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Abstract. Turn-based RPGs involve sequential steps towards an spe-
cific goal: winning with limited resources. However, decision making in
this kind of games implies a non-trivial problem even for human players
when it comes to out-of-tutorial battles. As players are often required to
play through many battles to develop a high-level intuition/reasoning on
this kind of games, the present work uses a Reinforcement Learning ap-
proach to make an Al available to play one of those games in an analogue
way to how novice human players would.
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1 Introduction

1.1 Pokémon: a Brief Introduction to the Selected Game

Pokémon is a popular Japanese RPG (Role Playing Game) which stands a world
championship every year, thus being an attractive option for IA techniques test-
ing.

For the purpose of this work, a brief description of the game is given below:

— Each player has a 3-pokémon team, each with a certain remaining health
from 0 (fainted or ”dead”) to 100% and 4 possible moves (each with a limited
number of uses)

— The winner is decided by a last man standing criteria

— Only one pokémon per player can be at the battle ground at the same time

— Every turn, both players select simultaneously an action, either one of the 4
moves of their pokémon or changing for one of the other not fainted pokémon
in their team

— From this point, the game takes full control to return the results of the
actions taken by both players

— This turns-scheme is followed until one team is left with no non-fainted
pokémon
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As the game consists in a battle with limited resources until a winner is
declared by draining out all the opponent’s agents, this game is included in
the category of attrition games according to the model originally defined by
Maynard [I]. For further information, the community driven encyclopedia Bul-
bapedia [2] is a good option.

1.2 Why a Learning Approach

By 2010, Furtak and Buro [3] presented proofs on the complexity of two-player
attrition games, concluding that for most games this is a hard computational
task. Even for basic games of this kind, getting a deterministic winning strategy
is a problem PSPACE-hard in EXPTIME. Therefore, this work approaches the
solution to this problem by a Reinforcement Learning (RL) strategy instead of
a searching strategy.

This achieves two advantages:

— As the main idea is learning a priori a policy for playing, the system is able
to play in real time -just by doing a query every turn- avoiding an exhaustive
search

— The learning is not limited to prior training, as the system is able to learn
on-line by playing

This last point is a key-concept for this work, as that is exactly how human
players learn to play and improve in the game (and, more generally, in strategy
games). Also, this dynamism extends the lifetime of the system, as it allows it to
change along the metagame (unlike other classical games, RPGs tend to add or
modify game mechanics and agents over time, thus motivating players to create
new strategies and to abandon some old ones).

To sum up, Pokémon can be summarized as an analyze state(turn) — take
action sequence game, and the proposed solution is to learn the best action for
every state by emulating the human learning process, which brings out the idea
of RL.

However, a model for a Pokémon battle is not explicitly defined. Therefore,
in order to learn over experience without needing an explicit model (as there is
no real interest in modeling the game), the Q-Learning algorithm was selected,
because its implementation is simple and it has proofs on convergence to an
optimal policy [4].

2 Related Work

Proposed solutions for this kind of games (and more precisely Pokémon) resort to
classical TA strategies for games, mainly search strategies. However, the branch-
ing factor of possible actions per turn invariably turns any decision tree in a
huge search space, so refined search techniques are needed to show an intelligent
behavior along a battle.
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Under this scope, some members of the Pokémon community have made
efforts into effective bots for competitive playing. One example is the Minimax-
based system developed by the users vasumv and sharadmvﬂ Their proposal
was based on minimizing the bot’s losses with a Minimax strategy; to model the
opposite player choices, they downloaded 11,000 battle logs of the top 500 users
from the platfornﬂ Other similar solution was developed by user rameshvarun.
El Unfortunately, those works are no longer supported by the platform in which
they were tested.

Towards academic community proposals, Stanford students took a Reinforce-
ment Learning approach by comparing different algorithms, listed here from
lower to greatest performance: e-greedy, Minimax, Expectimax and Expectimax
w/ TD-lambdaﬂ Their results ranked as an average-to-good player, being over-
come by their human expert. Just as the previously mentioned works, this team
used replays from top players for learning (20,000 battles from top 500 players).

In the IEEE Conference on Computational Intelligence and Games (CIG),
Xu and Verbrugge [5] presented an alternative based in cost-benefit heuristics
to take full advantage of abilities beyond attacking, improving then basic greedy
strategies without exhaustive search. That work focus in those high strategy
level moves (sleeping and healing) instead of the battle as a whole problem.

In the scope of this conference, the New York University Tandon School of
Engineering organized a competition for Pokemon Showdown Al to be hosted on
CIG in 2017. The paper presented by the organizers of the ”Showdown Al Com-
petition” [6] shows some preliminary results on TA strategies for the game such
as Breadth-First Search, minimax, Q-Learning, One Turn Lookahead, Type Se-
lector and Pruned BFS, playing one against another to guide participants on the
ways to go. From this paper, a good list of the problems involved in a pokémon
battle can be pointed out: branching factor, turn count and infinite looping,
turn atomicity, categorical dimensions, stochasticity, hidden information, decep-
tion and simulation cost, among others.

Finally, the author of this work along Madrid, J.G. developed a Knowledge-
Based Learning bot for this game, applying the author’s expert knowledge to
develop an IF-THEN rules system. As that work is the only one with working
code available, it’ll be used as base-line for evaluatiorﬂ

! This project can be found at https://github.com/vasumv/pokemon_ai

2 A further explanation of their system can be consulted here: https://www.reddit.
com/r/stunfisk/comments/3i4hww/pokemon_showdown_ai/

? Their project is also allocated in Github: https://github.com/rameshvarun/
showdownbot

“The report for their project can be found here: https://web.stanford.edu/class/
€s221/2017/restricted/p-final/kkhosla/final.pdf

° The paper derived from that project can be found in https://drive.google.com/
file/d/1XqOUAkDY_5QD-6kZWd9dKVj80FQZHkmw/view?usp=sharing


https://github.com/vasumv/pokemon_ai
https://www.reddit.com/r/stunfisk/comments/3i4hww/pokemon_showdown_ai/
https://www.reddit.com/r/stunfisk/comments/3i4hww/pokemon_showdown_ai/
https://github.com/rameshvarun/showdownbot
https://github.com/rameshvarun/showdownbot
https://web.stanford.edu/class/cs221/2017/restricted/p-final/kkhosla/final.pdf
https://web.stanford.edu/class/cs221/2017/restricted/p-final/kkhosla/final.pdf
https://drive.google.com/file/d/1Xq0UAkDY_5QD-6kZWd9dKVj8OFQZHkmw/view?usp=sharing
https://drive.google.com/file/d/1Xq0UAkDY_5QD-6kZWd9dKVj8OFQZHkmw/view?usp=sharing
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3 Methodology and Development

As pointed out in the previous section, one of the problems to be solved out
in a pokémon battle deals with stochasticity in a sequential decision-making
process. If we also define rewards over the decision taken over each turn (state),
a pokémon battle can be modeled with a Markov Decision Process (MDP).
Furthermore, it can be described as a Markov Game [7], which is an extension of
game theory to MDP-like environments (a pokémon battle is not exactly a MDP
because two opposing agents are looking for their own goal while disrupting the
other one at the same time).

Lets consider a MDP defined as a tuple M =< S, A, ¢, R > [8], where S is the
whole set of possible states, A the whole set of possible actions, ¢ a stochastic
transition function from state s to state s’ by taking action a, and R a reward
function for taking an action @ in an state s. The sets S and A can be defined
according to the developer’s criteria and knowledge about the game, but ¢ and
R are more complex to define without an explicit model of the game.

To work around this problem, the reward r will be computed a posteriori
by an heuristic evaluating the results of the turn. However, the stochastic state
transition function ¢ is yet to be defined. But as the objective of this project
is to learn a policy for every pair < s,a >, a Q-learning algorithm will be
implemented to learn an optimal policy 7. As a model free technique, there is no
need to explicitly calculate ¢; however, the learned policy is implicitly expressing
this transition function, then taking decisions over uncertainty. At the end, the
optimal policy will be described as ”taking the able action with the maximum
expected reward”, according to the Q function that will be described later in
this section.

3.1 Defining the Game Representation in States

This system was developed under the context of Pokémon’s 6th generatimﬁ,
meaning a set of 721 different pokémon plus variant forms of some of those
721 characters. To reduce the dimensionality, and according to the idea that
every competitive game of this kind has a metagame centralized over a subset
of ”competitive characters”, 500 high-ranked battleém were analyzed to get a list
of the pokémon used by top players.

After this analysis, a list of 301 different pokémon was acquired. Considering
this list as the set P, the set S of the MDP was defined as:

S={(zy)[z,yeP}

Basically, the states-space is defined as the cartesian product of set P with
itself, thus having |S| = 3012. For this representation, x represents the player’s

5 By the time this work was released, the franchise was already in its 7th generation,
but 6th generation was chosen because of related work and the system that was
chosen as base-line.

" Those battles were replays stored in https://replay.pokemonshowdown.com/
search/7format=battlespotsingles&rating


https://replay.pokemonshowdown.com/search/?format=battlespotsingles&rating
https://replay.pokemonshowdown.com/search/?format=battlespotsingles&rating
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pokémon, while y stands for the opponent’s one; therefore, an state consists on
reading which ones are the pokémon in the battle ground prior to deciding an
action.

3.2 Defining the Set of Possible Actions

Similar to set P, a set M was defined by observing the attacks (moves) used by
the players in the 500 analyzed battles. From 622 different options, the resulting
cardinality of M was 300. With this sets, the set of possible actions A was defined
as:

A={z|zePUAU {no.action}}

Taking no action is not an option available for a player, but under certain game
mechanics there are times when a pokémon is unable to move, thus resulting in
"no_action” from its part. Therefore, |A] = (301 + 300 + 1) = 602.

3.3 Defining a Reward

As told before, by the lack of an explicit model of the game, the reward function
was defined by an heuristic over the results of each turn. Assuming the system
was in state s and took the decision a, R(s,a) is calculated by summing up the
values of every result reached in the next table:

Table 1. Possible outcomes and their rewards.

Criteria Reward Over Result On Foe|Reward Over Result On Player
One Hit KO |+1100 -1100

KO 41000 -1000

X% Damage |+(X * 10) -(X *10)

Unable to act|+1100 -1100

Multiple instances of the table can be reached in the same turn, and the
system is rewarded whenever a negative effect is inflicted in the foe, and punished
every time a negative effect is inflicted in the player.

3.4 Defining the Learning Algorithm

Recapitulating, a function @ : S x A — R is desired, and this should be learned
by experience. For this purpose, lets call episode to a whole pokémon battle.
Also, let’s define Q as a |S| x |A| matrix, where @);; corresponds to the expected
reward of taking action j while being in state 3.

At the end of each episode, the battle is analyzed turn by turn (that is, state
by state). At each state, the Q matrix is updated using the next formula:

Q(st,at) + (1 — ) x Q(st,a1) + ax ( R(s¢, ap) + v+ mar,Q(st41,a) )
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For this particular implementation, the learning rate o was instanced to 0.1.
According to literature, 0 < « < 1 defines how much new information is taken
into account to update the Q function; under this scope, a low value for « is
meant to believe more in previous information than in incoming data. o = 0.1
was chosen to avoid over fitting; that is, the algorithm gives low importance to
cases that are not often reached, and accumulates belief in cases often seen.

v, known as discount factor, was chosen to be 0.8. According to literature, this
variable is also in the range [0,1], and defines how much importance is given to
the expected reward in the future (talking about the maximum expected reward
by taking the best action in the next state). To avoid getting stuck in a local
maximum (that is, being totally greedy according to the information known in
the present time), v was chosen to have a great value. That is, v = 0.8 to give
great importance to the future development of the game.

3.5 Training

Once the learning algorithm was defined, the system was ready to be trained.
This process was divided into 3 phases, as described below.

Sum of all rewards in Q table

Learning from top players
To give a first guide for train-
ing, the system was trained by
mere observation instead of ex-
ploring. For this, the 500 battles
mentioned before were usedf]
These battles were analyzed un-
til the algorithm reached a con-
vergence with respect to the to-
0] a=01A=08 tal accumulated rewards in the
0 100 200 300 400 500 600 700 Q matrix (as seen in Flg .

fteration
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Fig.1. Accumulated rewards learned from top
players battles. The horizontal axis represents the
number of episodes analyzed.

Learning from itself In this
phase, the system was made to
play against itself in order to try
to improve its Q function values
by reinforcement. For this training, two random teams were chosen (one for each
player). With these teams, the system played 10 battles versus itself; once those
battles were over, new teams were chosen to play again.

Given the huge states-space (3012), it was necessary to guide the learning
process in order to reach convergence in an acceptable time, without neglecting
the exploring capability of Q-Learning by choosing random actions. To achieve
these, a threshold-greedy strategy was used, as described below:

8 From these, 483 battles were useful. The rest were either corrupted or one player
forfeited in the first turn
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— Given the current state, if maz,,,, Q(S, aabie) > threshold (where agpie
stands for all the available actions for the player in that moment),
argmaz,,,, Q(s, agple) is chosen

— If no action was selected in the previous step, given s; is the current state
defined as s¢(x¢,y:), the set of similar states S is defined as S5 = {s|s #
St,y = y¢ }. For every agpie, lets define an imported reward function R;(a) =
E[Q(ss,a)],VQ(ss,a) # 0 (basically, the average reward expected for an
action based on the expected rewards calculated before when such action
was used against the same foe). If max,,,, Ri(aqpie) > threshold,
argmaz,,,, Ri(aapie) is chosen.

— If none of the previous 2 options was taken, a random action agpe is chosen

In this way, the system is allowed to exploit promising actions while not getting
stuck in a low rewards policy for training. One advantage of this type of training
is that every episode counts as, actually, two different episodes (one from each
side point of view).

Sum of all rewards in Q table

Learning From Real-Time
Battles Finally, the system
was trained again by an obser-
vation method. The idea was to
learn about possible actions not
explored by the system while
battling itself, and reinforcing
the knowledge of actions al-
ready explored. Basically a way
of tuning the knowledge.
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Fig. 2. Accumulated rewards learned from bat- 4 Experlments and

tling itself. While the winner increases its rewards, Results

the loser decreases them; however, the trend is in-

creasing the accumulated rewards. The system was tested against
an adaptive Knowledge-Based

System. The implementation
was using selenium webdriver for Python, in order to play on the web browser
based Pokémon Showdown! Battle Simulator Betaﬂ For evaluation, experiments
were done using 10 teams, performing 10 battles per team. One experiment was
using the very same random team for both systems, while another one was using
two different random teams.

Two special considerations must be pointed out: for fair comparison, both
systems played under the restricted rules defined by the KBS. Also, both systems
were able to learn along the 10 battles (while the KBS acquires data about the
opponent’s team to improve its decisions, the Q-Learning system learns rewards
on the actions taken by both players).

9 Pokémon Showdown home page: https://pokemonshowdown . com/
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Besides, to test performance against human players, a brief experiment was
done in a N-attempts to win scheme. For this experiment, 10 random teams
were chosen for both the system and the player (teams were different for both
participants). For each team, the system had 10 attempts to beat the player; if
the system was able to win a battle before the 11th battle, it was considered a
success and the experiment was over for that team. If the 10th battle was over
and the system was not able to win a single battle, it was considered a failure
and the experiment was over for that team.

4.1 Same team
For this experiment, the performance was just as expected, with the Q-learning
system winning most of the battles for most of the teams. Over the 100 performed

battles, the global victory ratio was 0.58 (58%). A more detailed perspective can
be obtained from Fig.

Win ratio using same team
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Fig. 3. Win ratio per team from the Q-learning system’s perspective. The green line is
located at 50%. Therefore, with 6/10 teams the system won more then 50% of battles.

In Fig. [4) the set of battles for team 3 is analyzed, showing the accumulated
victories of each system at each battle. This team was chosen as representative
of a hard match-up for the Q-learning system, adapting itself for winning after
a defeat.

Accumulated Wins,
Team 3 (same team)

EKB
W Q-Learning

Battles won so far

Fig. 4. Accumulated wins of each system for every battle with Team 3.
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4.2 Different teams

For this experiment the performance was lower, with the KBS dominating 71%
of the battles. Therefore, the Q-learning system’s performance was below the
base-line. As before, a more detailed perspective can be obtained by inspecting

Fig. [

Win ratio using different team
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Fig. 5. Win ratio per team from the Q-learning system’s perspective. The green line is
located at 50%. Therefore, with just with 3/10 teams the system won more then 50%
of battles, losing 100% of battles with 4 teams.

4.3 10-Attempts to Win Battling V'S Human

Team 1

From this experiment, the sys-
tem showed the ability to over-
come human players by learn-
ing of them over time. From
the 10 teams set, the experi- ; = Opportunities
ment was a success for 6 teams. Lefrouorio
From those, with 4 teams the

system achieved victory before

the 5th attempt. These results Team S Team?

are shown in Fig. [f] feame

Team 2 Q Team 10

M o B o M o

Team 3 Team 9

Team 4 Team 8

Fig. 6. Results of the 10-attempts experiment. For

each team, the graph shows how many attempts

the system had left when it achieved victory for

Future Work first time. -1 means the system lost the 10 at-
tempts.

5 Conclusions and

Even a simple representation of
the game led to a huge states-
space, therefore a great amount of battles is needed for a proper training (under
the assumption of taking 7 different actions per state, each one once, and an
average of 15 states per battle, more than 20,000 battles would be needed).
Under this scope, the system is vulnerable in states not visited, or not enough
visited (as taking one action once in a state does not allow a proper training to
learn its expected reward).

This most likely explains the results gotten in both experiments. By using
the same teams, even if the Q-Learning loses the first battles (look again at



10 Rill-Garcia, R.

Fig. 4)), its ability to learn on-line allows it to learn how to use its team better
by looking the rewards achieved by both players using the same pokémon. When
using different teams, it could be said that the system learns at most half as quick
as before; when facing difficult combats, it would take a long time to learn the
best policies for the given states.

However, as the system is able to learn on-line, by practicing the same team
many times the Q-function learning can be guided to convergence in desirable
states. Even more, the learning process is highly parallelizable as many battles
can be run simultaneously on many machines updating a single Q-function,
either for the same or different teams.

The same team experiment results suggest that the Q-learning approach is
a good option as it showed promising data. As future work, and to deal with
the huge states-space (and further refining those states for a more detailed game
description), a Deep Q-Learning technique can be used (taking into account the
computational costs inherent to Deep Learning). Another option comes in the
form of Factored Markov Decision Processes, using human knowledge to create
compact representations and thus reducing the states-space.

Also as future work, but focusing on gameplay rather than the learning pro-
cess, two approaches are proposed. The first one is using the learned Q function
for a Minimax technique; as this function works for every possible state rather
than players, the mini and max actions can be estimated by the expected reward
from each player’s perspective. In this way, a prediction of the opponents action
can be made and used by the system just like a human-player. Also, for extend-
ing the action evaluation over the battle, the policy learned by the system can
be tested prior to results with a Monte Carlo approach.
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