
(Cover Page)
A Temporal Synchronization Mechanism for
Real-Time Distributed Continuous Media

Luis A. Morales Rosales, Saul E. Pomares Hernandez

Department of Computer Science, National Institute of Astrophysics, Optics
and Electronics (INAOE),

Luis Enrique Erro No. 1, 72840 Tonantzintla, Puebla, Mexico.

Phone: +(52) 222 2-66-31-00 ext {5216, 5200, 8227}
Fax: +(52) 222 2-66-31-52
Emails: {lamorales, spomares}@inaoep.mx

Abstract. The preservation of temporal relations for real-time distributed
continuos media is a key issue for emerging multimedia applications, such
as Tele-Immersion and Tele-Engineering. Although several works try to
model and execute distributed continuous media scenarios, they are far
from resolving the problem. The present paper proposes a viable solution
based on the identification of logical dependencies. Our solution considers
two main components. First, it establishes a temporal synchronization
model that expresses all possible temporal scenarios for continuous media
according to their causal dependency constraints. The second component
consists of an innovative synchronization mechanism that accomplishes
the reproduction of continuous media according to its temporal specifica-
tion. We note that the present work does not require previous knowledge
of when nor for how long the continuous media of a temporal scenario is
executed.

Keywords: continuous media, distributed systems, synchronization media,
and causal ordering.

A Temporal Synchronization Mechanism for
Real-Time Distributed Continuous Media

Luis A. Morales Rosales, Saul E. Pomares Hernandez

National Institute of Astrophysics, Optics and Electronics (INAOE),
Luis Enrique Erro No. 1, 72840 Tonantzintla, Puebla, Mexico

{lamorales, spomares}@inaoep.mx

Abstract. The preservation of temporal relations for real-time distributed
continuos media is a key issue for emerging multimedia applications, such
as Tele-Immersion and Tele-Engineering. Although several works try to
model and execute distributed continuous media scenarios, they are far
from resolving the problem. The present paper proposes a viable solution
based on the identification of logical dependencies. Our solution considers
two main components. First, it establishes a temporal synchronization
model that expresses all possible temporal scenarios for continuous media
according to their causal dependency constraints. The second component
consists of an innovative synchronization mechanism that accomplishes
the reproduction of continuous media according to its temporal specifica-
tion. We note that the present work does not require previous knowledge
of when nor for how long the continuous media of a temporal scenario is
executed.

1 Introduction

The subject of synchronization for real-time distributed continuous media ad-
dresses the problem of preserving temporal relations among streams (continuous
media) having geographically distributed sources. The synchronization in this
kind of media is carried out without previous knowledge of when or for how
long the streams are or will be executed. Several works attempt to resolve this
problem. We can group them according to their synchronization model into two
broad categories: synchronous and asynchronous. The main difference between
these categories relates to whether they consider in some way or not a common
reference (virtual or physical clocks, shared memory, off-line synchronization,
etc). While a common reference is present in the synchronous category, it is
absent in the asynchronous one. Most works fall into the synchronous category
[1–3]. These works usually try to answer the synchronization problem by mea-
suring the period of physical or virtual time elapsed (4t) between certain points
in a timeline. Such points can be the begin (x−) and/or end (x+) events of the
continuous media involved (See Fig. 1). Only few works deal with the problem in
an asynchronous manner [4–8]. They primarily take into account logical depen-
dencies, instead of temporal dependencies. One representative work is the model
introduced by Grigoras et al. [4, 5], which determines the possible relations of

continuous media by identifying causal dependencies between the begin and end
events. For example, in Fig. 1, Grigoras et al. establish the overlaps relation as
(v− → a− ∧ a− → v+ ∧ v+ → a+).

Neither approach taken by the works in the two general categories fulfills
the requirements needed to solve the issue of preserving temporal relationships.
First, it is not easy to have a common reference in distributed systems, since
these involve the lack of a global timeclock and shared memory. Second, solely
considering logical dependencies among begin and end events may result in in-
accurate executions. For example, a synchronization mechanism can ensure that
the reproduction of events fulfills v− → a−, but the model does not specify how
much time must elapse between the reproduction of v− and a−. In this paper we

Fig. 1. Example of a temporal scenario

propose a solution belonging to the asynchronous category that attempts to re-
solve the problem related to possible imprecisions. To achieve this, we work with
the continuous media at two abstract levels. At the higher level, the temporal
duration is taken into account by representing the continuous media segments as
intervals. At the lower level, we work with intervals, considering that an interval
is composed of a set of sequentially-ordered messages. Taking into consideration
these two abstract levels, our synchronization model translates temporal scenar-
ios to be expressed as subintervals (segments) arranged according to their logical
precedence dependencies. This translation results in the creation of what we call
logical mappings.

The outline of this paper is as follows. We present in Section 2 the system
model, the background and some required definitions. The Temporal Synchro-
nization Model is presented in detail in Section 3. We introduce in Section 4 our
Synchronization Mechanism. Finally, conclusions are provided in Section 5.

2 Preliminaries

2.1 The System Model

Processes: The application under consideration is composed of a set of processes
P = {i, j...}, organized into a group, that communicates by reliable broadcast
asynchronous messages. A process can only send one message at a time.

Messages: We consider a finite set of messages M , where each message
m ∈ M is identified by a tuple m = (p, x), where p ∈ P is the sender of m,
denoted by Src(m), and x is the local logical clock for messages of p when m is
broadcasted. The set of destinations of a message m is always P .

Events: Let m be a message. We denote by send(m) the emission event
of m by Src(m), and by delivery(p,m) the delivery event of m to participant
p ∈ P . The set of events associated to M is then the set E = {send(m) : m ∈
M} ∪ {delivery(p,m) : m ∈ M ∧ p ∈ P}. The process p(e) of an event e ∈ E is
defined by p(send(m)) = Src(m) and p(delivery(p,m)) = p. The set of events
of a process p is Ep = {e ∈ E : p(e) = p}.

Intervals: We consider a finite set I of intervals, where each interval A ∈ I
is a set of messages A ⊆ M sent by a participant p = Part(A), defined by the
mapping Part : I → P . Formally, we have m ∈ A⇒ Src(m) = Part(A). Due to
the sequential order of Part(A), we have for all m, m′ ∈ A,m→ m′ or m′ → m.
We denote by a− and a+ the unique messages of A, such that for all m ∈ A
: a− 6= m and a+ 6= m ⇒ a− → m → a+. The a− and a+ messages are the
endpoints of A.

2.2 Background and Definitions

The Happened-Before Relation for single events The happened-before
relation, also known as the causal relation, was introduced by Lamport [9]. It
is a strict partial order (i.e. irreflexive, asymmetric, and transitive) defined as
follows:

Definition 1. The causal precedence relation, denoted by “→”, is the partial
order generated by the following pair:

1. e→ e′ for all e, e′ such that p(e) = p(e′) and e occurs before e′ on p(e)
2. send(m)→ delivery(k, m) for every message m and process k

We note that the complement to the causal precedence is the concurrent
relation defined as e ‖ e′ ⇒ ¬(e → e′ ∨ e′ → e). The precedence relation on
messages denoted by m → m′ is induced by the precedence relation on events,
and is defined by m→ m′ ⇒ send(m)→ send(m′).

A behavior or a set of behaviors satisfies causal order delivery if the diffusion
of a message m causally precedes the diffusion of a message m′, and the delivery
of m causally precedes the delivery of m′ for all participants that belong to P .
Formally, we have:

Definition 2. Causal Order Delivery (broadcast case):
If send(m)→ send(m′), then ∀p ∈ P : delivery(p,m)→ delivery(p,m′)

The Partial Causal Relation The Partial Causal Relation (PCR) was in-
troduced in [10] (Definition 3). It considers a subset M ′ ⊆ M of messages.
The PCR induced by M ′ considers the subset of events E′ ⊆ E that denote
E′ = {send(m),m ∈ M ′} ∪ {delivery(p,m),m ∈ M ′, p ∈ P}. For any identifier
p ∈ P , we have E

′
p = E′ ∩ Ep. The partial precedence →M ′⊆ E′ × E′ induced

by M ′ is the least partial order relation (transitive and acyclic) on E′ and it is
defined as follows:

Definition 3. The partial causal relation “→M ′” is the least partial order rela-
tion satisfying the two following properties:

1. For each participant p ∈ P , the local restrictions of→M ′ and→ to the events
of E

′
p coincide: ∀e, e′ ∈ E

′
p : e→ e′ ⇔ e→M ′ e′.

2. For each message m ∈M ′ and p ∈ P , the emission of m precedes its delivery
to p: send(m)→M ′ delivery(p,m).

Happened-Before relation for intervals Lamport in [11] establishes that
an interval A precedes or happens before another interval B if all elements that
compose interval A causally precede all elements of interval B. This definition
is used in the model presented in Section 3. However, it is well known that
causal ordering implicates a computational high cost in terms of overhead, delay
and processing time. For this reason, in order to reduce the cost, our mechanism
presented in Section 4 uses the definition of happened-before relation for intervals
that was proposed in [12] (Definition 4) which is expressed only in terms of the
interval endpoints. This definition says that if the elements of an interval are
sequentially ordered, then ensuring partial causal order (Definition 3) on the
interval endpoints is sufficient to ensure causal ordering at an interval level.

Definition 4. The relation “→I” on the set of intervals I of a system is ac-
complished it it satisfies the following two conditions:

1. A→I B if a+ →M ′ b−
2. A→I B if ∃C|(a+ →M ′ c− ∧ c+ →M ′ b−)

where a+ and b− are the right and left endpoints (messages) of A and B,
respectively, c− and c+ are the endpoints of C, and →M ′ is the partial causal
order (Definition 3) induced on M ′ ⊆ M where M ′, is the subset composed by
the endpoint messages of the intervals in I. The second condition is the transitive
property. Now, we present the simultaneous relation for intervals as follows:

Definition 5. Two intervals, A and B, are said to be simultaneous “|||” if the
following condition is satisfied:

A|||B ⇒ a− ‖ b− ∧ a+ ‖ b+

Finally, we present the definition of causal delivery for intervals based on
their endpoints as follows:

Definition 6. Causal Broadcast Delivery for Intervals
If (a+, b−) ∈ A×B, send(a+)→M ′ send(b−)⇒ ∀p ∈ P, delivery(p, a+)→M ′

delivery(p, b−), then ∀p ∈ P, delivery(p,A)→I delivery(p,B)

3 Temporal Synchronization Model

Table 1. Creation of Logical Mappings

∀(X, Y) ∈ I × I

A(X, Y)

← – {x ∈ X : x→ y−} for x− → y−∨
– ® for other cases

B(X, Y)

← – {y ∈ Y : x+ → y} for x+ → y+∨
– {x ∈ X : y+ → x} for y+ → x+∨
– ® for other cases

C(X, Y) ← X − (A(X, Y) ∪B(X, Y))

D(X, Y) ← Y −B(X, Y)

W (X, Y) ← C|||D
S(X, Y) ← A→I W →I B

In order to achieve the synchronization between continuous media in dis-
tributed systems, we propose to determine temporal relations based on the
identification of logical precedence dependencies. To achieve this, we translate
temporal scenarios to be expressed in terms of the precedence relation and si-
multaneous relation defined; we call these translations logical mappings. More
explicitly, in our work, a logical mapping decomposes a temporal scenario into
data segments (events) that are arranged according to their possible precedence
dependencies.

3.1 Logical Mappings

Fig. 2. XoverlapsY relation and its logical mapping A→I (C|||D)→I B.

The process to create logical mappings (Table 1) involves taking every pair
of intervals in the system that compose a temporal scenario, and translating

each pair into four data segments, which are determined according to the pos-
sible precedence dependency of the discrete events that compose them. These
data segments, according to our definition, become new intervals. The resulting
intervals are only expressed in terms of the happened-before relation and the
simultaneous relation1.

Table 2. Allen’s relations and their corresponding logical mappings

Allen’s Relations Endpoints Interval Temporal
Relation

Logical Mappings

Xbefore Y x+ → y− Precedes:

Y after X A→I B

Xmeets Y x+||y−

Y meet-by X
Xoverlaps Y x− → y− → x+∧ Overlaps:

Y overlap-by X x+ → y+ A→I (C|||D)→I B
Xincludes Y x− → y−∧

Y during X y+ → x+

Xstarts Y x− ‖ y−∧ Starts:

Y started-by X x+ → y+ (C|||D)→I B

Xfinishes Y x+ ‖ y+∧ Ends:

Y finished-by X x− → y− A→I (C|||D)

Xequals Y x− ‖ y−∧ Simultaneous:

x+ ‖ y+ C|||D

In order to consider the seven basic relations and their inverses, and to main-
tain the model simplified, we first identify the X and Y intervals for each pair
of intervals in the system. The X interval will be the interval with the first
left endpoint, and the Y interval will be the remaining interval. This is done to

1 We consider in our work that an interval can be empty. In such case, the following
properties apply:

– ® →I A ∨A→I ® = A

– A→I ® →I B = A→I B

– ®|||A ∨A|||® = A

ensure that for every pair, x− → y− or x−||y− at all times. Once the X and
Y intervals are identified, the model segments each pair into four subintervals,
A, B, C and D (see Table 1). We now proceed to construct the general causal
structure S = A →I W →I B, where W determines if overlaps exist between
the present pair. For example, for the overlaps relation defined by Allen [1], the
logical mapping is equal to A→I (C|||D)→I B (See Fig. 2). Our model defines
five possible logical mappings (Table 2, right column), which we call: precedes,
overlaps, ends, starts, and simultaneous. These five logical mappings are suffi-
cient to represent the thirteen relations established by Allen [1]. As shown in
Table 2, we are now able to express every possible temporal relation by only
considering the interval happened-before relation and the interval simultaneous
relation.

4 Synchronization Mechanism

Our synchronization mechanism carries out two main functions that allow the
continuous media to be presented according to the temporal model previously
presented. The first function makes the translation of temporal relations (logical
mappings), and the second function ensures the presentation of the intervals
(data segments) according to the resultant logical mapping.

In order to carry out the temporal synchronization, our mechanism, which is
based on the resultant logical mapping, determines if an interval must begin to
be delivered or not according to whether it satisfies or not its causal dependency.
For example, if an interval A precedes an interval B, then interval B will not
begin to be delivered until all messages of A have been delivered. When an
interval A is simultaneous to B, the messages of A can be delivered in any order
with respect to the messages of B.

General description. Internally, the mechanism uses two kinds of ordered
messages: causal messages and FIFO messages. We have three different causal
messages: begin, end, and cut. The begin and end messages are the left and right
endpoints of the original intervals, and cut is a control message used by the
mechanism to inform about an interval segmentation. FIFO messages (fifo p)
are used only inside an interval. We note that all causal and FIFO messages carry
data of the continuos media involved. In order to ensure the causal order delivery
at an interval level according to Definition 6, our algorithm uses vector clocks
[13] and the immediate dependency relation (IDR) [14]. We use the IDR relation
to determine the sufficient causal control information that must be attached per
message. Next, we describe the main components of the mechanism.

4.1 Data structures

Local states. The state of a process p is defined by three data structures:
V T (p), CI(p) and last fifo(p).

– V T (p) is the vector time. For each process p there is an element V T (p)[j]
where j is a process identifier. A process can only send one message at a

time. The size of V T is equal to the number of processes in the group. The
element V T (p)[j] represents the greatest number of messages of the identifier
j and “seen” in causal order by p. It is through the V T (p) structure that we
are able to guarantee the causal delivery at an interval level.

– CI(p) is the control information structure. It is a set of entries ck,t =
(k, t) where (k, t) is a message identifier (the message diffused by the pro-
cess identifier k with the local message clock value t). Structure CI(p) also
contains information about the causal history of p.

– last fifo(p) is the fifo control information structure. It is a struc-
ture composed by a set of entries (k, t), where (k, t) is a message identifier.
The last fifo structure has information about the last (fifo p) messages
received by p. These (fifo p) messages represent potential causal messages.

Messages. The mechanism uses causal messages (begin, end, cut) and FIFO
messages (fifo p). A message m, in general, is composed of an identifier (k, t),
an attached causal information H(m), and continuos media data in the structure
called data. For fifo p messages, structure H(m) is always H(m) = ®. Formally,
a message m is a tuple m = (k, t, TP,H(m), data), where:

– k is the identifier of sender k = Src(m).
– t = V T (p)[k] is the (local) clock value of p for the identifier k when a causal

message m (begin, end, or cut) is sent. The value of t indicates the sequential
number to which causal message m belongs.

– TP is the type of message (begin, end, cut, fifo p).
– H(m) contains identifiers of messages (k, t) causally preceding causal mes-

sage m, which denotes the begin and/or end of other intervals. The informa-
tion in H(m) ensures the causal delivery of message m. Structure H(m) is
built before a causal message is broadcasted, and then it is attached to the
causal message.

– data is the structure that carries the media data.

4.2 Specification

The synchronization mechanism is specified as follows.
Initially
1. V T (p)[j] = 0, ∀j : 1, ..., n
2. CI(p)← ®
3. last fifo(p)← ®
4. Act = 0
For each message m diffused by p with the process identifier i
5. send(Input : TP = {begin|end|cut|fifo p})
6. V T (p)[i] = V T (p)[i] + 1
7. If not (TP = fifo p) then
8. If not (TP = begin) then
/*Construction of the H(m)for end and cut messages*/
9. H(m)← CI(p)

10. if (TP = end) then
11. Act = 0 /*Indicates that process p is inactive*/
12. endif
13. else /*Construction of the H(m) for begin messages*/
14. Act = 1 /*Indicates that process p is sending an interval*/
15. ∀(s, r) ∈ CI(p)
16. if ∃(x, l) ∈ last fifo(p) | s = x then
/*Adding info about fifo p messages to CI(p)*/
17. if not ((s, r) = max{(x, l), (s, r)}) then
18. CI(p)← CI(p) ∪ (x, l)
19. endif
20. endif
21. H(m)← CI(p)
22. last fifo(p)← ®
23. endif
24. CI ← ® /*Erases the CI(p) on each causal message sent*/
25. else */Construction of the H(m) for fifo p messages*/
26. H(m)← ®
27. endif
28. m = (i, t = V T (p)[i], TP, H(m), data)
29. sending(m)
For each message received by p with process identifier j
30. receive(m) in p with i 6= j and m = (k, t, TP, H(m), data)
31. If t = V T (p)[k] + 1 then /* FIFO delivery condition*/
32. If not (TP = fifo p) then

/*Causal delivery condition*/
33. If not (t′ ≤ V T (p)[l])∀(l, t′) ∈ H(m)) then
34. wait()
35. else /*Causal delivery procedure*/
36. delivery(m)
37. V T (p)[k] = V T (p)[k] + 1
38. If ∃(s, r) ∈ CI(p) | k = s then
39. CI(p)← CI(p) \ {(s, r)}
40. endif /*Updating CI(p) with a more recent message*/
41. CI(p)← CI(p) ∪ {(k, t)}
42. ∀(l, t′) ∈ H(m) /*Clears CI(p) and last fifo(p) */
43. If ∃(s, r) ∈ CI(p) | l = s and r ≤ t′ then
44. CI(p)← CI(p) \ (s, r)
45. endif
46. If ∃(x, l) ∈ last fifo(p) | l = x and l ≤ t

′
then

47. last fifo(p)← last fifo(p) \ (x, l)
48. endif
49. If Act = 1 and not(TP = cut) and not(TP = begin) then
50. send(cut) /*Sending a cut message*/
51. endif

52. endif
53. else /*FIFO delivery procedure*/
54. delivery(m)
55. V T (p)[k] = V T (p)[k] + 1
56. If ∃(x, l) ∈ last fifo(p) | k = x then
57. last fifo(p)← last fifo(p) \ (x, l)
58. endif /*Updating last fifo(p) with a more recent message*/
59. last fifo(p)← last fifo(p) ∪ (k, t)
60. endif
61. else
62. wait()
63. endif

4.3 Example Scenario

Construction of logical mappings. We explain the creation of logical map-
pings in the example of the overlaps relation shown in Fig. 3. In this example,
segment A must first be determined. To achieve this, we map the left causal
boundary a− with the begin send event send(x− = x1), and the right causal
boundary with the send event send(a+ = xk). The right endpoint a+ is deter-
mined by the last (fifo p) message received by participant j before the begin
send event send(y−) (lines 16-20). Once we know the causal boundaries of A,
we determine the set of messages that compose it (A = {x1, x2, ..., xk}). After
interval A is identified, we proceed to determine the causal boundaries of C and
D. At this point, we can identify the left causal boundaries c− = xk+1 and
d− = y1. However, it is only until the end send event of endpoint x+ and its
correspondant delivery event that we can identify the right endpoints of C and
D. With the end send event send(x+ = xn) we establish that c+ = xn, and
consequently, C = {xk+1, xk+2, ..., xn}. At the reception of x+ by participant
j, our algorithm sends a cut message (lines 49-51) which establishes the end of
interval D(d+ = yl) and the beginning of interval B(cut = b− = yl+1). As a
result, we have D = {y1, y2, ..., yl}. Finally, with the send event of y+, we have
b+ = ym, and consequently, B = {yl+1, yl+2, ..., ym}.

In general, our mechanism considers three important rules to create logical
mappings:

1. When x− → y−: the right endpoint a+ is determined by the last (fifo p)
message received by participant j before the send event of y−, where j =
Part(Y).

2. When x+ → y+: at the reception of x+ by participant j, we generate on j a
cut message (only if j is sending an interval), which determines the beginning
of interval B (cut = b− = yl+1) and the end of interval D(d+ = yl).

3. When y+ → x+: at the reception of y+ by participant i = Part(X),
we generate on i a cut message (only if i is sending an interval), which
determines the beginning of interval B (cut = b− = xq+1) and the end of
interval C(c+ = xq).

Fig. 3. Construction of the logical mapping (A →I (C|||D) →I B) for the overlaps
relation

Carrying out causal order delivery. The resultant logical mapping for
the example scenario is A→I (C|||D)→I B. To ensure interval causal delivery
in terms of their endpoints (Definition 6) we need to ensure that:

– delivery(a+) →M ′delivery(c−)
– delivery(a+) →M ′delivery(d−)
– delivery(c+) →M ′delivery(b−)
– delivery(d+) →M ′delivery(b−)

Since a+ = xk, c− = xk+1, d+ = yl and b− = yl+1, the procedure of deliv-
ery(a+) →M ′delivery(c−) and delivery(d+) →M ′delivery(b−) is accomplished
by the FIFO property implemented by lines 6 and 31. The procedure of deliv-
ery(a+)→M ′delivery(d−) is accomplished in the following way. Initially, message
a+ = xk is sent as fifo p. To consider it as a causal message, process j includes
information concerning xk in its causal history (lines 16-20), and attaches this
information to structure H(m) of the message d− = y1 before its send event
(line 21). The causal delivery condition (line 33) ensures that the beginning of
interval D (d−) will be delivered only after the delivery of xk, and the FIFO
condition (line 21) ensures that xk will be delivered only after the delivery of all
messages xh ⊂ A ⊆ X, such that h < k . For the requirement of delivery(c+)
→M ′delivery(b−), message b− = yl+1 has attached information on its structure
H(m) about the message c+ = xn (lines 15-21). The causal delivery condition
(line 33) ensures that the beginning of interval B (b−) will be delivered only
after the delivery of xn, and the FIFO condition (line 21) ensures that xn will
be delivered only after the delivery of all messages xq ⊂ C ⊆ X, such that q < n.

5 Conclusions

An innovative temporal synchronization mechanism has been presented. The
mechanism addresses in an asynchronous manner the problem of preserving tem-
poral relations for real-time distributed media streams. The core of our mecha-
nism is the delivery of streams according the resultant logical mapping which is

based on the causal dependencies of the continuous media involved. The mecha-
nism uses the partial causal relation and the immediate dependency relation to
reduce the causal overhead. Further work is needed to enhance our mechanism
so that it can support real network conditions (delays, loss of messages, lifetime
of messages, etc.). Our attention is focused in this direction, and we expect to
publish some interesting contributions shortly.

References

1. James F. Allen.: Maintaining Knowledge about Temporal Intervals. Communica-
tions of the ACM, Vol 26, Num 11, Nov 1983, 832-843

2. Pantelis Balaouras, Ioannis Stavrakakis, Lazaros F. Merakos.: Potential and Limi-
tations of a Teleteaching Environment based on H.323 Audio-Visual Communica-
tion Systems. Computer Networks, Vol 34, Num 6, Dec 2000, 945-958

3. Colin Perkins.: RTP Audio and Video for Internet, USA, June 2003, Addison
Wesley, ISBN: 0672322498.

4. Romulus Grigoras, Philippe Mauran, Girard Padiou, Philippe Queinnec.: Ordon-
nancement Causal de Flux Repartis Multimedias. Formalisation des Activites Con-
currentes FAC’2003, March 2003.

5. Cezar Plesca, Romulus Grigoras, Philippe Queinnec, Girard Padiou.: Streaming
with Causality: A Practical Approach. To appear in ACM Multimedia 2005, Sin-
gapore, 6-11 Nov 2005

6. Yutaka Ishibashi, Shuji Tasaka, Yoshiro Tachibana.: A Media Synchronization
Scheme with Causality Control in Network Environments. Proceedings 26th Con-
ference on Local Computer Networks, Lowell, Massachusetts, USA, 17-20 Oct 1999,
IEEE Computer Society, 232-241

7. Anthony Y. Chang, Jason C. Hung.: An Integrated Temporal Composition Model
for Synchronization Specification. Proceedings of the 17th International Conference
on Advanced Information Networking and Applications (AINA’03), March 27-29,
2003, Xi’an, China. IEEE Computer Society 2003, ISBN 0-7695-1906-7, 189-193

8. Kshemkalyani Ajay D.: Temporal Interactions of Intervals in Distributed Systems.
Journal of Computer and System Science, Vol 52, Num 3, June 1996, 287-298

9. Lamport L: Time, Clocks, and the Ordering of Events in a Distributed System.
Communications ACM, Vol 21, Num 7, July 1978, 558-565

10. Fanchon J, Drira K, Pomares Hernandez S.: Abstract Channels as Connectors for
Software Components in Group Communication Services. Fifth Mexican Interna-
tional Conference on Computer Science (ENC 2004), Sept 2004, Colima, Mexico,
IEEE Computer Society, 88-95

11. Lamport L: On Interprocess Communications: I. Basic Formalism. Distributed
Computing, 1: 77-85 (1986)

12. Luis Morales: Algoritmo de Sincronizaci de Flujos Continuos en Tiempo Real. Mas-
ter’s Thesis in Computer Science, INAOE. Num. XM1086. Classification: XMM
-M67-2005-XM1086, Tonantzintla Puebla, Mexico (2005).

13. Mattern F.: Virtual Time and Global States of Distributed Systems. Parallel and
Distributed Algorithms, North-Holland, 1989, 215-226

14. Pomares Hernandez S, Fanchon J, Drira K.: The Immediate Dependency Relation:
an Optimal Way to Ensure Causal Group Communication. Annual Review of Scal-
able Computing, Editions World Scientific, Series on Scalable Computing, Vol 6,
2004, pp 61-79

