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ABSTRACT
Surrogate-based methods aim at reducing the evaluation of
expensive fitness functions in optimization processes. Sev-
eral surrogate-based methods for evolutionary optimization
have been proposed so far, including those based on gran-
ular computing / clustering. Granular computing provides
granules as an assemblage of entities arranged together by
their similarity, functional or physical adjacency, indistin-
guishability, coherency, or the like. Techniques like this
avoid multiple and unnecessary evaluations of individuals
repeatedly. In this paper, with the aim of granular com-
puting as a method of grouping data, such information is
exploited to obtain knowledge of the structure and parame-
ters of individuals and then, design a Neuro-Fuzzy network
that adapts granules’ parameters, providing convergence to
acceptable solutions with a reduced number of evaluations
of the fitness function. We implement this adaptive surro-
gate in a genetic algorithm and show its performance using
benchmark functions.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving—Heuristic

methods

Keywords
Surrogate Modeling, Neuro-Fuzzy Networks.

1. INTRODUCTION
Traditional optimization is computationally expensive and

normally highly susceptible to some issues such as high di-
mensionality, non-differentiability, non-linearity, highly ex-
pensive function calculation, among others. Evolutionary
algorithms (EAs) are bio-inspired meta-heuristics that have
shown flexibility, adaptability and good performance in an
important variety of difficult optimization problems, alle-
viating some of the above mentioned issues. One of the
main drawbacks of EAs is the requirement of the repeated
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evaluation of the objective function. Clearly, for problems
where estimating the objective function is computationally
expensive, using an EA may become intractable. Surrogate
modeling deals with the construction of approximation mod-
els to estimate the performance of a system, and to develop
relationships between specific system inputs and outputs.

This paper introduces a surrogate modeling approach called
GA - FGNFN: Genetic-Algorithm based on Fuzzy Granula-

tion and Neuro-Fuzzy Networks. Under the proposed ap-
proach, reduction of fitness evaluations is performed via the
construction of fuzzy granules, avoiding the use of multi-
ple fitness evaluations on individuals of similar characteris-
tics. The process of granules’ construction provides infor-
mation to be used by a Neuro-Fuzzy Network, such infor-
mation includes the number of granules and their positions
and widths; which is considered the basic information for
training of the network. The network will update the above
mentioned parameters every certain number of generations,
n, so that, the genetic algorithm will converge to the opti-
mum solution faster, and will reduce the number of fitness
evaluations significantly. We evaluate the performance of
the proposed method in a suite of benchmark functions. Ex-
perimental results show that the proposed approach reduces
considerably the number of fitness evaluations without sig-
nificantly compromising the quality of solutions.

The rest of the paper is organized as follows. Next sec-
tion reviews related work. Section 3 describes a surrogate
model based on fuzzy granules [1] that forms the basis for
our proposal. Section 4 introduces the adaptive part of sur-
rogate fuzzy-granules parameters. Section reports numerical
results on traditional benchmark functions. Finally, Section
5, outlines conclusions and future work directions.

2. RELATED WORK
Several approaches based on surrogate modeling have been

proposed so far. A popular formulation is fitness inheritance
or imitation [8, 20, 22, 26], where the fitness of the indi-
vidual is defined by either their parents or other individu-
als previously encountered along the search process (fitness
is transmitted or inherited). Salami et al. proposed the
“fast evolutionary strategy”, in which the fitness of a child-
individual is the weighted sum of the fitness values from its
parents, reliability values are assigned to each new individ-
ual, and then the actual fitness function is only evaluated
when the reliability value is below a certain threshold [22].
In [20] Reyes-Sierra and Coello incorporated the concept of
fitness inheritance into the multi-objective particle swarm
optimizer to reduce the number of fitness evaluations. How-
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ever, as shown in [6], the performance of parents may not
be a good predictor of their children for sufficiently complex
and multi-objective problems, rendering fitness inheritance
inappropriate under such circumstances.

Techniques based on universal approximators, whose qual-
ity depends on the training data, are based on Artificial Neu-
ral Networks (ANN) [9, 11, 14, 17, 24, 25]. In [15], selection
of centers in the RBF surrogate model, is done in an unsu-
pervised manner with Learning Vector Quantization (LVQ)
and Self-Organizing Maps, this formulation tackles the prob-
lem of good generalization, that represents an estimation of
objective functions for new individuals.

Adaptive surrogates have been developed in a variety of
works, for example, in [34], a hybrid surrogate modeling
paradigm is developed where different surrogate models are
combined (Kriging, RBF and Extended RBF), the adaptive
part is done by contribution of surrogates (working as local
models) providing a local measure of accuracy and defining
a zone of accuracy determined on the called “crowding dis-
tance”. In [13] is presented a selection-based criterion with
different metrics for measuring the quality of meta-models in
EAs, where the evaluation of surrogates is done with Neural
Networks, an adaptive scheme is suggested for adapting the
number of individuals to be evaluated using the surrogate.

In order to reduce fitness evaluations, a variety of clus-
tering algorithms have been proposed for grouping similar
patterns of data [16]. Nevertheless, in practice there are
many situations in which the data could be classified as be-
longing to one cluster almost as well as to another one. The
sense of belonging to certain clusters is used via the theory
of fuzzy sets, taking advantage of the concept of membership
function [4]. Some related works are presented in [2, 10]. In
[10] fitness estimation models are based on fuzzy clustering,
the objective is to reduce direct evaluations and to keep the
diversity of the population and quality of solutions satisfac-
tory. They use Fuzzy c-Means an the adaptive technique is
Partitionary Learning Fuzzy Clustering Algorithm, which is
unsupervised and able to group data to find an appropriate
number of clusters. In [1], Akbarzadeh-T et al. proposed
using fitness granulation, via an adaptive fuzzy similarity
analysis, to reduce the number of fitness evaluations. A
pool of fuzzy granules with Gaussian measures of similarity
is built up and the enlargement and shrinkage of granules
are adaptive each generation depending on the population
fitness, but the position of granules does not change during
the search process, we refer this method as GA-AFFG [1].

This paper describes a surrogate modeling approach, called
GA-FGNFN, that extends GA-AFFG by incorporating a
Neuro-Fuzzy Network that aims at making the granules to
better adapt during the search process. As in [1], in our pro-
posed approach reduction of fitness evaluations is performed
via the construction of fuzzy granules, avoiding the use of
multiple fitness evaluations on individuals of similar charac-
teristics. Opposed to [1], we learn a model that determines
how to modify the granules’ parameters. In this way, we are
able to further reduce the number of evaluations.

3. GA-AFFG SURROGATE MODEL
In order to reduce fitness evaluations, surrogate model-

ing used in this paper is based on the property of fuzzy
granulation, which involves decomposition of the whole into
parts [1]. An Information granule (fuzzy sets) formalizes the
concept of finite precision representation of objects in real

life situation, and reduces the core of an information system
(both in terms of objects and features) in a granule universe
drawn together by indistinguishability, similarity, proximity
and functionality [33]. Granular computing concerns situ-
ations in which computation and operations are performed
on information granules (clump of similar objects or points).
Consequently, it leads to have both data compression and
a gain in computation time, since in granular computing
computations/operations are performed on granules, rather
than on the individual points, so that, the computational
effort is greatly reduced. The rest of this section describes
a granulation-based technique for surrogate modeling that
forms the base of our proposal [1].

3.1 Fuzzy Granules
In the part of granules construction, we initially have a

random parent population, Pi =
{

xi
1, x

i
2, ..., x

i
t

}

, where xi
j

is the jth individual in the ith generation. Conventional
fuzzy clustering algorithms initially establish a partition of
the universe of discourse with a fixed number of clusters
(modifying latter the centers of granules according to the
adaptive laws, and satisfying an objective function J ) [4].
In this paper, following the main purpose of reducing fitness
evaluations, it is desirable to explore the fitness landscape
looking for individuals with similar characteristics. Hence,
the base algorithm starts by finding a first cluster, and then
goes to find the second one, and so on, see Figure 3. This
process was introduced in [1]. For comparing new solutions
to existing clusters a density function representing a data
density measure is constructed; the density measure also
describes a Gaussian similarity neighborhood between indi-
viduals. The density function is described by the equation,

µk

(

xi
j

)

= exp

(

−
(

xi
j −Ck

)2

/ (σk)
2

)

(1)

for k = 1, 2, ..., l number of fuzzy granules, Ck is the vector
of centers values, initially the first individual is chosen as
the center of the granule. The fitness of individuals xi

j is
either calculated by computing the exact fitness function or
associated with one of the existing granules, this is done
according to the threshold measure of closeness1,

θi = α
min

{

f
(

xi−1
1

)

, f
(

xi−1
2

)

, ..., f
(

xi−1
t

)}

f̄ i−1
(2)

where f̄ i =
∑t

j=1

f(xi
j)

t
, and α > 0 is a constant of pro-

portionality, f (·) is the real fitness evaluation, the minimal
value is due to that the benchmark functions are subjected
to be minimized. Then, according to θ, fitness evaluation of
individuals is performed as follows,

f
(

xi
j

)

=

{

f (Ck) if max {µk} > θi

f
(

xi
j

)

computed by fitness function otherwise
(3)

Radius σk of each granule is used to control the degree of
similarity between individuals, this also determines the de-
cision boundary of fitness evaluation of individuals, so that,
the granules can shrink or enlarge in reverse proportion to
their fitness,

σk = γ
1

(ef(Ck))
β

(4)

1One should note that we have modified the expression for
θi described in [1] in order to obtain better results.
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where β > 0 is an emphasis operator, and γ is a constant of
proportionality that is usually set at 1. Initially, σk is larger
and then, as the algorithm evolves, fitness evaluations of best
individuals will be evaluated in granules of reduced radius in
a zone near the optimal solutions. Therefore, equation (4)
adapts the width of the granules in order to have more exact
fitness computed around individuals who perform very well,
and fewer fitness computations around individuals who have
poor performance. computational cost.

In order to prevent uncontrolled growth of fuzzy granules,
only a pre-specified number of granules, with higher fitness
values, will remain during each generation of the algorithm.
Fig. 1 shows construction of fuzzy If-Then rules and group
in granules for the case of two inputs, one output data pairs.

Figure 1: Construction of fuzzy granules with the

respective fuzzy rules for two input, one output case

4. NEURO-FUZZY: ADAPTIVE PART
In the first part of the algorithm, using fuzzy granula-

tion property, the number of fitness function evaluations is
reduced, this step is realized by the adaptive part of the
threshold of similarity between individuals and modifying
the radius of each granule by an adaptive law, see Equation
(2). This process suggests a reduction of computational cost
changing radius of granules, but these do not change in posi-
tion during the search process. Therefore, properties of mu-
tation and crossover, which let individuals in each generation
jump to optimal values, will be enclosed in granules estab-
lished from the very first generations. In this paper, we pro-
pose the use of a Neuro-Fuzzy Network that will adapt free
parameters of granules, these parameters are: centers, ra-
dius and fitness values of granules. The adaptive part of the
granules parameters will be performed every n−generations,
and not every generation. This is because this could cause
an increase of computational time of calculus and an increase
in the number of fitness evaluations.

From the last section, we have values of the granules G =
{Ck, σk, f (Ck)} , where Ck is the m−dimensional vector of
centers, σk is the width of membership functions of the kth
fuzzy granule and f (Ck) is the fitness value of granules. The
fuzzy system that we are going to design has the following

form,

f (x) =

∑M

k=1 ȳ
k
[

∏n

i=1 exp
(

−
(

xi
j − Ck

)2
/ (σk)

2
)]

∑M

l=1

[

∏n

i=1 exp
(

−
(

xi
j − Ck

)2
/ (σk)

2
)] (5)

where µk

(

xi
j

)

= exp
(

−
(

xi
j − Ck

)2
/ (σk)

2
)

, represents the

fuzzy sets or fuzzy granules, ȳk is the fitness value of the
respective granule (f (Ck)), M is fixed and indicates the
number of fuzzy rules (fuzzy granules), ȳk, Ck and σk are
free parameters. To determine these parameters in some
optimal fashion, it is helpful to represent the fuzzy system
of granules (5) as a feedforward network. Specifically, the
mapping from the input of individuals x ∈ U ⊂ Rn to
the output of their desired fitness values f (x) can be im-
plemented according to the following operations: first, the
input x (individual) is passed through a product Gaussian
operator (granule’s structure construction) to become zk =
∏n

i=1 exp
(

−
(

xi
j −Ck

)2
/ (σk)

2
)

; then, the zk are passed

through a summation operator and a weighted summation
operator (current fitness value of the granule) to obtain

b =
∑M

k=1 z
k and a =

∑M

k=1 ȳ
kzk; finally, the output of the

fuzzy system is computed as f (x) = a/b. This three-stage
operation is shown in Fig. 2 as a three-layer feedforward
network.

Figure 2: Three-layer feedforward network as a pro-

cessing unit of fuzzy granules

4.1 Parameter update
Now, the task is updating parameters of the fuzzy gran-

ule’s system (5), such that the matching error

ep =
1

2
[f (x)p − yp]2 (6)

is minimized. That is, the task is to determine the param-
eters ȳk, Ck and σk such that ep of (6) is minimized. In
the sequel, e, f and y will be used to denote ep, f (xp) , yp,
respectively.

In this part, using a gradient descent algorithm to deter-
mine the parameters. Specifically, to determine ȳk, is using
the algorithm

ȳk (q + 1) = ȳk (q)− α
∂e

∂ȳk
|q (7)

where k = 1, ...,M, q = 0, 1, 2, ..., and α is a constant step
size. If ȳk (q) converges as q goes to infinity, then from (7)
we have ∂e

∂ȳk = 0 at the converged ȳk, which means that

the converged ȳk is a local minimum of e. From Fig. it
is seen that f (and hence e) depend on ȳk only through

a, where f = a/b, a =
∑M

k=1 ȳ
kzk, b =

∑M

k=1 z
k, and z =
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∏n

i=1 exp
(

−
(

xi
j − Ck

)2
/ (σk)

2
)

; hence, using the Chain Rule,

we have

∂e

∂ȳk
= (f − y)

∂f

∂a

∂a

∂ȳk
= (f − y)

1

b
zk (8)

Substituting (8) into (7), we obtain the training algorithm
for ȳk :

ȳk (q + 1) = ȳk (q)− α
f − y

b
zk (9)

where k = 1, 2, ...,M , and q = 0, 1, 2, ...
To determine Ck, we use

Ck (q + 1) = Ck (q)− α
∂e

∂Ck

|q (10)

we see from Fig. 2 that f (and hence e) depend on Ck only
through zk; hence, using the Chain Rule, we have

∂e

∂ck
= (f − y)

∂f

∂zk
∂zk

∂ck
= (f − y)

ȳk − f

b
zk

2
(

xp
i − ck

)

σ2
k

(11)
Substituting (11) into (10), we obtain the training algorithm
for Ck :

Ck (q + 1) = Ck (q)−α
(f − y)

b

(

ȳk (q)− f
)

zk
2
(

xp
i − ck (q)

)

σ2
k (q)

(12)
Using the same procedure, we obtain the training algo-

rithm for σk :

σk (q + 1) = σk (q)− α
∂e

∂σk

|q (13)

= σk (q)− α
f − y

b
(14)

(

ȳk (q)− f
)

zk
2
(

xp
i − ck (q)

)

σk (q)

The training algorithm (9), (12) and (14) performs an
error back-propagation procedure, that will update param-
eters of granules like centers, radius and fitness values, pro-
viding the genetic algorithm process fast convergence rate
as well as lower computational cost.

4.2 Setting-up the training data set
The data set used in the training phase of the Neuro-

Fuzzy Network, is obtained from the granules’ information
of the last generations. The values of centers, width and
fitness values of each granule, G = {Ck, σk, f (Ck)} (Fig-
ure 1), at generation n-1, are the initial conditions of the
network. These parameters will be updated as the weights
of the network with the training algorithm. Now, after n-
1 generations have passed, and that genetic operations like
selection, mutation and reproduction have been performed
in each generation, the proposed algorithm selects automat-
ically the best-fitted values of a certain percentage of the
last generations of granules, and then, the training data set
is set up. The selection of a certain percentage of the best-
fitness values is above a 50% or less of the total fitness val-
ues of the granules, and is used as the target of the network.
This selection of a certain percentage of best-fitness values
is related with the “natural selection process” of individuals
in the GA, and is realized trying to avoid falling into a local
optimum value.

4.3 Algorithm
Now, general steps of the algorithm GA-FGNFN are as

follows,

1. An initial random population is created:

P0 =
{

x1
1, x

1
2, ..., x

1
j

}

, where xi
j is the jth individual in

the ith population

2. Structural information data are obtained from the con-
struction of the fuzzy set of granules (fuzzy partition).
The number of fuzzy granules implies the number of
rules of the model.

3. Individuals within a pre-specified threshold are evalu-
ated with the center value of the granule, otherwise,
construction of a new granule is done with the respec-
tive fitness evaluation of the new center.

4. After n number of generations has passed, and ge-
netic operations are performed each generation. Now,
parameters of the fuzzy granule structure will be up-
dated with the Neuro-Fuzzy Network and the gradient
descent parameter update law. The training data of
the Neuro-Fuzzy Network are the centers of granules,
width of granules and fitness values of these granules.
In this step, fitness function values of granules will be
replaced by a certain ni percent of the total fitness
value of granules, replacing by lowest fitness function
values or highest values (depending on the maximiza-
tion or minimization case, respectively). This is the
data generated by the granule’s process, that will be
used as the training data to update the parameters of
the Neuro-Fuzzy system.

5. Tuning fuzzy parameters, back-propagating the error
through the network and updating each one of the
main parameters of granules, that is, centers, radius
and fitness values.

6. Perform genetic operations and continue the genetic
algorithm process for the next generations until again,
update of granule’s parameters is required after the
pre-specified n number of generations, and until cer-
tain stop criteria or total number of generations is
achieved.

We can see a flowchart of the GA-FGNFN in Figure 3,
the next section reports results of experiments that aim at
assessing the effectiveness of the proposed approach.

5. NUMERICAL RESULTS
This section reports experimental results that aim at show-

ing the effectiveness of the GA-FGNFN approach. For the
experimental study we considered a set of benchmark func-
tions that comprise a variety of problems with the follow-
ing characteristics: nonlinearity, unimodality, multimodal-
ity, low and high dimensionality [3, 5]. The set of benchmark
functions we considered is described in Table 1.

The genetic algorithm in this paper was run with random
initial populations, decimal-coded chromosomes, single-point
crossover, mutation, fitness scaling, and an elitist stochastic
universal sampling selection strategy. Parameters of simu-
lations, percentage of crossover: 1, percentage of mutation:
0.01, population size: 20, and generation size: 100. In these
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Function Formulation

F1 : De Jong
∑m

i=1 x
2
i

Dimensions, range m = 3,−5.12 ≤ xi ≤ 5.12

F2 :
∑m

i=1 x
4
i +Gauss (0, 1)

Dimensions, range m = 30,−1.28 ≤ xi ≤ 1.28

F3 : Michalewicz −
∑m

i=1

(

sin (xi) ·
(

sin
(

i·x2

i

π

))(2·n)
)

Dimensions, range n = 10, m = 10, 0 ≤ xi ≤ π

F4 : Rastrigin 10 ·m+
∑m

i=1

(

x2
i − 10 · cos (2 · π · xi)

)

Dimensions, range m = 20,−5.12 ≤ xi ≤ 5.12

F5 : Schwefel
∑m

i=1

(

−xi · sin
(

√

|xi|
))

Dimensions, range m = 20,−500 ≤ xi ≤ 500

F6 : Griewangk 1 +
∑m

i=1

x2

i

4000
−

∏m

i=1 cos
(

xi√

i

)

Dimensions, range m = 20,−600 ≤ xi ≤ 600

Table 1: The set of benchmark functions used for the performance evaluation of the GA-FGNFN Algorithm

Figure 3: Flowchart of GA-FGNFN Algorithm

simulations, update of parameters of the granules is required
every n generations.

We report in each of our experiments the average per-
formance obtained by the different methods over five in-
dependent runs. Simulations are compared among the or-
dinary genetic algorithm (GA) of Matlab, using the same
parameters above mentioned; the Genetic Algorithm with
Adaptive Fuzzy Fitness Granulation (GA-AFFG) proposed
in [1]; and the proposed GA-FGNFN algorithm. It is im-
portant to mention that due to the proved efficiency of the
Matlab algorithm in GA, GA-AFFG and our proposed algo-
rithm GA-FGNFN, were implemented over the Matlab-GA
base algorithm. We report the average of: number of fit-
ness function evaluations, percentage of optimal solutions
reached and best fitness value. Also we report the p− value
obtained with a paired statistical t − test, comparing the
performance of the standard GA algorithm and the other
variants. Unless otherwise stated the learning rate parame-
ter of the Network was fixed to: 0.1.

Average results of simulations are presented in Table 2.
From this table we can see that in terms of reduction of
real function evaluations (No. FFE) the proposed method
obtains the best performance for all of the considered func-
tions. The decrease of number of evaluations is of about 80%
less than simulations with the GA-Matlab algorithm, and
about 40% less compared with GA-AFFG. These results are
obtained without degrading significantly the quality of the
solutions found. The p−values of each one of the benchmark
functions, shows that there was not a statistically significant
difference.

Another point to be analyzed is the question of when to
apply the Neuro-Fuzzy Network? Therefore, a comparison
table of number of generations in which, when the algo-
rithm should be applied, and reduction in fitness values is
presented for the benchmark functions in the Table 3. As
before, the main interest is to keep a trade-off between reduc-
tion of fitness function evaluations and quality of solutions.
The results from Table 3, were obtained by running the GA-
FGNFN algorithm every n = {5, 10, 20, 30, 50} generations.
In the rest of this section we analyze the performance of our
method for each of the considered functions making refer-
ence to results from both Tables 2 and 3.
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Function Values GA GA-AFFG GA-FGNFN

F1 No. FFE 2000 268 220
% Opt. Sol. 80% 80% 80%
p− value 0.35617 0.45752

Learning Par. β = 0.1, γ = 1
β = 0.1, γ = 1

n = 20, ni = 100, µ = 0.1
Best-Fitness Value 0.10908 0.1092 0.1144

F2 No. FFE 2000 730.6 509.8
% Opt. Sol. 80% 80% 80%
p− value 0.2505 0.12681

Learning Par. β = 0.04, γ = 1.7
β = 0.001, γ = 2

n = 50, ni = 100, µ = 0.1
Best-Fitness Value 0.8873 1.4667 1.0795

F3 No. FFE 2000 750.5 209
% Opt. Sol. 80% 80% 80%
p− value 0.17 0.123

Learning Par. β = 0.4, γ = 1.85
β = 0.01, γ = 1.5

n = 50, ni = 5, µ = 0.1
Best-Fitness Value −4.3514 −2.08 −2.967

F4 No. FFE 2000 842 332
% Opt. Sol. 60% 60% 60%
p− value 0.4568 0.3654

Learning Par. β = 0.004, γ = 0.15
β = 0.004, γ = 120

n = 50, ni = 100, µ = 0.9
Best-Fitness Value 103.8504 126.710 109.9558

F5 No. FFE 2000 945.33 253
% Opt. Sol. 60% 60% 60%
p− value 0.2610 0.1456

Learning Par. β = 0.0008, γ = 300
β = 0.004, γ = 200

n = 50, ni = 100, µ = 0.1
Best-Fitness Value −3435.37 −3265.49 −3394.5

F6 No. FFE 2000 863.53 427.6
% Opt. Sol. 80% 80% 80%
p− value 0.69206 0.23058

Learning Par. β = 0.00012, γ = 190
β = 0.009, γ = 100

n = 20, ni = 100, µ = 0.01
Best-Fitness Value 80.8125 105.1937 80.4752

Table 2: Comparison of benchmark functions with a conventional Matlab-GA algorithm, GA-AFFG and

GA-FGNFN Algorithms

In the case of F1 De Jong’s and F2 functions, which are
unimodal, good results are obtained in terms of solutions’
quality; F1 is low-dimensional and the neural network can
be implemented every 10 generations without modifying the
computational time and the quality of solutions; however,
in the case of F2 it is not recommended to constantly apply
the neural network due to its high-dimensionality, in this
case, the number of evaluations in the learning process of the
neural network increase considerably; therefore, we apply
the learning process for F2 each 50 generations.

The F4 Rastrigin’s function is based on De Jong’s func-
tion with the addition of cosine modulation to produce many
local minima, thus, it is highly multi-modal, however, the
locations of the minima are regularly distributed. In this
case, GA-FGNFN algorithm, presents reduction of the fit-
ness evaluations in about 80% compared with the traditional
genetic algorithm, it is recommended to apply the neural
network each 50 generations due to the high-nonlinearity
and high-dimensionality of the function.

The F6 Griewangk’s function is similar to Rastrigin’s func-
tion, it has many widespread local minima, however, the lo-

cations of the minima are regularly distributed. In this case,
the total number of optimal solutions is better in compari-
son with the other functions, reducing the number of fitness
evaluations in a 88%, better results were obtained when the
neural network is applied each 20 generations.

For F3 Michalewicz function, if we apply the neural net-
work each 50 generations, the best results are obtained in
terms of percentage of optimal solutions and with a good
number of fitness evaluations.

Summarizing, we can say that the proposed approach ef-
fectively reduces the number of fitness function evaluations
without degrading the quality of solutions. The proposed
method outperforms the base approach [1] in terms of re-
duction of evaluation of the fitness function. We would like
to emphasize that in preliminary experimentation we op-
timized the parameters of the reference approach to have a
competitive baseline for our method. Regarding our method,
we have to be careful when the dimensionality of data in-
creases, the total number of computing operations also in-
crease and the processes of granule’s construction together
with the adaptive part, increase in the number of operations
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No. of Generations n = 5 n = 10 n = 20 n = 30 n = 50 GA - Matlab
Function Parameters

F1 :De Jong
No. FFE

% Opt. Sol.
Best-Fitness Value

1740
60%
1.654

259
80%
0.1092

260
80%
0.1144

220
80%
1.1130

295
80%
1.6506

2000
80%

0.10908

F2

No. FFE
% Opt. Sol.

Best-Fitness Value

2000
80%
1.1706

460.8
40%
1.0795

569.2
40%
2.2572

455.8
80%
1.9965

440
80%
1.0182

2000
80%
0.8873

F3 :Michalewicz
No. FFE

% Opt. Sol.
Best-Fitness Value

119.2
60%

−2.8510

147.2
60%
−2.77

173
60%
−2.49

282
40%

−2.6287

381.6
80%

−2.967

2000
80%

−4.3514

F4 :Rastrigin
No. FFE

% Opt. Sol.
Best-Fitness Value

457
40%

128.3852

412
60%

116.9746

370
60%

157.8378

365
60%

169.5834

332
60%

109.9558

2000
80%

103.8504

F5 :Schwefel
No. FFE

% Opt. Sol.
Best-Fitness Value

288
40%

−4786.24

221
40%

−4293.34

321
40%

−3987.31

367
40%

−3897.3

252.8
80%

−3394.5

2000
80%

−3435.37

F6 :Griewangk
No. FFE

% Opt. Sol.
Best-Fitness Value

414
60%

111.3852

412
80%

80.4752

884
60%

86.3752

1055
60%

105.2752

964
60%

143.9852

2000
80%

80.8125

Table 3: Different number of generations where the GA-FGNFN was applied, percentage of optimal solutions,

and best-fitness value. The last column has the values of GA-Matlab implementation

per generation. In general, we must consider, to modify pa-
rameters such as γ which modifies the shrinkage of granules
and it is related to having more or less fitness evaluations on
granules; the parameter µ, of the neural networks, allows to
have the best approximation to the training data but also,
it can cause an increase of evaluations when it is lower than
the recommended value of 0.1; the last consideration is how
many times do we have to apply the neural network, in gen-
eral, according to the results, it is recommended to apply
it 2 times per total number of generations, this is, each 50
generations in our case.

6. CONCLUSIONS
Genetic algorithms produce in each generation individu-

als with similar characteristics, where the objective is to try
to identify those who present better conditions of adaptabil-
ity and improved performance; this condition is measured
by the fitness function. For some problems, estimating the
fitness function can be a very time consuming process, slow-
ing the optimization process. Surrogate modeling has been
adopted for substituting the real fitness function by approx-
imations obtained by a model.

This paper introduces a surrogate modeling approach based
on granular computing and a Neuro Fuzzy Network. Granu-
lar computing leads to have data compression, gain in com-
putation time and knowledge extraction of this individual
with respective similarities between neighbors. The main
idea of this paper is to take advantage of this information
and use it to elaborate the structure of an adaptive net-
work, that, according to genetic algorithms objective, will
produce a reduction in fitness evaluations and, therefore, a
reduction of the computational burden of the process. Our
proposal extends a previous model by allowing the adapta-
tion of granules’ parameters.

Results of experiments over a suite of classical bench-
mark functions show the efficiency of the algorithm GA-
FGNFN in reduction of fitness evaluations with at least

40 % compared with a standard genetic algorithm with-
out compromising significantly the quality of solutions. The
proposed approach also outperformed a state-of-the-art sur-
rogate model based on granular computing. Comparative
studies reveal the main importance in keeping a trade-off
between reduction of fitness function evaluations and also in
percentage of optimal solutions.

Future work directions include implementing a weight-
decay approach in order to further improve the adaptation
capabilities of our method. Also we are working on the ap-
plication of the proposed surrogate for highly-complex prob-
lems from engineering applications.
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