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Abstract 
 
In this paper we present a study on the subject of the Immediate Dependency Relation (IDR), and we show how by 
extending the IDR relation, one can ensure a global causal delivery in group communication, including in the overlapping 
group case. The main objective of this paper is to show that the use of the Immediate Dependency Relation (IDR) obliterates 
the notion that causality is expensive to set up in distributed systems. The IDR minimizes considerably the amount of 
control information sent per message to ensure causal ordering, without imposing restrictions in interaction (e.g. network 
topology, redifussion servers, executions models etc.). In order to demonstrate the feasibility of its implementation, we 
present an optimal broadcast causal protocol inspired by the IDR relation. We show the optimality of the protocol in terms 
of the amount of control information timestamped per message.     
 
1. Introduction  

 
In Group Communication Systems (GCS), causal ordering protocols are an essential tool to exchange information. The use 
of causal ordering provides built-in message synchronization and reduces the non-determinism in a distributed computation. 
Causal ordering provides an equivalent of the FIFO property at a global group communication level, where messages sent 
sequentially to the same group of processes over a communication network are replaced by sending causally related 
messages. The concept of causal ordering is of considerable interest to the design of distributed systems and can be found in 
applications of several domains, such as distributed cooperative engineering, teleconferencing [RAV92], multimedia 
systems [BAL95], mobile computing [PRA95], resource allocating protocols [TOR99] and security domains [SCH90]. 
 
We performed a relative study concerning various existing causal protocols, particularly of those protocols which support 
multi-group environments. We found that their use in the applications previously mentioned is not suitable for two main 
reasons: they either present restrictions in the mode of interactions, or they introduce a large amount of control information.  
The amount of control information (CI) in order to guarantee causal ordering in a group g1 with n members is θ(n) [BIR91] 
(broadcast case) in the worst case.  In overlapping groups, in the worst case, the amount of CI is θ(g�n) [BIR91], where g is 
the number of groups in the system. For large values of n and g, the bound of θ(n) and θ(g�n) (according to the case) is 
prohibitively high.  
  
The objective of this paper is to show that the use of the Immediate Dependency Relation (IDR) obliterates the notion that 
causality is expensive to set up in distributed systems. The IDR minimizes considerably the amount of CI sent per message, 
without introducing restrictions in interaction (i.e. all processes are equals). We present in this paper an optimal causal 
protocol inspired by the IDR relation. The protocol works in a broadcast environment. It is optimal in terms of the amount 
of CI timestamped per message. Although the bound of control information (CI) timestamped per message remains θ(n) in 
the worst case, we demonstrate that the probability that this will occur is minimal. 
 
The paper proceeds as follows:  
First, in Section 1 we present a brief backgroup on the causality principle.  A state of art on related work is presented in 
Section 2. Next, we present in Section 3, an in-depth study of the IDR principle for the broadcast case and the IDR extention 



to support the multi-group case.  In Section 4, we present the minimal causal broadcast protocol.  Conclusions are provided 
in Section 5 
 
 
1.1 Background 

 
Causal ordering delivery is based on the causal precedence relation defined by Lamport [LAM78]. This relation connects 
two messages represented by pairs (identifier of site, clock value) in the following way: 
 
Definition 1:   The causal relation, denoted by →,  is defined by the following three rules: 
1. 〈i, a〉 → 〈j, b〉 if i=j ∧ a < b 
2. 〈i, a〉 → 〈j, b〉 if  〈i, a〉  is the sending of a message and 〈j, b〉 is the delivery of that message. 
3. 〈i, a〉 → 〈j, b〉 if  ∃〈k, c〉 | (〈i, a〉 → 〈k, c〉 ∧ 〈k, c〉 → 〈j, b〉) 

where i, j, and k  are process identifiers, and a, b, and c are  local clock values of  i, j, and k,  respectively. 
 
Causal ordering delivery in group communication presents two cases: the broadcast case (one group) and the multi-group 
case that includes overlapping groups.  The causal delivery for the broadcast case is defined as follows [BIR93]: 
 

Definition 2 Causal broadcast delivery (one group): 

 
IF send(m)→ send(m’), then ∀k ∈ c :   

deliveryk(m) → deliveryk(m’) 
 

Causal broadcast delivery ensures that if the diffusion of a message m causally precedes the diffusion of a message m’, in a 
group c, then the delivery of m causally precedes the delivery of m’ for all participant pk that belongs to c.   
 
In the rest of the paper we simply note send(m) by m. Thus, by definition we have: 
 

m→m’ ⇔ send(m)→ send(m’) 
 
The case of causal delivery in a multi-group environment is more common in group communication.  It is defined as 
follows: 
 
Definition 3 Causal multi-group delivery 

If sendi(m,c)→ sendj(m’,c’), then ∀k ∈ cI c’ : 
deliveryk(m) → deliveryk(m’) 

 
We can say, in a general way, that causal multi-group delivery guarantees that if the diffusion of a message (m, c) causally 
precedes the diffusion of a message (m’, c’), where c and c’ are the original diffusion groups of messages m and m’, 
respectively, then the delivery of m causally precedes the delivery of m’ for all participants pk that belongs to the 
intersection of groups c and c’ [MOS93]. 
 
In the rest of the paper we note sendi(m,c) by (m,c), without  further representing the site sender i, except if it is needed for 
clarification. Thus, we have by definition: 

 
(m,c)→(m’,c’) ⇔ send(m,c)→ send(m’,c’) 

 

A bit of history 
 
The causal diffusion of messages is usually ensured by sending control information (CI) attached to each message.  Among 
one of the pioneer protocols that apply causal diffusion, we can cite the causal protocol of ISIS [BIR87B].  In the first 



version of ISIS, a message transports the history to the messages that causally precede it.  Let’s suppose that a message m 
arrives to a recipient, and that all the messages in its past addressed to that recipient have already been received.  In this 
case, m will also be delivered to the recipient.  Otherwise, the appropriate messages on hold will be removed from the list of 
preceding message joint to m, and they will then be delivered to the recipient.  After that, m will be delivered.  In this case, a 
complex mechanism is required to prevent the unlimited growth of control information. 
 
In the late 1980’s Mattern and Fidge introduced a new mechanism, called vector time clocks [FID88, MAT89].  In vector 
time clocks, contrary to the first version of ISIS, each message m transports control information composed of ordered sets of 
type (site origin, vector time clock).  When a recipient receives m, he uses the control information associated to it to 
determine if a causal predecessor of m must still be delivered to the recipient.  If this is not the case, then m will be delivered 
to the recipient.  Otherwise, m will be placed in a recipient buffer until all the causal predecessors addressed to that recipient 
have been delivered.   
 
 
2. Related Work  

 
We distinguish two main approaches to resolve the problem regarding the amount of control information needed to ensure 
causal group communication: 
 

1. Partial causal ordering 
2. Complete causal ordering 

i. Symmetric 
ii. Asymmetric 

 
 
2.1 Partial causal ordering 
 
Partial causal ordering consists in bounding in advance the amount of control information transmitted [HEL00, TOR99].  Its 
main drawback is that it no longer completely preserves causality.  This approach can only provide an exact ordering under 
favorable circumstances.  It is usefully in systems where ordering messages only impacts their execution, but does so not 
necessarily with precision.  Such works include, for example, resource allocating protocols [TOR99]. 
 
2.2 Complete causal ordering 
 
The objective of complete causal ordering is to reduce the size of the causal information transmitted, without losing causal 
dependencies.  We can classify two categories of the associated protocols:  symmetric protocols and asymmetric protocols, 
which we will describe next. 

2.2.1 Causal symmetric protocols 
 
Symmetry is generally defined as the: 
“Regularity and harmony in the ordering of parts of a whole, or in the arrangement of concurrent elements to give the 
impression of unity” [HAC96] 
 
We use the term symmetry in the sense that all participants share the same role and the same degree of responsibility in the 
system.  Furthermore, a freedom of interaction exists between them.  Consequently, the symmetric category does not make 
any assumptions regarding the group structure nor the topological network structure.  This category is concerned with 
identifying the necessary conditions to ensure a causal delivery of messages, and/or with arranging optimal coding to 
represent and transmit this information 
  
One of the first protocols in this category is the works of Peterson [PET89]. Peterson introduced the context graph.  The 
context graph was designed to represent the causality between messages in a conversation protocol in a broadcast 
environment.  This graph is directly acyclical; its vertexes correspond to the total set of messages, and the arcs represent the 
causal relationship between these messages.  The reduced graph (Fig. 1 b) shows that if causal ordering of messages is 
ensured between every pair of immediate causal predecessor and successor messages, then causal ordering among all 



messages will be automatically ensured due to the transitivity of the preceding relation. We use the graph in this paper only 
to depict the causal relationship that exists between a sub-set of messages.  Nonetheless, no protocol presented in this article 
pretends neither to support nor utilise these graphs for their implementation. 

 
 

 
 

Fig. 1 Context graphs a) Display of the context relation between messages  
b) Display of the direct dependency relation between messages  

 
This category includes the multicast protocol of Kshemkalyani and Singhal [KSH96]. Their causal protocol codes 
information onto each message regarding all previous causal messages that are not yet guaranteed to be delivered in a causal 
manner by the protocol, or that are not known to have already been delivered. They refer to these conditions as 
propagations constrains (Definition 4). The propagation constraints (PC) specify the conditions on the information 
propagation to enforce causal ordering [KSH96].  

 
Definition 4. The information d ∈ mi,a.Dests concerning a message mi,a sent to d must propagate along all causal paths, 
starting at event (i, a) up to, and only up to, the earliest events (j, b) on any such path, such that either: 

PC 1. deliveryd(mi,a )      (j, b), i.e. it is known that mi,a has been delivered or  
PC 2. ∃ (k, c) | (i, a) → (k, c) → (j, b) ∧ d ∈ mk,c.Dests i.e. it is guaranteed that it will be delivered in causal order. 
 

The first PC means that the message mi,a is known to have been delivered in causal order at event (j, b) to destination d = j .  
Therefore, in any future multicast message to destination d, the message does not need to carry information concerning d ∈ 
mi,a.Dests. The second PC means that there exists an event (k, c) that would ensure the causal delivery of the present 
message (j, b) with respect to (i, a). If  (k, c) is causally delivered with respect to (i,a), the information about d ∈ mi,a.Dests 
does not need to be sent. 

 
Another example of a protocol that falls into this category is the protocol proposed by Birman [BIR91], which is based on 
vector time clocks. The author, in his protocol, proposes to compress the vector time clocks by sending only the vector 
positions that have changed between the diffusion of the message in question and the position of the current vectors. The 
main disadvantage of this approach is the unnecessary use of additional memory.  
  
The work of Prakash and Raynal [PRA97] belongs in this category as well.  Their work, as Peterson’s work, uses the 
property of direct dependency to reduce the control information. This work extends the direct dependency property so as to 
support multicast environments. The Prakash’s work does not use nor maintain context graphs to ensure causal ordering. To 
ensure causal ordering, a message m needs to carry information about only those messages m’ on which its delivery is 
directly dependent upon. This approach is oriented to resolve problems in mobile agent applications. We will present and 
explain in detail the immediate dependency relation in Section 3. 
 
The characteristics of symmetric protocols can be summarized by the following four points: 
 

• In the worst case, the bound of the size of the control information remains at the maximum value of θ(n), θ(g�n) or 
θ(n2), as the case may be [CHA91, SCH94, KSH98B]. 

• All participants interact without an intermediary. 
• All participants have the same role. 
• The protocols may be used in real-time applications. 
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2.2.2 Causal Asymmetric protocols 
 
The asymmetric category is composed of solutions that assume either a certain network topology, a particular group 
structure [BAL97], and/or execution models [ROD95]. 
 
The main drawback of protocols that take into account a particular network topology is that they can only be used in 
applications where the topology is fairly static, or when it can be calculated at the moment of compilation or configuration.  
These protocols turn out to be completely inadequate in the cooperative applications we consider, since it is impossible to 
know in advance when, where, or who (user, host, participant, agent, etc.) will participate. 
 
An example of a protocol that assumes a network topology is the work done by Rodrigues and Verisismo [ROD95], who 
use causal separators as barriers to filter the information concerning the messages addressed to all the members of a causal 
zone (set of participants delimited by one or several causal separators).  A causal zone never sends control information 
outside of its boundaries.  Communication between participants who belong to different networks takes place through the 
use of predetermined re-diffusion servers, as shown in Fig 2a.   

        
 

Fig. 2 a) Causal separators, b) Daisy Architecture 
 

An example of a protocol that assumes a certain group structure is proposed by Baldoni et al [BAL97] who divide the 
participants into logical local groups, and who use causal servers to disseminate messages across these groups.  By doing so, 
the amount of control information is reduced to the local group size.  For example, in order to transmit a broadcat message 
to all existing participant in Fig. 2b, first the message must be transmitted in a local manner to the group to which it belongs; 
and then, the participant who functions as the local causal server rediffuses the message among the causal servers group 
(one server per group), which in turn, will rediffuse the message in a internal manner (Fig 2b). 

 

        
Fig. 3 Low Cost Approach                   
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A last example of protocols based on particular execution models is the work done by Mostefaoui et al [MOS93], named 
low cost approach (Fig 3.).   In this work, the diffusion of messages occurs in phases.   In each phase, all participants diffuse 
one, and only one, message.  A new phase begins only when all messages in the previous phase have been delivered.  In 
other words, the execution is synchronous [AWE85]. In this scheme, the use of bandwidth is not optimal due to the fact that 
all participants must transmit one message per phase, even when they do not have data to tranmsit. 
 
The characteristics of asymmetric protocols can be summarized by the following two points: 

• Usually the protocols introduce an additional delay in the causal delivery of messages, due to either the use of re-
diffusion servers, or to the chosen execution model. 

• Complex organization and synchronisation structures are used. 
 
 
3. The Immediate Dependency Relation 

 
We have indicated in Section 2.2 that the control information overhead timestamped per message and in local storage for 
the broadcast case is θ(n) [SCH94], where n is the number of participants in the group.  Likewise, the overhead information 
in the multi-group case is θ (g�n) [BIR91], where g is the number of multi-recipient groups.  In this section, we demonstrate 
that it is not always necessary to transmit all the control information (either θ(n) in the broadcast case, or θ(g�n) in the 
multi-group case) attached to each message. 
 
 
 
3.1 The Immediate Dependency Relation in a broadcast environment 
 
 
The Immediate Dependency Relation (IDR) [PRA97] is the propagation threshold of the control information CI, regarding 
the messages sent in the causal past which must be transmitted to ensure a causal delivery.  We denote it by ↓, and its 
formal definition is the following: 
 
 
 Definition 5 Immediate Dependency Relation ↓ (IDR): 
 

m↓m’⇔[ (m → m’) ∧ ∀ m”∈ M,  (m → m”→ m’)] 
 
Thus, a message m directly precedes a message m’, iff no other message m’’ belonging to M exists (M is the set of messages 
of the system), such that m’’ belongs at the same time to the causal future of m, and to the causal past of m’. 
 
This relationship is important since we show that if the delivery of messages respects the order of their diffusion for all pairs 
of messages in IDR, then the delivery will respect the causal delivery for all messages.  This property is formalized as 
follows: 
 

Proposition 1 

If ∀ m,m’ ∈ M,  m ↓ m’ ⇒ ∀k ∈ c :  
        deliveryk(m) → deliveryk(m’) 
then m → m’ ⇒ ∀k ∈ c :  
        deliveryk(m) → deliveryk(m’) 

 
Causal information that includes the messages immediately preceding a given message is sufficient to ensure a causal 
delivery of such message. 
 
We will next present an in-depth study of the IDR in the context of serial, as well as concurrent, messages. 
 



3.1.1 Serial messages  
 
Consider the diffusion of message m4 (send(m4)) such that m2↓m3↓m4 (Fig. 4a).  The only control information CI attached to 
m4 in order to ensure a causal order relates to m3, which is the only message in an immediate dependency relationship with 
m4.  The delivery of m4 to participant pk (deliveryk(m4))  ensures that m3 will be delivered to pk in a causal order relative to m4 
(m3 → m4).    For all messages send(m’) (in the example  m’=m2)   in the causal past of m3, such that m’↓m3, if m’ is 
delivered in a causal order relative to m3, then through the transitivity property, m’ is guaranteed to be delivered in a causal 
order relative to m4 (m2 → m4).  In other words, (Figure 4b), m4 will be delivered once m3 has been delivered; m3 will be 
delivered once m2 has been delivered, and so on.  
 

 
 

Fig. 4 a) Diagram of serial messages b) Serial precedence graph  
c) Diagram of concurrent messages d) Concurrent precedence graph. 

3.1.1 Concurrent messages 
 
The case of serial messages is not very common in distributed systems.  Generally, distributed systems present the 
important characteristic of simultaneous execution, known as concurrency.  Concurrency allows a distributed system to deal 
with numerous messages at the same time.  The concurrency relation || is defined as the dual of the causal relationship → ; it 
is formally defined as follows: 

 

Definition 6 Concurrence Relation ||  

m || m’⇔   (m → m’ ∨ m’→ m) 
 
Definition 6 indicates that a message m is concurrent to another message m’ iff neither m causally precedes m’, nor m’ 
causally precedes m. 
By using the IDR definition (Definition 5) and the definition of the Concurrence Relation (Definition 6), ↓ and || 
respectively, we can conclude that: 
 

Proposition 2 The set of immediate predecessors to a message m are mutually concurrent. 

(m’↓ m ∧ m”↓ m) ⇒ m’ || m” 
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This property means that the sufficient and necessary control information CI to send with m only concerns the concurrent 
messages that have an immediate precedence relation with m.  For example, let’s consider a message m4 such that 
(m2||m3)↓m4   (Figure 4c).  The sufficient information to transmit with m4 concerns the messages m2 and m3 (CI ={m2, m3}), 
in other words, the messages with an immediate precedence relation with m4.  The delivery of m4 to participant pk 

(deliveryk(m4))  ensures that m2 and m3   will be delivered to pk in a causal order relative to m4 ((m2||m3)→m4).  This means 
that m4 will only be delivered once both m2 and m3 are already delivered. 
 
 
3.2 Analysis of the IDR principle 

 
The size of the control information attached to a message m depends, therefore, on the number of concurrent messages that 
have an IDR with m.  In the best case, when we are dealing with a serial message, we note that |CI| = 1. Since the set of 
messages diffused by one participant cannot be mutually concurrent, the worse case turns out to be |CI| = n.  Two conditions 
must occur for the worst case (|CI| = n) to take place (Fig. 5): 
 

Condition 1- The degree of diffusion of messages must be equal to n, i.e. a parallel diffusion of n messages 
Condition 2- Participant p i presents an idle diffusion during a time interval ∆i(n), where ∆i(n)is the reception time of n 
messages of condition 1. 

 
Fig. 5 Worst case diagram, when n=3 

 
We consider the worst case to occur during the diffusion of each message at a local level, not at a global level.  For 
example, as Fig. 5 shows, the worst case occurs during the diffusion of each message m4, m5, and m6.   This can be explained 
by the fact that if one considers that each participant automatically receives their diffusions, then participants p1, p2, and p3 
will receive n concurrent messages (Condition 1), and all of them will have remained inactive during the reception of these 
n messages (Condition 2).  Therefore, during the next diffusion of e4, e5, and e6 by p1, p2, and p3 respectively, the worst case 
will result for each diffusion, meaning that | CI| = n,  
 
What is the likelihood that the worst case will arise for a message m?   In order to answer this question, we have used the 
Poisson law and Bernoulli’s law. We have found that in the case of the example presented in Fig. 5, the likelihood that the 
worst case will occurs when n=3 is 0.0497. For values greater than n=3, the likelihood becomes negligeable; for further 
details, see [POM02B], [FAY85] and [JAC89]. 
 
 
3.3 The Immediate Dependency Relation in a Multi-Group environment 
 
In Section 4.1, we showed in detail the theory regarding the Immediate Dependency Relation (IDR) for the diffusion of 
broadcast messages. 
 
In this section, we will first define Causal Inter-group Delivery, which ensures a coherent delivery.  We will then introduce 
an extension to the principle of immediate dependency, which treats the case of multicast multi-group diffusion.  We call 
this extension the “Immediate Inter-group Dependency Relation” and we refer to it by its acronym IIGDR.  In order to study 
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the diffusion of inter-group messages and particularly the new IIGDR property, we present the “Multi-group Message 
Diagram” as an aid to fully understand each property presented in this paper. 
 

3.3.1 Immediate Inter-group Dependency Relation 
 
In the same way that the IDR allows us to define the sufficient control information in a broadcast case, the Immediate Inter-
group Dependency Relation (IIGDR) allows us to characterize the sufficient control information to ensure the causal 
delivery of messages in a multi-group case. 
 

Definition 7 Immediate Inter-group Dependency Relation (IIGDR) ↑ : 

(m,c)↑(m’,c’) ⇔ [((m,c) → (m’, c’))∧∀(m”, c’’)∈ M, ((m,c)→ (m”, c’’)→ (m’, c’) ⇒ c’’≠ c ∧ c’’≠c’)] 
 
The definition presented above means that a message (m, c)  has an immediate dependency relation with an message (m’, c’)   
if for all (m”, c’’)   that belong to the set of messages of system M, such that (m, c)→ (m”, c’’)→ (m’, c’), then group c’’ is 
different than c and c’ (where c, c’ and  c’’ are the diffusion groups of messages m, m’ and m”, respectively).  We note that 
if only one group exists, the relation ‘↑’ coincides with the immediate dependency relation denoted as ‘↓’, which has been 
previously defined. 
 
We show that if the delivery of messages respects the diffusion order of the messages in an IIGDR, then all the messages 
will be delivered in this order. 
 

Proposition 3 

If ∀ (m,c),(m’,c’) ∈ M, (m,c) ↑ (m’,c’) ⇒ ∀k ∈ cI c’ deliveryk(m) → deliveryk(m’) 

then ∀ (m,c),(m’,c’) ∈ M, (m,c)  →  (m’,c’) ⇒ ∀k ∈ cI c’ deliveryk(m) → deliveryk(m’) 
 
 
The attached information concerning the messages immediately preceding a given message is therefore sufficient to ensure 
the causal delivery of this message. 
 
 

                                                     
Fig. 6  Multi-Group Diagram 
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3.3.2 Multi-group Diagram 
  
The three-dimensional multi-group diagram (Fig 6) may be used to represent numerous scenarios.  Even if this diagram is 
not applicable at all times in a broad manner, it is useful to graphically illustrate the complex concept of causality in a multi-
group environment. 
 
This diagram was created so as to clearly represent: 

• the interaction of each participant in the groups (according to the case) 
• the participant members in the groups 
• the diffusion and reception of messages sent to numerous recipients in the course of time 

 
3.3.3 Messages with an Immediate Inter-group dependency 

 
In order to better illustrate Definition 7, we present the following scenario as example. 
 
Scenario:  Consider a message m4, such that ((m2, ch1)||(m3, ch1))↑(m4, ch3), as shown in Figure 7.  According to Definition 
7, the messages which have an IIGDR with m4 are messages m2 and m3.  Therefore, the information that corresponds to 
these messages is sent as control information to m4. This information is not taken into account for the delivery of m4 by 
participant p3 since p3 ∉ ch1I ch3.   
 
Participant p3 only uses this information to update his system history file and for future diffusion of messages, as in the case 
of the diffusion of message m5.   
 
Let’s now consider message m5 (Figure 7).   At the moment of diffusion of m5, we apply Definition 7 to each message in the 
causal history of p3.   We find that the messages that have an IIGDR with m5 are m2, m3 and m4.   Thus, as in the previous 
cases, the control information timestamped to message m5 corresponds to the messages which have an IIGDR to m5.   
 
Message m5 is delivered to p2 (p2 ∈ ch1I ch2) only after messages m2 and m3 have been delivered.  These messages, m2 and 
m3 are delivered to p2 only after message m1 has been delivered.  This is ensured by the immediate dependency relation 
(IDR) 
 

                                                        
Fig. 7 Multi-group scenario 
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4. The Minimal Broadcast Causal Protocol (MBCP) 

 
In order to reduce the amount of information, our broadcast causal protocol is based on the IDR property described in 
Section 3.1.  Therefore, the only causal information timestamped to each message m corresponds to the messages with 
which it is linked to by an IDR.  We demonstrate that our protocol, by using the IDR principle, is optimal in the sense that it 
transmits the minimal and necessary amount of control information to completely preserve the causal order. 
 
 
4.1 Description of structures used in the protocol 
 
To attain minimality, each participant manages in a local fashion the following information: 

• VT(pk)  is the vector timeclock.  The size of the vector is equal to n.    It is here that we keep track of the number of 
messages diffused by the participant. 

• The structure of the control information CIi is a set of entries ktkci , = (k, tk).  Each entry in CIi denotes a message that is 
not ensured by participant pi of being delivered in a causal order.  The entry (k, tk) represents a diffusion by participant pk at 
a logical local timeclock tk = VT(pk)[k]. 

• The structure of a message 
itim ,  is a quadruplet 

itim ,  = (i, ti, message, Hm), where i is the participant identifier, 

ti=VT(pi)[i] is the logical local timeclock at node i, message is the message in question, and Hm contains the set of all entries 
that have an IDR with

itim , . 

 
1. Initially,  
i.   VT(pi)[j] = 0 ∀ j:1…n. 
ii.  CIi ← ∅ 
 
2. For each diffusion of message send(m) to pi  
i.   VT(pi)[i] = VT(pi)[i] +1 
ii.  Hm ←CIi  
 
3.   m= (i, ti=VT(pi)[i], message, Hm) 
i.    Diffusion send(m) 
ii.   CIi ←∅ 
 

 4.  For each reception receive(m) à pj , i≠j,     
m=(k,tk,message, Hm) 
To enforce a causal delivery of  m  
 

i. Delivery condition 
      if  not (tk = VT(pj)[k] +1 and  tl ≤ VT(pj)[l] ∀ ( l, tl) eH∈ )  

           then   
    wait 

           else  
ii         delivery(m) 
iii.           VT(pj)[k] = VT(pj)[k] +1 

iv.            if skCIci jts =∈∃ ',  

        then  
                            CIj ← CIj \ { ',tsci } 

      endif 
                 CIj ← CIj U {(k, tk)} 
v.                  CIj ← CIj \ Hm 
vi.  endif 

  
 

Table 1 The Minimal Broadcast Causal Protocol (MBCP) 
 
Each structure in the broadcast protocol has a well-defined function.  Each function is in correlation with what the 
information held in reserve in each of its structures represents.   The information in the vector time VT( ) contains either a 
complete view or a partial view of the causal system.  We consider it to have a complete view if at a given instant t, the 
board contains the information regarding the last message diffused by each participant.  Otherwise, we consider it to have a 
partial view.  It is by means of the structure VT( ) that we can guarantee a complete causal delivery.  The process of bringing 
up to date the structure  VT( ) is described in Section 2.2. 
 
The information in CI has a partial copy of VT( ) at any given moment, meaning that: 

 
if ∃(i, t) | (i, t) ∈ CIk then VT(pk)[i] = t 

 



The updating process of CI takes place at the moment of diffusion or reception of a message, as shown in Table 1 (lines 1.ii, 
4.iv and 4.v).  In line 1.ii, the diffusion of a new message m ensures, through the IDR property, the causal delivery of the 
messages contained in Hm.   In line 4.iv, by means of the property of concurrent messages, we observe that the messages 
diffused by the same participant are not concurrent, and thererefore, we do not store in the CI the information concerning 
each participant’s most recent message. 
 
The information in structure Hm contains the messages which have an IDR with the message in question.  Structure Hm is 
created at the moment of diffusion of a message (line 1.ii). The information in Hm is unique for each local diffusion message 
e, except in the case where Hm=∅. 
 
At this time we will progressively explain the implementation of the broadcast protocol, by using the example described in 
Figure 4c. 
 
 
4.2 Scenario example  
 
Example.  Consider the group of participants g = {p1, p2 , p3 , p4 , p5}  and the diffusion of message m4  to p2.    Prior to the 
delivery of m4 to p5, CI5 = {(3,1),(4,1)}  and VT(p5 )= {10110} must take place (Fig. 4c). This is deduced from the broadcast 
causal protocol (Table 1). 
 
Diffusion of message m4 to p2 
 
2.i The value of vector VT(p2)[2] is incremented by one.  This ensures the sequential delivery of all messages m diffused by 
the same participant pk. 
2.ii  CI2 is assigned to Hm4, therefore Hm4  = {(3,1),(4,1)}. The information in Hm4 corresponds to the concurrent messages 
with an immediate relation to m4.  
3.i   Diffusion of message m4=(2,1,message, Hm4),  send(m4).   We note that the protocol is intended for the use in 
multirecipient communication groups; however, it may be applied to communication supports that simulate multirecipient 
communication. 
 3.ii  CI2  is erased.  All the messages in the causal past of p2  that have an immediate dependency relation with m4 are 
guaranteed to be delivered in a causal order after the message delivery(m4). 
 
Delivery of message m4  to p2 
 
4.i  Once each participant receives a message, he confirms that the message satisfies the delivery condition, which verifies 
that the reception message in question fulfills the causal property.  In this case, message m4 responds to the delivery 
condition, and therefore, is delivered to the application. 
4.iii  The value of vector VT(p5)[2]  is incremented by one.  This way, we maintain, in a local manner, a record regarding the 
messages emmited causally by each participant. 
In other words, the information stored in VT(pk)  is a register of the causal history of the group, as seen by participant pk. 
 
CI5 is updated in the following manner:  
 
4.iv  If an entry of participant k already exists in CI5,  then it is updated by the last message received in pk.   In this case, 
there is no control information about p2 in CI5.  Thus, only entry (2,1)  is associated to CI5.  At this moment during the 
implementation of the protocol, CI5={(3,1),(4,1),(2,1)} 
4.v All entries concerning the immediate predecessors of m4, including Hm4, which also exist in CI5 are erased from CI5.    
On account of the transitivity property, the delivery of message m4 guarrantees that all the immediate predecessors, 
including in H m4, will be delivered in a causal order.  In this example, m4 arrives with Hm4 = {(3,1),(4,1)};  thus, CI5 = CIj \ 
Hm4 = {(2,1)} 
 
 
5. Conclusions 
 
In this article we have presented a detailed study of the immediate dependency relation and an extention to the IDR relation 
to support multi-group communication. We showed how through its use we can guarantee, in an optimal manner, causal 



group communication for the basic causal broadcast case, as well as for the generic multi-group communication case.  We 
demonstrated in this article that by using the IDR relation, it is possible to build optimal causal protocols with desirable 
characteristics for distributed systems, such as:  
 

• dynamic configuration which allows it to adapt its composition in the course of time  
• symmetric organization which considers all participants to be equal, thus, permitting them to interact without the need 

of mediators (servers) and 
• asynchronous diffusion of events, providing participants the freedom to interact at the moment they desire. 

 
In addition, we have presented an efficient broadcast causal protocol.  It is optimal as far as the quantity of control 
information needed to be sent per message.   
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