size and ordered by the evaluation value).

For our modified MDL evaluation, Subdue will find the substructure instances in the input graph and
calculate its MDL value as if this substructure were used to compress the graph (the input graph is not
really compressed until the best substructure is found, this is just a temporal processing used to evaluate
substructures).

For the numerical ranges creation (as shown in figure 9) we will implement several techniques to generate
numerical ranges. These are based on the nature of the data. We will later describe the numerical ranges
generation block included in figure 8.

The idea is to implement several techniques for the generation of numerical ranges, these techniques must
be used in the substructures expansion process and we also need a comparison heuristic (match between
numerical ranges or a numerical range with a numerical label).

At this moment the numerical ranges are created statically (we generate them outside Subdue, as a pre-
processing step) and we want to incorporate this process within Subdue, we will show in our preliminary
results, evidence that tells us about the improvements that can be achieved through the dynamic creation of
numerical ranges. Currently we are trying modify Subdue to add the new numerical ranges heuristic.

The difference between these two algorithms is that the first algorithm considers frequency histograms
to generate centroids and the other algorithm sorts the values (a modification radix sort) and groups them
according to their proximity. The distance between the values is calculated by any of six methods. We
have six ways of calculating the distance between a set of elements, these distances are, a modification to
the Tanimoto distance [17], a modification of the Euclidean distance [35], a modification to the Manhattan
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Figure 8. Modification to the Subdue’s Process to Search for the Best Substructure using
Numerical Attributes.

distance [10], a modification to the Correlation distance [33], a modification to the Camberra distance [36],
and a new distance that we propose.

Because of space restrictions, we only show the numerical ranges generation algorithm (using frequency
histograms), which can calculate distances using any of the six measures mentioned before.

NumericalRangesHandlin-2(classes, method, attributes, objects, neighbors)
listhistogram = null
while classes ) 0

while attribute ) 0
listhistogram = histogramfrequency(attributes, objects)
ratio = minimum distance between values of the listhistogram
distance = distanceMethodoour(method, classes, listhistogram)
threshold = distance * ratio
for N = 1 to listhistogram

centroide = listhistogram[N]
for T = 1 to listhistogram
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K = * centroide - listhistogram[T] *
if K + threshold

newcentroide = , -/./0214365�7 89.6:�; 7 </1>=�7 </1 5!?936@�ACB D�E FG
if newcentroide H listhistogram

listhistograminstance add + 1
else

listhistogram add newcentroide
listhistograminstance add + 1

K = 0
fusion (listhitogram)

attribute = attribute - 1
classes = classes - 1

Figure 4.10: Numerical Ranges Generation Algorithm, (“Generated Ranges” from figure 4.8)

The algorithm shown in figure 4.10 works as follows. We First sort the data for each variable (in ascending
order for attributes values), for this we use a modification of the radix sort algorithm. We then calculate the
histogram of possible values, at worst all the values of this histogram will have frequency of one. We look
for the shortest distance between two values, which will be constant K. Distances from the centroid are
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calculated to all neighbors based on the standard deviation. The ratio is the multiplication of the standard
deviation modified by constant k (shortest distance between two data elements).

The neighboring values were grouped considering a metric based on the vicinity of the numerical values.
A new centroid is calculated based on the neighbors added to the range. We incorporate to this range all
the neighbors which have a distance shorter or equal to the calculated ratio. We then generate again the
histogram of frequencies. The highest peaks of frequency are selected to consider them as centroid (central
trend for regions). Based on the neighboring heuristic we calculate the limits of each range of numbers (each
range corresponds to a centroid) which is our new range, (this can be seen as a modification of the k-means
algorithm).

Since we have six ways to calculate the distance between numerical values, we also have six ways to gen-
erate numerical ranges. Using each of these distance measures we can generate different sets of numerical
ranges for the same numerical data.

For the evaluation of our work we will compare our work with the C4.5 decision trees algorithm. We will
not be able to compare with other graph-based algorithms because those implementations are not available
(although we will try again to obtain them). Our preliminary results are presented in next section.

5 Results

The idea of this thesis is to add to the graph based knowledge discovery system Subdue the capacity to
handle numerical ranges. The experiments were done with the data representation for numeric attributes
(attributes with continuous values) that we are designing.

In this section we present the most significant results for the set of experiments mentioned in the previous
section.

Our experiments are oriented to show that by means of the proposed methodology, the objectives of this
research work are feasible to reach. These experiments can be divided in two sets, according to the data
mining task.

� The first task is related to the concept description process and

� The second task consists of the classification process.

This thesis focuses in the numerical ranges handling for graph based knowledge discovery. For the first test
we use a flat domain (a database in the form of a table where each line represents an object and each column
represents an attribute or characteristic, by means of which the objects are described) we transformed it
into its graph-based representation, then we performed both data mining tasks (concept description and
classification) with the Subdue system. We then compared the obtained results with our proposed method
for numerical ranges handling in two senses.

� First we tested the use of static numerical ranges, which are generated at the beginning of the data
mining process (as a process of discretization) and they continue being used up to the end (until
specified number of iterations is reached) for any of the two tasks.

� We then test the use of dynamic numerical ranges, as described in our objective for both data mining
tasks. For this experiment we dynamically (but manually at the moment) generate our numerical
ranges at each iteration.

In order to show how Subdue’s results improve when it is able to deal with numeric attributes we performed
our first experiment where we did not give any special treatment to any numeric attribute. With our second
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test we want to show that Subdue is able to find interesting patterns containing numeric data when we dis-
cretize the numeric attributes as a pre-processing phase. Finally, considering the second test, we performed
additional experiments to conclude that the patterns found using discretization in a pre-processing phase are
different from those found when incorporating the creation of numerical ranges at the moment of selecting
the best patterns (at the end of each iteration). In the case of Subdue, it uses a MDL measure to choose the
best substructures. This is what we call dynamic numerical ranges that are created every time that Subdue
finds a pattern, thus the substructures found using this technique differ from those found with discretization
(during the preprocessing phase).

It is important to remember that these experiments were performed in a semi-automatical way, because
we have not implemented them in the Subdue system. We obtained the results of these two experiments
(statically and dynamically generated numerical ranges) only for 4 databases.

We used 4 databases with numeric attributes (taken from the UCI Machine Learning Repository [1] ),
we discretized the numeric attributes and transformed the databases into their graph-based representations
to give them as input to the Subdue system. Because of space constraints, we only show our results for the
description task for the BUPA database (although we performed the same experiment for the ABALONE,
PIMA, and WINE databases), but we show the results of the 4 databases for the classification task.

The database used in our experiments is named “BUPA” and describes objects of liver disorders. The
first 5 variables are all blood tests which are thought to be sensitive to liver disorders that might arise from
excessive alcohol consumption. Each line in the bupa.data file constitutes a record of a single male individ-
ual. It contains two classes A and B with 345 objects, 145 of which belong to class B and 200 that belong
to class A. Each example is described with 7 attributes or characteristics, of these attributes 6 are continu-
ous, and the last one is nominal (the class). For example, mcv (mean corpuscular volume) are continuous,
alkphos (alkaline phosphotase) are continuous, sgpt (alamine aminotransferase) are continuous, sgot (aspar-
tate aminotransferase) are continuous, gammagt (gamma-glutamyl transpeptidase) are continuous, drinks
are continuous, and class is nominal. In addition, for this database the classes overlap (the classes have
attributes values that overlap), for which the classification process for any algorithm turns out to be more
complex.

The results obtained by Subdue without numerical ranges handling for the task of concept description for
the BUPA database are shown in figure 10. Subdue was only able to find only a substructure refereing the
class but it did not use any numerical attribute. This result is not good for the concept description task. For

Exa A
Class

Instances 144

a)

Exa 0.5
Drinks

Instances 53

b)

Exa 91Sgot

Instances 22

c)

Figure 10. Pattern Found by Subdue without Using Numerical Ranges in the BUPA Database (three Substructures in three iterations).

a) First Substructure with 144 instances. b) Second Substructure with 53 instances. c) Third Substructure with 22 instances.

the second test we discretized the numerical attributes during a pre-processing phase. As we can see in the
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figure 11 the pattern found (for the BUPA Database) by Subdue contains four vertices related to numerical
attributes that could not be found without the pre-processing discretization phase (as shown in the results
for the first test).

In our future work we will incorporate the creation of numerical ranges to the patterns search engine
so that these can be created dynamically. This will give us more precise results related to patterns found
by Subdue in previous iterations and will differ from those patterns found when using discretization as a
pre-processing step.

The results obtained for the concept description task with static numerical ranges (for the BUPA Database)
are shown in figure 11. As we can see, when Subdue uses static numerical ranges (in a pre-processing
discretization) it is able to find lager substructures than when it does not use them (as those shown in figure
10). These substructures are good for the concept description task as they contain a larger number of vertices
and some of their labels contain numerical ranges. Then, graph based algorithms are an alternative when we
work with mixed data (mainly in structural domains). In the third test (named dynamic numerical ranges) we
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Figure 11. A Pattern Found by Subdue Using Static Numerical Ranges in the BUPA Database (three Substructures in three iterations).

a) First Substructure with 83 instances. b) Second Substructure with 78 instances. c) Third Substructure with 39 instances.

dynamically (but manually) created our numerical ranges for each iteration of Subdue. The results obtained
for the concept description task with dynamic numerical ranges for the BUPA Database are shown in figure
12, in these experiments we found a substructure at each iteration, this substructure was manually replaced
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with a vertex that represents it (as Subdue does it internally without the use of numerical ranges), we then
used this new input graph for the next iteration of Subdue, and repeated the process until the predefined
number of iterations is reached (the stop criterion).

In this case we used 5 iterations, performing in each of them a new regeneration of numerical ranges. In
the case of the dynamic numerical ranges generation we replaced the labels of the attributes with a range
as in the case of the static numerical ranges regeneration (discretization as a pre-processing phase) but we
do it after each iteration because we calculate the new numerical ranges with the vertices that were not
compressed by the new found substructure (we actually use the original numeric labels of the vertices to
create the new numerical ranges).

We generate new numerical ranges labels that are considered by the candidate’s generation process and
Subdue then compares labels representing numerical ranges. When we implement the dynamic numerical
ranges handling in Subdue we will also need to compare a number with a range or in the simplest case, two
numbers (as we mentioned in the objectives of this work). The previous three tests show how Subdue works
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Figure 12. A Pattern Found by Subdue Using Dynamic Numerical Ranges in the BUPA Database (three Substructures in three iterations).

a) First Substructure with 83 instances. b) Second Substructure with 95 instances. c) Third Substructure with 22 instances.

for the concept description task with and without numerical ranges handling and we could show the benefits
of using numerical ranges in the last two tests. We also showed that the substructures found with dynamic
numerical ranges are different from those found with static numerical ranges. Now we want to show the
benefit of this difference for the classification task. We then performed a 3-fold-cross-validation test to verify
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how efficient is the model for the classification task. The three-fold cross validation consists of the creation
of 3 data sets, two of those data sets are used to train Subdue and the other one for validation. These data
sets were randomly created. The experiments for the 3-fold cross validation were done semi-automatically
because Subdue does not have an automatic way to do it.

The results obtained by Subdue without using numerical ranges handling for the classification task are
shown in table 2, the model obtained by Subdue achieves an accuracy of 45.5% for the BUPA database,
47.7% for ABALONE, 49.6% for PIMA, and 53.4% for the WINE database.

The results obtained for the classification task with static numerical ranges are shown in table 2 63.6%
for BUPA, 65.8% for ABALONE, 80.5% for PIMA and 90.2% for WINE. These results show that the
classification level improved significantly compared to those without using numerical ranges, and it is also
able to find richer models (expressiveness) and larger (in the number of vertices and edges), to describe
the set of positive examples. Something important is that the model contains labels with numerical ranges,
which is the main point of this work. The model found without numerical ranges is not of great utility
because it lacks of meaning.

The results obtained for the classification task with dynamic numerical ranges are also shown in table 2
67.0% for BUPA, 69.0% for ABALONE, 83.1% for PIMA, and 97.3% for WINE. As we described before
we ran Subdue for 5 iterations, in each iteration we regenerated our numerical ranges, and next we eliminated
the set of training examples covered by the substructure (this was a really time consuming task that was
necessary to do in order to perform the dynamic numerical ranges test) and after that, we use the remaining
examples to regenerate the new numerical ranges and we repeated this process for 5 iterations. Therefore
we obtained 5 substructures that were used for the classification model as we did for the other tests. We
used only 5 iterations because this process is extremely time consuming (manually preparing the data for
Subdue). In general the use of numerical ranges in the Subdue system for domains with mixed data obtains

Data Base without Ranges Static Ranges Dynamic Ranges C4.5
BUPA 45.5% 63.6% 67% 62.3%

ABALONE 47.7% 65.8% 69% 52.9%
PIMA 49.6% 80.5% 83.1% 73.4%
WINE 53.4% 90.2% 97.3% 91.8%

Table 2. Accuracy Achieved for the BUPA, ABALONE, PIMA, and WINE Databases.

better results that when it does not use them. These experiments support the extensions to the different
algorithms described in this proposal.

All the previous results found by Subdue were obtained without the modification to the comparison
heuristic (comparisons between numerical ranges, between numerical labels and between numerical labels
and numerical ranges), therefore the numerical ranges could not be compared with numerical labels. This
reduces the possibility of using different ranges of numbers (generated with different methods) to expand
new candidate substructures and to find instances of those substructures.

6 Conclusion

The different ways to generate numeric ranges used in this work helped us to find significant patterns at
different levels of abstraction by means of Subdue.

With our proposal of creating dynamic numerical ranges, we obtained richer descriptive patterns that also
obtain a better accuracy for the classification task. This proves that our theory for numeric ranges handling
with graph-based representations in graph based knowledge discovery is promising.
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The main contribution of this work considers a guideline for the creation of a graph-based representation
for mixed data types (continuous and nominal) and also the creation of an algorithm for the manipulation of
these graphs with numeric ranges for the data mining task (classification and description).

This will also allow working with domains represented with graphs containing numeric attributes in a
more effective way.

7 Chronogram of Activities

The following table shows the global activities programmed by four-month periods for the development
of this doctoral investigation Completed Activities Activities to be completed

Chronogram of Activities Four-month period
1 2 3 4 5 6 7 8 9

Review of the Literature
Critical Analysis of the Clustering Algorithms

Critical Analysis of the Numerical Ranges Handling Algorithms

Critical Analysis of the Knowledge Discovery in Databases Algorithms

Algorithms
Conceptual Development of the Algorithm

Extend a Sub-Graph-Isomorphism Algorithm

pre-processing phase (Extend numerical ranges handling)

processing phase (Extend numerical ranges handling)

post-processing phase (Extend numerical ranges handling)

Experiments and Tests of the Algorithm

Comparison of the Algorithm

Proposal
Publications
Thesis

Table 3. Chronogram of Activities
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