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Abstract— This paper elaborates on the benefits of using
particle swarm model selection (PSMS) for building effective
ensemble classification models. PSMS searches in a toolbox
for the best combination of methods for preprocessing, feature
selection and classification for generic binary classification
tasks. Throughout the search process PSMS evaluates a wide
variety of models, from which a single solution (i.e. the best
classification model) is selected. Satisfactory results have been
reported with the latter formulation in several domains. How-
ever, many models that are potentially useful for classification
are disregarded for the final model. In this paper we propose
to re-use such candidate models for building effective ensemble
classifiers. We explore three simple formulations for building
ensembles from intermediate PSMS solutions that do not re-
quire of further computation than that of the traditional PSMS
implementation. We report experimental results on benchmark
data as well as on a data set from object recognition. Our
results show that better models can be obtained with the
ensemble version of PSMS, motivating further research on
the combination of candidate PSMS models. Additionally, we
analyze the diversity of the classification models, which is known
to be an important factor for the construction of ensembles.

I. INTRODUCTION

Ensemble classifiers are predictive models build upon
the combination of multiple classification methods. These
models are very popular because of their ability for im-
proving the performance and stability of individual models.
From previous work on multiple classifier systems (e.g. [1],
[2], [3]), we know that the success of committee methods
mainly depends on two factors, namely, the performance
and diversity of individual models. Hence, by generating
accurate enough individual models and trying to make them
as diverse as possible we can obtain better predictions than
when using any of the individual models. The selection
of accurate classification models is known as the model
selection problem [4]. Therefore, a natural approach for
building ensembles is to rely on model selection techniques
for obtaining effective individual models, while ensuring that
the diversity among the individual models is acceptable.

The complications of the above formulation is that tra-
ditional model selection schemes are able to optimize the
performance of individual models only and do not consider
the diversity among sets of methods; thus additional strate-
gies must be adopted (e.g. subsampling). Also, creating an
ensemble with N−members, requires the application of the
model selection strategy N−times, which can be computa-
tionally expensive. Therefore this formulation seems to be
very limited. Nevertheless, there are a sort of model selec-
tion strategies (population based methods) that despite they
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select individual models, they are able to generate diverse
and accurate individual models through the model selection
process. We argue that we can take advantage of such sort of
model selection methods for constructing effective ensemble
classifiers without increasing the computational cost of the
optimization procedure.

Particle swarm model selection (PSMS) is a recently
proposed technique for the selection of effective (individual)
classification models for generic domains [5]. Given a binary
classification problem PSMS searches for the best combi-
nation of methods for preprocessing, feature selection and
classification from a predefined set of methods that are avail-
able in a machine learning toolbox; PSMS also optimizes
the parameters of the considered methods according to the
available data. Since the search space that PSMS explores
is composed of many heterogenous models, PSMS evaluates
throughout its search process a broad diversity of methods
from which a single solution (i.e. the best classification
model) is selected. Satisfactory results have been reported
with PSMS on a variety of domains [6], [5], [7]. However,
many of the evaluated models that are potentially useful for
the classification problem are disregarded for the final model.
Our hypothesis in this work is that we can take advantage
of the variety of models evaluated by PSMS for building
ensemble classifiers that can outperform the (single) best
solution as selected with traditional PSMS.

In this paper we study the suitability of PSMS for building
ensemble classifiers. We explore three strategies for generat-
ing ensembles from PSMS’s partial solutions (i.e. candidate
classification models). Under these formulations no extra
computation is required, although the classification accuracy
can be significantly improved. We conduct experiments on
benchmark (machine learning) data as well as on an object
recognition data set and we evaluate both accuracy and
diversity of individual models. Experimental results show
that PSMS can be very helpful for building ensembles, as
the ensemble version improves the performance of traditional
PSMS. The ensemble version of PSMS is also able to im-
prove the stability of predictions from models selected with
PSMS. An interesting finding is that models as evaluated by
PSMS can provide of highly diverse models, thus motivating
the development of more elaborated strategies for building
ensembles.

A. Related work

The underlying idea of ensemble methods is that by
considering multiple views of the same problem we can
obtain more accurate and more robust predictions. The latter
fact is justified by theoretic and empirical studies that have
shown that, under certain conditions, the combination of
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multiple individual models is beneficial in terms of accuracy
and stability of predictors [1]. However, despite that the
ensemble learning paradigm has been studied for more than
two decades, there are still open some issues that deserve
further study. One of such issues is for example on how to
select the set of classifiers for creating an ensemble.

Previous studies suggest that the effectiveness of ensem-
bles depends on the accuracy and diversity of individual
models [2], [1], [3], [8]. Accordingly, successful ensemble
methods attempt to guarantee (at least) default accuracy
and high diversity by adopting diverse strategies; For ex-
ample, learning weights for weak learners [9]; randomizing
the sets of features and instances that are considered for
each classifier [10], [11]; partitioning the input space into
clusters and learning different classifiers for the different
clusters [12]; determining the most appropriate classifier
(from a predefined set) for each test instance according to
distance measures [13] or using different learning algorithms
for each individual model [14], [3], [15], [16], [17]. The latter
strategy, often called heterogeneous ensembles, is mostly
related to our work.

Heterogenous ensembles are based on the assumption that
since different learning algorithms have different biases, their
decision functions will be different, which may lead to obtain
high diversity among the individual models. However, a
problem with this sort of ensembles is that it is not clear how
to select what learning algorithms are to be considered for
an ensemble. Some researchers have adopted diverse search
strategies for the selection of a set of models so that the
performance of the ensemble under a certain fusion strategy
is optimized [14], [3], [15], [16], [17]. They consider a
pool of classification algorithms and by using combinatorial
optimization techniques they attempt to select the combi-
nation of methods that maximizes the performance of the
ensemble [18], [19], [15]. Some researchers also attempt
to optimize the weighs by which each of the considered
methods contributes to the ensemble [17], [16]. However,
under the latter approach the parameters of the learning
algorithms are fixed and hence the classifiers are not really
optimized for the individual problems; additionally, the same
data preprocessing methods and the same feature selection
techniques are used for all of the models that are considered
in the ensemble. Thus reducing the potential diversity of the
members of the ensemble.

In this paper we explore the use of a full model selec-
tion strategy for building ensemble classifiers. Full model
selection techniques aim at selecting the best combination
of methods for preprocessing, feature selection and classifi-
cation starting from a training data set [6], [5], [20]. The
main benefits of such methods is that the work job the
data analyst is simplified and very effective classification
models can be selected without spending time on the design
and development of specific models for different data sets.
Therefore, our hypothesis is that by adopting full model
selection techniques we can obtain effective classification
models that also can offer a high degree of diversity because

of the heterogeneity of models.
To the best of our knowledge there are only two full

model selection strategies that have developed so far [5],
[20]. On the one hand, Gorissen et al. have used genetic
algorithms for model type selection [20], on the other hand,
Escalante et al. have used particle swarm optimization for
full model selection (i.e., PSMS) [5]. Despite both techniques
have reported satisfactory results in this work we considered
PSMS because it has been applied to high dimensional data
sets without any problem, whereas the genetic algorithm
approach have been applied on low dimensional data only.
One should note that Gorissen et al. have already considered
the use of ensembles to cross-over models of different
types [20]; thus, they can select an ensemble as the final
model. We believe that the performance of the final model
can be further improved in both Gorrisen et al’s and Escalante
et al.’s approaches by merging the output of some models
evaluated through the search. Thus in future work we will
explore the suitability of Gorissen et al.’s method, under our
approach, for building ensembles.

The rest of this paper is organized as follows. The next
section describes PSMS. Section III elaborates on the suit-
ability of PSMS for building ensembles and introduces the
strategies we propose for building ensembles from PSMS
solutions. Section IV reports experimental results of our
methods. Section V summarizes our findings and outlines
future work directions.

II. PARTICLE SWARM MODEL SELECTION

This section describes PSMS, a generic technique for the
selection of individual classification models. In a nutshell
PSMS can be considered a black-box tool that receives
as input a training data set for binary classification and
returns as output a full classification model. Given a machine
learning toolbox, PSMS selects the best combination of
methods for preprocessing, feature selection and classifica-
tion; additionally, PSMS optimizes parameters of the selected
methods. PSMS explores the classifiers space by means
of particle swarm optimization (PSO), which attempts to
select the model that minimizes the classification error using
training data.

PSO is a bio-inspired search technique that has proved
to be very effective in several domains [21]. The algorithm
mimics the behavior of biological societies that share goals
and present local and social behavior. Solutions are called
particles, at each iteration t, each particle i has a position
in the search space xt

i =< xt
i,1, . . . , x

t
i,d >, and a velocity

vt
i =< vt

i,1, . . . , v
t
i,d > value, with d the dimensionality

of the problem. The PSO algorithm that we consider is
described in Algorithm 1.

At the beginning a population of m−particles (i.e. the
swarm) is randomly initialized; next an iterative process starts
where particles update their positions in the search space as
follows:

xt+1
i = xt

i + vt+1
i (1)

vt+1
i = w × vt

i + c1 × r1 × (pi − xt
i) + c2 × r2 × (gt − xt

i) (2)



Algorithm 1 Particle swarm optimization.
Require:
– c1, c2: weights for local and global information;
– m: number of particles in the swarm;
– Imax: number of iterations;
– W: inertia weight
Initialize swarm (S = {x1, x2, . . . , xm})
Compute fitness function f({x1, x2, . . . , xm})
Identify global best (pt

g) solution
Identify personal best solutions (p1,...,m = x1,...,m)
t = 1
while t < Imax do

for all xi ∈ S do
Calculate velocity vi for xi (Equation (2))
Update position of xi (Equation (1))
Compute f(xi)
Update pi (if needed)

end for
Update pt

g (if needed)
Decrease W
t++

end while
return pt

g

where pi is the best position obtained by xi (personal best),
pt

g is the best particle in the swarm up to iteration t (global
best), c1 and c2 constants weighting the contribution of local
and global solutions, whereas r1, r2 random numbers, W is
the so called inertia term, which weights the contribution of
the previous velocity into the new one, see [21] for details.
The goodness of particles is evaluated with a fitness function
(f(xi)) that is specific for the task at hand. PSO stops when
a fixed number of iterations (Imax) is performed.

In PSMS the particles are full models (i.e., combinations of
preprocessing, feature selection and classification methods),
codified as numerical vectors. The optimization problem
consists of minimizing an estimate of the classification errors
that models would obtain on unseen data (i.e. maximizing
the generalization performance). In particular, we considered
the balanced error rate (BER) as fitness function; BER =
E++E−

2 , where E+ and E− are the error rates in the positive
and negative classes, respectively. As the test data are unseen
during training, the error of solutions (i.e., full models) is
estimated with k−fold cross validation (CV) on the training
set. Thus, the PSO algorithm is used to search for the model
that minimizes the CV-BER; the single model that achieves
the lowest CV-BER is returned as output.

PSMS has been used with the CLOP toolbox1, the
methods available in such toolbox are shown in Table I.
Therefore, PSMS solutions are combinations of such
techniques with different parameters settings; a sample
(decodified) solution in PSMS is as follows:

[standardize(c = 1),s2n(f = 8),neural(u = 10,s = 0.5,iter = 10)]

Under the above model the data is first standardized, next
the s2n feature selection method is used for selecting at
most f = 8 features, then a neural classifier with specific
parameters is used for classification.

1http://clopinet.com/CLOP

TABLE I
CLASSIFICATION (C), FEATURE SELECTION (F) AND PREPROCESSING

(P) METHODS CONSIDERED IN OUR EXPERIMENTS; WE SHOW THE

OBJECT NAME AND THE NUMBER OF PARAMETERS FOR EACH METHOD.

Object name Type # pars. Description
zarbi C 0 Linear classifier
naive C 0 Naı̈ve Bayes
logitboost C 3 Boosting with trees
neural C 4 Neural network
svc C 4 SVM classifier
kridge C 4 Kernel ridge regression
rf C 3 Random forest
lssvm C 5 Kernel ridge regression
Ftest F 4 F-test criterion
Ttest F 4 T-test criterion
aucfs F 4 AUC criterion
odds-ratio F 4 Odds ratio criterion
relief F 3 Relief ranking criterion
Pearson F 4 Pearson correlation coefficient
ZFilter F 2 Statistical filter
s2n F 2 Signal-to-noise ratio
pc − extract F 1 Principal components analysis
svcrfe F 1 SVC- recursive feature elimination
normalize P 1 Data normalization
standardize P 1 Data standardization
shift − scale P 1 Data scaling

PSMS has reported satisfactory results on diverse binary
classification problems without requiring significant super-
vision [5], [7], [4]. The main benefits of PSMS is that (1)
very effective models can be obtained, (2) no knowledge is
required on machine learning nor on the application domain
and (3) it can be applied to any binary classification problem.
A disadvantage of PSMS is that it can be computationally
expensive as many models must be trained and evaluated.
Nevertheless, subsampling heuristics have been proposed for
speeding up PSMS [5]. In this paper we take advantage of
the large number of models that are evaluated through the
search for the improving performance of models selected
with PSMS.

III. ENSEMBLE PARTICLE SWARM MODEL SELECTION

PSO is a population-based heuristic technique in which
solutions are not eliminated/created. Instead the initial pop-
ulation of solutions is maintained. At each iteration t the
positions of the m−particles are updated by taking into
account local (pi in Equation (1)) and global information
(pt

g in Equation(2)); at the end of the search process (i.e.
when t = Imax) the solution that obtains the best fitness
value (i.e. pImax

g ) is returned as the selected model.
One should note, however, that after Imax iterations a

total of M = [(Imax + 1) × m] solutions are evaluated
by PSMS; from which a single solution is returned as the
selected model. What is more, at the end of the search the
optimized swarm provides us with m−candidate solutions,
all of which are potentially useful, but again a single one
is selected. Despite this approach lies at the core of PSO
(i.e. the leader particle is the best solution), for PSMS the
best single model can be one that has over-fitted the model
selection criterion. Thus, even when the selected solution
minimizes the CV-BER its performance on test data may
be rather poor. Therefore, alternative strategies for selecting
a single model from PSMS’s candidate solutions must be



adopted. Note that the latter is a difficult task as the only
indicator of classifier effectiveness is the CV-BER estimate.

An alternative solution, that we explore herein, is to com-
bine the outputs of several of the models that are evaluated
through the search process instead of selecting a single
one. The motivation of this idea is the well known fact
that, under certain conditions, the combination of multiple
classifiers can result in better and more stable predictions.
The main conditions that are required for the success of
ensemble methods are related to the accuracy and diversity
of the individual models that form the ensemble [2], [1],
[3], [8]. Accordingly, our proposal is to identify, from the
M solutions tried by PSMS, those models that seem to be
accurate (according to the CV-BER criteria) and diverse (of
heterogeneous nature) at the same time, and next using such
models for building ensemble classifiers.

In traditional ensemble methods diversity can be achieved
by pattern subsampling, feature subset selection, input space
partitioning or by considering different learning algorithms
for the ensemble members. Thus we must adopt at least one
of the latter strategies for guaranteeing diversity in PSMS’s
partial solutions. Nevertheless, in PSMS the models that are
considered through the search are based on different learning
algorithms and different methods for data preprocessing and
feature selection; additionally, the parameters of the different
models may vary considerably. In consequence models con-
sidered by PSMS are very heterogeneous, our hypothesis is
that such heterogeneity may be related to diversity (i.e. the
ability of ensemble members of making uncorrelated errors)
among models. In Section IV we evaluate our hypothesis
experimentally, by measuring the diversity of models selected
with PSMS.

Note that heterogeneity in models is guaranteed, to some
extend, at the beginning of the search because the initial
population in PSMS is generated under a uniform distribution
over the models and parameters. As the search process goes
on, particles will try to adapt their behavior according to both
the current global and local minima. Hence at the end of the
search it may be possible that most of the particles converge
to similar classification models. For avoiding the latter issue
we can modify PSMS’s parameters so that we can control
the impact that global solutions have into the generation of
new solutions; this way, the heterogeneity of solutions can be
maintained at the end of the search. For example, by setting
c2 (the weight for the global best solution) to a small value
will produce that new updates of particles positions depend
mostly on their own previous best solutions; setting W (the
inertia weight) to zero will produce that previous velocities
will have no influence on the generation of new solutions;
also, running PSMS for a small number of iterations (Imax)
will prevent PSMS of performing an intensive search that
may lead to keeping models diverse.

Regarding the accuracy of the models, as stated above the
only indicators of classification performance are the fitness
function values obtained by the models (i.e. CV-BER); thus,
we resort to this estimate for selecting members of ensemble

methods. In the rest of this section we describe the three
strategies we have adopted for the selection of ensemble
members. These strategies were defined because we think
that under the below conditions one may expect that the
models are both highly accurate and diverse.

A. Best-set ensembles

We consider the set of global best solutions obtained
every h−iterations of PSMS. That is, the set E1 =
{ph

g , p2×h
g . . . , pImax

g }. Note that models considered under
this strategy may be very effective (if the CV-BER criterion
is not over-fitted); however, the diversity of methods selected
under this technique may be limited because noting prevents
the models be similar from each other (e.g. in case the local
minima pImax

g is found at the very first iterations). A total of(
Imax

h

)
+ 1 models are evaluated. We call this configuration

the EPSMS-BS.

B. Swarm ensemble

This is the most natural way of creating an ensemble in
PSMS. Basically it consists of combining the solutions in
the swarm at the end of the search process; that is, E3 =
{xImax

1 , . . . , xImax
m }. Under this setting the optimized swarm

can provide of highly accurate models as these solutions are
the ones with better performance. Although, it is possible
that the diversity of these solutions may be small as most
solutions will converge to a single model. Nevertheless,
by adjusting the PSMS’s parameters we can ensure some
degree of heterogeneity among the models, see Section III.
A total of m−models are considered in this way. We call
this configuration EPSMS-SE.

C. Best-per-iteration ensemble

We consider the collection of models that obtained the best
fitness value per each iteration; independently of whether
or not they outperformed the global best solution. That is,
we consider the set E2 = {x1

max, . . . , xImax
max }; where xt

max

is the best particle (with respect to the rest of particles at
iteration t) at iteration t. Under this formulation models are
potentially accurate and diverse, as they have obtained the
lowest fitness value in a certain iteration and it is difficult
for the same model to obtain the same fitness score. A total
of Imax + 1 models are evaluated under this approach. We
call this setting EPSMS-BI.

We have defined the set of candidate solutions from PSMS
that will be considered for building ensembles. Note that
no one of the above sets requires of further computation
than that of traditional PSMS as all of these solutions are
evaluated anyways. In the rest of this section we describe
the way the selected models are combined.

D. Fusion strategy

For combining the individual models we consider a simple
(unweighted) averaging strategy: when a new pattern pT

needs to be classified all of the individual models (which
have been previously trained using training data) are used
to classify the instance. Each individual model k express its



TABLE II
BENCHMARK DATA SETS USED IN OUR EXPERIMENTS.

ID Data set Training Testing Features
1 Breast cancer 200 77 9
2 Diabetes 468 300 8
3 Flare solar 666 400 9
4 German 700 300 20
5 Heart 170 100 13
6 Image 1300 1010 20
7 Splice 1000 2175 60
8 Thyroid 140 75 5
9 Titanic 150 2051 3

confidence on the class of the pattern fk(pT ) ∈ [−1, 1], then
we use average of confidence values as the confidence of the
ensemble:

g(Ex) =
1
L

L∑
k=1

fk(pT ) (3)

where L is the number of members in the ensemble, x ∈
{1, 2, 3} indicates the ensemble strategy, fk(pT ) is the con-
fidence that the kth classifier has on the class of the pattern
pT . Finally, we assign to test pattern the class corresponding
to the sign of g(Ex).

Because the considered classifiers are potentially heteroge-
neous their outputs are normalized before the fusion so that
they lie in a comparable scale. We considered the following
normalization for a classifier k

fk(pT ) =
fk(pT ) − min(fk(.))

max(fk(.)) − min(fk(.))
(4)

where fk(pT ) is the output of classifier k for input pT ,
min(fk(.)) and max(fk(.)) are the minimum and maximum
values, respectively, assigned by the kth classifier to an
instance in the test set.

IV. EXPERIMENTS AND RESULTS

In this section we report experimental results on both
benchmark data and an object recognition data set. The goals
of the experiments are evaluating the gain we can have by
adopting the ensemble strategy instead of selecting a single
model and assessing the diversity of models evaluated by
PSMS.

A. Data sets and evaluation methodology

We consider the benchmark data sets described in Table II,
which have been used in other studies [22], [23], [5]. All
of these data sets are associated with binary classification
problems.

Additionally we considered an object recognition data
set2 where the task is to classify regions according to
semantic concepts [24]. The data was kindly provided by G.
Papadopoulous and was obtained as follows. A set of images
were segmented using an automatic technique, then regions
were manually labeled with one of 10 concepts (see column 1
in Table III). Visual features were extracted from each region;
thus the pairs of visual features and label associated with

2http://mklab.iti.gr/project/scef

TABLE III
CHARACTERISTICS OF THE OBJECT RECOGNITION DATA SET THAT WE

CONSIDERED.

Class Training Testing Imbalance ratio
building 280 450 11.77 - 13.64
foliage 506 681 21.27 - 20.63
mountain 203 349 08.53 - 10.57
person 224 219 09.41 - 06.63
road 89 127 03.74 - 03.84
sailing-boat 39 70 01.64 - 02.12
sand 208 273 08.74 - 08.27
sea 325 338 13.66 - 10.24
sky 461 664 19.28 - 20.12
snow 43 129 01.80 - 03.90
Total 2378 3300 (Avg.) 10 - 10

each region are the instances of the classification problem. In
particular: 3 sets of visual features were extracted: wavelet
features, SIFT features and MPEG-7 features, resulting in
768 features; in this work we combined these features and
applied a feature selection method for keeping the 50 most
important features, in this way we reduced the dimensionality
of the data set before applying PSMS.

As the data set is associated to a multiclass classification
problem we adopted the one-vs-all strategy for building
up multiclass classifiers from multiple binary models [25].
Under this approach we create K binary classifiers (with K
the number of classes), the kth classifier is able to distinguish
examples from class k (positive examples) from the rest
j : j �= k (negative examples). When a new instance
needs to be classified the K classifiers are tested and the
classifier with the highest confidence decides the class of the
instance. It is rather clear that the individual classifiers face
a highly imbalanced problem, column 3 in Table III shows
the imbalance ratio for each of the classes for the training
and test sets. For this data set we use PSMS for selecting
classifiers (and ensemble classifiers) for each class; hence
we report both the per-class performance and the multiclass
accuracy.

We evaluate accuracy by using the area under the ROC
curve performance (AUC) [26]; we use AUC as leading
measure because it is unsensitive to the selection of a
classification threshold in the output of classifiers, since
we are averaging the outputs of heterogeneous classifiers
setting an appropriate decision threshold may be a difficult
task. Additionally, for illustrative purposes we report the
maximum possible accuracy (M-ACC) that can be obtained
with the members of the ensemble; that is, the accuracy
we would get if we select the correct output for each test
instance from the predictions of individual models, provided
the correct label is predicted by a member of the ensemble.

We evaluate diversity using one of the widely used
measures for assessing non-pairwise diversity. Namely the
coincident failure diversity measure (CFD):

CFD =
{

1
1−p0

∑L
r=1

L−r
L−1pr if p0 < 1

0 if p0 = 1
(5)

where pr the probability the r models fail on a randomly



chosen data, see [2], [3] for details. In this work we estimate
CFD using test data, thus we define pr as the average, over
the test data, of errors made by r models. These measure
evaluate how complimentary the ensemble members are, the
higher the value of CFD the more diverse they are.

For each of the above described data sets we adopted the
following methodology. We ran PSMS under a fixed param-
eter setting storing the solutions described in Sections III-
A, III-C and III-B. At the end of search we train the model
selected with PSMS (i.e. pImax

g ) using the entire training set,
the trained model is used to predict the outputs for instances
in the test set, then we evaluate the classification performance
of the model (we call this model PSMS-BEST). Until this
stage no extra computation is required than traditional PSMS.
Next, the individual models considered for the different
ensemble strategies are trained using the entire training
data, the individual models are tested on test data and their
output are combined as described in Section III-D. Then,
the performance and diversity of the ensemble methods is
evaluated.

Note that no extra computation is required for selecting
ensemble members with PSMS than that required for the
execution of straight PSMS. Thus, the complexity of the
ensemble selection approach is that of the PSMS technique.
As described in [5], the complexity of PSMS depends on
the methods considered, the number of patterns and the
dimensionality of the data. Thus, for some data sets the
application of PSMS can be very expensive. Nevertheless,
we can rely on heuristics that can ameliorate the complexity
of PSMS. For example, in [5] a subsampling strategy is
considered for applying PSMS to data sets with hundreds of
thousands of patterns and dozens of thousands of features.

B. Influence of PSMS’s parameters

In preliminary experiments we varied the PSMS param-
eters that can influence the diversity of solutions, namely
c2, W and Imax, see Section III (these results are not shown
here because of space constraints). From our experiments we
found that no significative difference in ensemble accuracy
can be obtained by adjusting such parameters, although, as
expected, such parameters have an impact on the diversity of
models (i.e. on CFD). The difference in accuracy between
ensembles and the single best solution selected with PSMS
was similar to that reported in the next section, thus we
postpone our discussion in such topic for the next section.

We found that when c2 approaches to zero and when
we use a a constant W = 0 the diversity of models is
significantly increased; such increase, however, did not result
in a significant improvement in performance. This can be due
to the fact that the mechanisms we adopted for increasing
diversity affected the performance of individual models. We
also found that Imax do not have a significant impact in
the performance of PSMS ensembles; by running PSMS for
Imax = 5 and Imax = 10 we obtained the best results,
running PSMS for more iterations reduced the diversity of
models, whereas increased the individual performance of
models. Summarizing, c2, W and Imax have an impact in the

TABLE IV
AVERAGE AND STANDARD DEVIATION OF AUC OVER 10 TRIALS FOR

EACH DATA SET IN TABLE II AND FOR EACH METHOD.

ID PSMS-BEST EPSMS-BS EPSMS-SE EPSMS-BI
1 72.03+

−2.24 73.40+
−0.78 74.05+

−0.91 74.35+
−0.49

2 82.11+
−1.29 82.60+

−1.52 74.07+
−13.70 83.42+

−0.46
3 68.81+

−4.31 69.38+
−4.53 70.13+

−7.48 72.16+
−1.42

4 73.92+
−1.23 73.84+

−1.53 74.70+
−0.72 74.77+

−0.69
5 85.55+

−5.48 87.40+
−2.01 87.07+

−0.75 88.36+
−0.88

6 97.21+
−3.15 98.85+

−1.45 95.27+
−3.04 99.58+

−0.33
7 97.26+

−0.55 98.02+
−0.64 96.99+

−1.21 98.84+
−0.26

8 96.00+
−4.75 98.18+

−0.94 97.29+
−1.54 99.22+

−0.45
9 73.24+

−1.16 73.50+
−0.95 75.37+

−1.05 74.40+
−0.91

Avg. 82.90+
−2.68 83.91+

−1.59 82.77+
−3.38 85.01+

−0.65

diversity and accuracy of ensembles, although, even when the
default parameter settings are used (see [5]), the ensemble
versions of PSMS (i.e. EPSMS) outperform the best single
model.

C. Diversity and accuracy of Ensemble PSMS

We now analyze the performance and diversity of ensem-
bles by using the following parameters setting: c2 = 0.1,
W = 0 and Imax = 10; the rest of parameters were fixed
as described in [5]. For this experiment we considered the
benchmark data sets, 10 trials for each data set were per-
formed. Table IV shows the average and standard deviation
of the AUC obtained with each configuration of PSMS.

From Table IV we can see that for most data sets the
ensemble versions of PSMS (columns 3-5) outperformed the
best single model (column 2). The best method was EPSMS-
BI which outperformed the other techniques in 8 out of
the 9 data sets considered; for the titanic data set EPSMS-
SE obtained better performance, although still EPSMS-BI
outperformed the other two methods in this data set.

We performed a Wilcoxon signed-rank test for the com-
parison of the different methods [27]. In the following we
will refer to this statistical test with 95% of confidence when
mentioning statistical significance. The per-data set differ-
ences between PSMS-BEST and EPSMS-BI are statistically
significant for all data sets. Whereas the differences between
PSMS-BEST and EPSMS-SE are significative for 5 out
of the 9 data sets and the differences between EPSMS-
BS and PSMS-BEST are significant for 7 out of the 9
data sets. These results show that the ensemble versions
of PSMS can improve the performance of the single best
model. In particular building ensembles with the best model
per iteration (i.e. EPSMS-BI) results in better performance.

From Table IV we can observe an interesting fact: the
standard deviation in the AUC performance obtained with
EPSMS-BI is smaller than that obtained with any other
technique. This result suggest that the ensembles built with
EPSMS-BI across the different trials of each data set ob-
tained similar performances, whereas for the rest of the meth-
ods the standard deviation is very high, which means that
such models provide highly unreliable predictions. Therefore,
EPSMS-BI can also provide more stable predictions than the
PSMS-BEST and than the other ensemble methods.



TABLE V
AVERAGE AND STANDARD DEVIATION OF CFD OVER 10 TRIALS FOR

EACH DATA SET IN TABLE II AND FOR EACH VARIANT OF EPSMS.

ID EPSMS-BS EPSMS-SE EPSMS-BI
1 0.2055+

−0.1498 0.5422+
−0.0550 0.5017+

−0.1149
2 0.3547+

−0.1711 0.6241+
−0.0169 0.5081+

−0.0728
3 0.1295+

−0.1704 0.4208+
−0.1357 0.4012+

−0.1071
4 0.3019+

−0.1732 0.5159+
−0.0596 0.4296+

−0.0490
5 0.2733+

−0.1714 0.5993+
−0.0925 0.5647+

−0.0655
6 0.7801+

−0.0818 0.7555+
−0.0524 0.8427+

−0.0408
7 0.5427+

−0.3230 0.7807+
−0.0585 0.8050+

−0.0294
8 0.6933+

−0.1558 0.8173+
−0.0626 0.8514+

−0.0403
9 0.7473+

−0.0089 0.7473+
−0.0089 0.7473+

−0.0089
Avg. 0.4476+

−0.1562 0.6448+
−0.0603 0.6280+

−0.0588
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Fig. 1. Average of maximum accuracy (M-ACC) that can be obtained with
each EPSMS strategy.

Table V show the average and standard deviation of CFD
for the EPSMS methods. We can see that the EPSMS-BS
method obtain the less diverse models, which is due to the
fact that several of the individual models considered in this
technique can be repeated, thus decreasing diversity; note that
diversity across trials is highly unstable for this method too,
as evidenced by the standard deviation results. On the other
hand, EPSMS-BI and EPSMS-SE showed similar diversity
and similar stability across different trials, which makes them
particularly helpful for building ensembles. Since diversity
is comparable for the latter techniques, the better accuracy
of EPSMS-BI (see Table IV) is due to the fact that better
individual models are obtained with such strategy.

Figure 1 shows the (average of) maximum accuracy that
can be obtained by combining the outputs of individual
models under the different strategies. We can see that with
EPSMS-SE we could obtain the maximum accuracy among
EPSMS techniques. Then, why EPSMS-BI outperforms
EPSMS-SE in ensemble performance? This can be due to the
fact that EPSMS-SE can contain a few very effective models
that make the M-ACC to be very high, but most of the in-
dividual models present rather limited performance, possibly
due to over-fitting of the optimization criterion; therefore,
when their outputs are merged, their combined performance
is not satisfactory. On the other hand, most models that
compose EPSMS-BI obtain acceptable performance and thus
its combination its beneficial.

TABLE VI
AVERAGE AND STANDARD DEVIATION OF AUC ACROSS THE

CATEGORIES OF THE OBJECT RECOGNITION DATA SET AND MULTICLASS

ACCURACY OBTAINED WITH EACH CONFIGURATION OF EPSMS (ACC).

Measure PSMS-BEST EPSMS-BS EPSMS-SE EPSMS-BI
Avg. AUC 0.9153+

−0.068 0.9327+
−0.056 0.9279+

−0.074 0.9405+
−0.053

ACC 69.58 % 76.59 % 79.13 % 81.49 %

Summarizing, in this section we have shown empirical ev-
idence about the benefits of building ensembles with PSMS’s
partial solutions. The three strategies we proposed resulted
very effective in terms of accuracy and diversity. However,
EPSMS-BI obtained the best performance and high diversity.
Furthermore, predictions obtained with EPSMS-BI resulted
more stables than that of any other method we tried. There-
fore, we recommend the use of EPSMS-BI instead of raw
PSMS (i.e. PSMS-BEST) or the other two strategies.

D. Object recognition data set

In this section we evaluate the performance of EPSMS
techniques into the object recognition data set. For this
experiment we used the same parameters as above. Table VI
shows the results we obtained in this experiment. The average
accuracy over the classes (Avg. AUC) is slightly superior
for the EPSMS methods; again EPSMS-BI obtained the
best result. This time the standard deviation obtained by
the different methods is comparable among all techniques;
however, note that this result only reveals that the accuracy
across the different classes was similar.

The best multiclass accuracy was obtained with EPSMS-
BI as well. To the best of our knowledge this the best
performance reported so far for this data set: Papadopoulos
et al. reported a classification performance of 62.45% [24],
whereas Escalante et al. reported 81.41% [28]. The difference
with the latter work is insignificant, however, one should
note that in that previous work the same classification
model has been used for every class in the collection; thus
when adopting the one-vs-all approach the outputs of such
classifiers are directly comparable. In our approach, the
models for each class are different, thus their outputs lie in
different scales and the application of the one-vs-all approach
result in a loss of performance. Therefore, we believe that
by applying more elaborated strategies than one-vs-all the
multiclass performance will increase significantly.

Figure 2 shows the per-label gain obtained by each of
the three EPSMS techniques with respect to PSMS-BEST.
We can see that the EPSMS-BS and EPSMS-BI techniques
outperformed the single best solution for all classes, whereas
EPSMS-ES obtained lowest performance in two classes.
Again, giving evidence of the instability of EPSMS-ES.

Summarizing, our results on the object recognition data set
show that EPSMS can also be helpful for obtaining classifiers
in multiclass classification problems. Again, EPSMS-BI
obtained the best performance. The results obtained with
our proposals in this data set are superior to any other
published work that have used the same collection. Even
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Fig. 2. Per-label performance gain of the EPSMS techniques over the
PSMS-BEST classifier.

when the outputs of the models for the different classes are
not comparable at all.

V. CONCLUSIONS

We have described three strategies for building ensemble
classifiers from PSMS’s partial solutions. PSMS is a generic
technique for the selection of highly effective classifiers. In
this work we improved the performance of models selected
with PSMS by adopting an ensemble approach where the
outputs of some models that are evaluated by PSMS are
combined. The selection of the ensemble members do not
require of further computation than that of traditional PSMS.

We reported experimental results in both benchmark data
and an object recognition data set. We found that ensemble
versions of PSMS outperform the single best solution as
selected with traditional PSMS. In particular, the strategy
EPSMS-BI obtained the best results. The diversity of ensem-
bles obtained from PSMS solutions is acceptable and hence
motivates further research on the use of PSMS for building
ensembles. Our results in the object recognition data set show
that EPSMS can also be helpful for multiclass classification
problems. Future work includes the study of better strategies
to identify ensemble members from PSMS solutions and the
comparison of EPSMS-BI to other strategies for building
heterogeneous ensembles (e.g. [16], [15]). Finally, we would
like to point out that PSMS is distributed with the CLOP
toolbox, in the latest version of PSMS3 you find the code of
the methods we introduced in this paper.
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