Modelos Gráficos Probabilistas L. Enrique Sucar INAOE

Sesión 2: Teoría de Probabilidad

"...las reglas mátemáticas de la probabilidad no son simplemente reglas para calcular frecuencias de variables aleatorias; son también las únicas reglas consistentes para realizar inferencia de cualquier tipo ..."

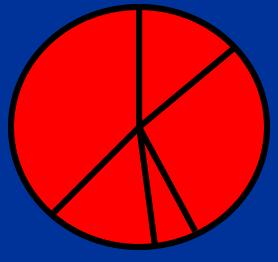
[E. T. Jaynes 2003]

Conceptos de Probabilidad

- Interpretaciones
- Definición y axiomas
- Probabilidad condicional
- Teorema de Bayes
- Independencia e independencia condicional
- Variables aleatorias y distribuciones básicas

¿Qué es probabilidad?

- Interpretaciones
- Definición matemática



© E. Sucar, PGM: 2 Probabilidad

Interpretaciones

- Clásica eventos equiprobables
- Lógica medida de grado de creencia racional (inferencia respecto a evidencia)
- Subjetiva medida del grado de creencia personal (factor de apuesta)
- Frecuencia medida del número de ocurrencias con *muchas* repeticiones
- Propensión medida del número de ocurrencias bajo condiciones repetibles

Interpretaciones

Dos principales enfoques:

- Objetiva (clásica, frecuencia, propensión) –
 las probabilidades existen y se pueden
 medir en el mundo real
- Epistemológica (lógica, subjetiva) las probabilidades tienen que ver con el conocimiento humano, medida de creencia

Justificaciones de Probabilidad

• Argumento del "libro holandés"

Si alguien apuesta no siguiendo los axiomas de probabilidad corre el riesgo de que el oponente le haga una apuesta en que siempre pierde

Justificaciones de Probabilidad

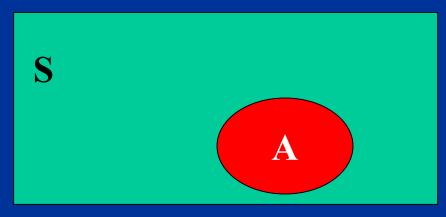
- Deducción de Cox (Jaynes 2003)
- Condiciones deseables:
 - Representación por números reales (continuidad)
 - Correspondencia cualitativa con el sentido común
 - Aumentos y disminuciones de el nivel creencia tiene un comportamiento de acuerdo al sentido común
 - Consistencia:
 - Si se puede llegar a una conclusión de diferentes maneras, todas deben llegar al mismo resultado
 - Siempre se debe tomar en cuenta toda la evidencia
 - Se representan estados equivalentes de conocimiento con los mismos valores de probabilidad

Reglas básicas

- En base a las condiciones anteriores se pueden derivar las reglas básicas (axiomas) de probabilidad:
 - P(A) es una función monotónica, continua en [0,1]
 - $-P(A,B \mid C) = P(A \mid C) P(B \mid A,C)$ (producto)
 - $P(A \mid B) + P(\neg A \mid B) = 1 \text{ (suma)}$

Definición

• Dado un experimento *E* y el espacio de muestreo *S*, a cada evento *A* le asociamos un número real *P*(*A*), el cual es la probabilidad de *A* y satisface los siguientes axiomas



Axiomas Kolmogorov

- $0 \le P(A) \le 1$
- P(S) = 1
- $P(A \cup B \cup C ...) = P(A) + P(B) + P(C) + ...$

A, B, C ... mutuamente exclusivos

Teoremas

- $P(\emptyset) = 0$
- $\bullet \ \ P(\neg A) = 1 P(A)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Probabilidad Condicional

$$P(A \mid B) = P(A \cap B) / P(B)$$

- Probabilidad de que ocurra un evento dado que ocurrió otro:
 - Dado que el dado cayó par, cuál es probabilidad de que sea un número primo?
 - Dado que tiene catarro, cuál es la probabilidad de que tenga gripe?

Regla de Bayes

• De la definición de probabilidad condicional se puede deducir:

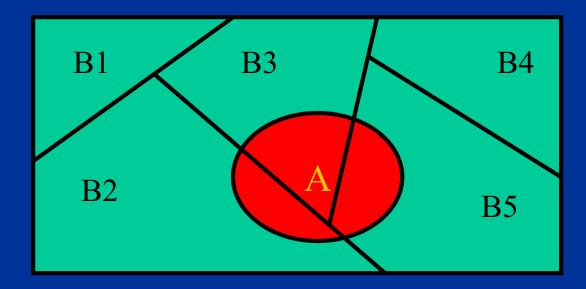
$$P(B \mid A) = P(B) P(A \mid B) / P(A), dado P(A) > 0$$

• Esto permite "invertir" las probabilidades, por ejemplo obtener la *P* de una enfermedad dado un síntoma, con conocimiento de la *P* de los síntomas dado que alguien tiene cierta enfermedad

Probabilidad Total

• Dada una partición, *B*, de *S*, la probabilidad de un evento *A* se puede obtener como:

$$P(A) = \sum_{i} P(A \mid B_i) P(B_i)$$



Teorema de Bayes

• Con la definición de probabilidad total, el teorema de Bayes se puede escribir como:

$$P(B \mid A) = P(B) P(A \mid B) / \sum_{i} P(A \mid B_{i}) P(B_{i})$$

Eventos independientes

 Dos eventos son independientes si la ocurrencia de uno no altera la probabilidad de ocurrencia del otro:

$$P(A \mid B) = P(A) \circ$$

 $P(B \mid A) = P(B)$

• Lo que es equivalente a:

$$P(A \cap B) = P(A) P(B)$$

• Independientes \neq mutuamente exclusivos

Independencia condicional

• A es condicionalmente independiente de B dado C, si el conocer C hace que A y B sean independientes:

$$P(A \mid B,C) = P(A \mid C)$$

- Ejemplo:
 - A regar el jardín
 - B predicción del clima
 - C lluvia

Regla de la Cadena

• De la definición de probabilidad condicional, se puede evaluar la probabilidad de $A_1 \cap A_2 \cap A_3 \dots \cap A_N$ (probabilidad conjunta) como:

$$P(A_1, A_2, ..., A_N) =$$

 $P(A_1 | A_2, ..., A_N) P(A_2 | A_3, ..., A_N) ... P(A_N)$

Variables Aleatorias

- A cada evento A se le asigna un valor numérico X(A) = k, de forma que a cada valor le corresponde una probabilidad P(X = k)
- X es una variable aleatoria
- Ejemplos:
 - -X = Número del dado al lanzarlo
 - $\overline{-Y = Número de águilas en N lanzamientos}$
 - Z = Número de fallas antes de darle a un blanco

Tipos de Variables Aleatorias

- Discretas: el número de valores de X (rango) es finito o contablemente infinito
- Continua: puede asumir todos los posibles valores en cierto intervalo a-b, ejemplos:
 - -X = temperatura ambiente
 - -Y = tiempo en el que falle cierto dispositivo
 - -Z = distancia del robot a la pared

Distribución de probabilidad

• Variables discretas: p(X):

$$p(X) >= 0$$
$$\sum p(X) = 1$$

• Variables continuas: f(x):

$$f(x) >= 0$$

$$\int f(x) = 1$$

Función acumulativa

- Probabilidad de que la variable X tome un valor menor a x
- Discretas: $P(X) = \sum_{X} p(X)$
- Continuas: $F(X) = \int_X f(X)$
- Propiedades:

$$-0 \le F(X) \le 1$$

$$- F(X1) \le F(X2)$$
, si X1 $\le X2$

$$- F(-\infty) = 0$$

$$- F(+\infty) = 1$$

Estadísticas

- Moda: valor de mayor probabilidad
- Mediana: valor medio (divide el área en 2)
- Promedio: valor "esperado":

$$E(X) = \sum_{x} X p(X)$$

• Varianza: dispersión

$$\sigma^{2}(X) = \sum_{x} (X - E(X))^{2} p(X)$$

Desviación estandar

$$\sigma(X) = \sqrt{\sigma^2}$$

Variables aleatorias en 2-D

- X y Y son dos funciones que asignan números reales a los eventos en S, entonces (X, Y) es una variable aleatoria en dos dimensiones
- Propiedades

$$p(X,Y) >= 0$$

$$\sum \sum p(X,Y) = 1$$

- Ejemplos:
 - Número de artículos terminados en dos líneas de producción
 - Número de pacientes con cáncer y número que fuma

Probabilidad conjunta, marginal, y condicional

• Probabilidad conjunta:

Probabilidad marginal:

$$p(X) = \Sigma_Y p(X,Y)$$

• Probabilidad condicional:

$$p(X \mid Y) = p(X,Y) / p(Y)$$

Independencia y Correlación

 Dos variables aleatorias son independientes si su probabilidad conjunta es el producto de las marginales:

$$p(X,Y) = p(X) p(Y)$$

• Correlación: grado de relación lineal entre dos variables aleatorias (diferente a independencia):

$$\rho(X,Y) = E\{[(X - E(X))][Y - E(Y)]\} / \sigma_x \sigma_{Y,}$$
[-1, 1]

Distribuciones básicas

- Uniforme
- Binomial
- Gaussiana o normal

• Histograma de una variable aleatoria

Uniforme

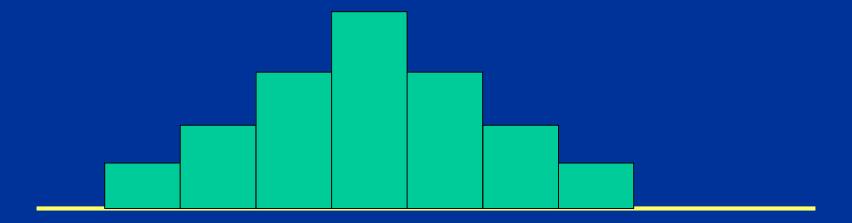
• Todos los valores en el rango son equiprobables

Binomial

• *X* es el número de valores verdaderos en *N* repeticiones de un proceso de Bernoulli con probabilidad *P* de verdadero (éxito) - por ejemplo, la probabilidad de sacar k bolas rojas en n intentos de una urna con M bolas rojas de N en total, donde p=M/N

$$P(X=k) = (n k) p^k (1-p)^{n-k}$$

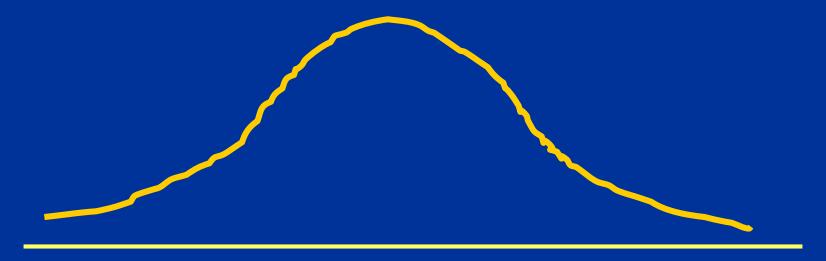
• Donde: (n k) = n! / k!(n-k)!



Gaussiana

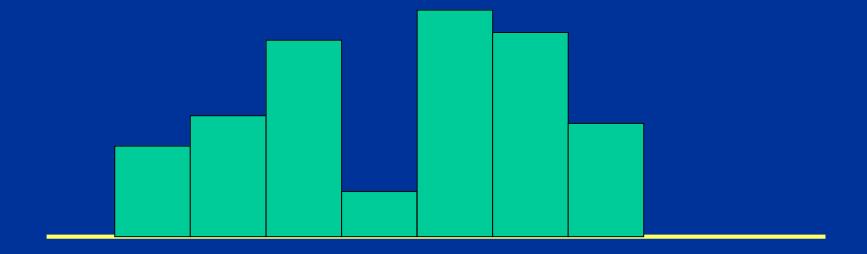
• Aproximación a la binomial con p=0.5 y N muy grande (corresponde a la suma de muchas variables aleatorias independientes)

$$f(x) = 1/\sigma(2\pi)^{1/2} \exp[-1/2 ((x-\mu)/\sigma)^2]$$



Histograma

• Muestra el número de datos por intervalo en forma absoluta o relativa



Referencias

- E.T. Jaynes, Probability Theory: The Logic of Science, Cambridge, 2003
- [Neapolitan] Cap. 2
- [Wesserman] Caps. 1, 2
- [Sucar] Cap. 2

Actividades

- Leer sobre interpretaciones de probabilidad (documento sobre interpretaciones en la página)
- Hacer ejercicios de probabilidad en la página del curso (no entregar)